Sur les courbes invariantes par un difféomorphisme C1-générique symplectique d’une surface

par Marie Girard

Thèse de doctorat en Mathématiques

Sous la direction de Marie-Claude Arnaud.

Soutenue le 18-12-2009

à Avignon , dans le cadre de Information, Structures, Systèmes (Montpellier ; École Doctorale ; 2009-2014) , en partenariat avec Laboratoire d’Analyse non linéaire et de Géométrie EA 2151 (laboratoire) .

Le président du jury était Patrice Le Calvez.

Le jury était composé de Thierry Barbot, Sylvain Crovisier.

Les rapporteurs étaient Christian Bonatti.


  • Résumé

    Au début du XXème siècle, Poincaré puis Birkhoff ont été amenés, lors de leur recherche sur le problème restreint des trois corps, à étudier les courbes invariantes par une transformation d’une surface préservant l’aire. Cinquante ans plus tard, les théorèmes KAM démontrent la persistance de courbes invariantes après perturbation en topologie de classe k plus grande ou égale à trois. On peut alors se demander ce que devient ce résultat en topologie de classe moins élevée. Par ailleurs, l’étude des dynamiques C1-génériques connaît de nombreux développements, grâce notamment au Connecting Lemma. Par exemple, Bonatti et Crovisier on démontré qu’un difféomorphisme C1-générique d’une telle surface possède un ensemble dense de points dont l’orbite sort de tout compact. Ces deux résultats permettent de penser qu’un difféomorphisme C1-générique d’une surface n’admet pas de courbes fermées simples invariantes. C’est ce que nous démontrons dans ce travail. On obtient assez facilement, en utilisant le Connecting Lemma ainsi que les propriétés topologiques de l’anneau, qu’un difféomorphisme C1-générique de l’anneau possède des points périodiques sur toute courbe fermée simple invariante. Cela se généralise à une surface quelconque en utilisant une famille dénombrable d’anneau constituant une base de voisinages d’une courbe fermée simple quelconque. La construction d’une telle famille d’anneaux est le principal résultat du premier chapitre. Il s’agit alors de supprimer les points périodiques sur les courbes invariantes. Dans un premier temps, nous nous inspirerons d’un argument qu’Herman utilise dans le cadre de courbes invariantes par les twists de l’anneau pour montrer que tous les points périodiques ne peuvent être hyperboliques. Ensuite, nous définissons une propriété, la propriété G, qui si elle est vérifiée par un difféomorphisme symplectique et l’un de ses points périodiques elliptiques, empêche que ce point périodique appartienne à une courbe invariante. En montrant que cette propriété est vérifiée par un difféomorphisme C1-générique et tous ses points périodiques elliptiques, nous obtenons le résultat souhaité. Dans le quatrième chapitre, nous nous employons à définir de façon rigoureuse la notion de fonction génératrice qui est l’outil classique pour perturber des difféomorphismes symplectiques

  • Titre traduit

    On the invariant curves of a C1-generic symplectic diffeomorphism of a surface


  • Résumé

    Poincaré and Birkhoff were led, during their research on the restricted problem of three bodies, to study invariant curves under an area preserving map of a surface. Fifty years later, theorems KAM show the persistance of invariant curves in topology Ck with k greater or equal to three. What becomes this result in topology class lower. Moreover, the study of C1-generic dynamics knows many developments particulary through the Connecting Lemma. For example, Bonatti and Crovisier showed a C1-generic symplectic diffeomorphism of a compact surface is transitive. What they have adapted with M.-C. Arnaud to a non compact surface : a C1-generic symplectic diffeomorphism of a non compact surface has a dense set of points whose orbit leaves every compacts. These two results suggest a such application has not an invariant simple closed curve. The proof of this result is the aim of this work. We obtain, using the Connecting Lemma, a C1-generic symplectic diffeomorphism has periodic points on all the invariant curves. Then, deleting the periodic points from the invariant curves is the challenge. At first, we use an argument that Herman used in the context of curves invariant by a twist of annulus, to show that all periodic points cannot be hyperbolic. Then, we define a property, the property G, which, if it is verified by a symplectic diffeomorphism and one of its periodic elliptic points, prevents this periodic point belongs to an invariant curve. By showing that property is verified by a C1-generic symplectic diffeomorphism, we obtain the desired result. In the fourth chapter, we explain how to pertube a symplectic diffeomorphism with generating functions


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.