Un modèle pour la prise de décision multi-agent sous incertitude stricte

par Ramzi Ben Larbi

Thèse de doctorat en Informatique

Sous la direction de Pierre Marquis.

Soutenue le 14-12-2009

à l'Artois , dans le cadre de ED Sciences pour l'ingénieur (n°72) .

Le président du jury était Salem Benferhat.

Le jury était composé de Pierre Marquis, Salem Benferhat, Didier Dubois, Abdel-Illah Mouadddib, Bruno Beaufils, Sébastien Konieczny, René Mandiau, Nicolas Maudet.

Les rapporteurs étaient Didier Dubois, Abdel-Illah Mouadddib.


  • Résumé

    Le contexte informationnel dans lequel évolue un agent possède une importance extrême quandcelui-ci élabore son comportement futur. Un agent rationnel doit en effet baser ses choix sur les informationsqu’il possède pour choisir ses actions. Or, dans les applications réelles, l’information disponible àl’agent est souvent rare et peu précise. De multiples modèles ont été élaborés dans les différents cadresd’application de l’intelligence artificielle afin de caractériser une décision rationnelle dans chacun descontextes informationnels possibles. Les travaux présentés dans cette thèse concernent l’élaboration d’unmodèle permettant à un agent de prendre des décisions rationnelles dans un contexte informationnel trèspauvre. La seule information dont dispose un agent à propos du résultat de ses actions est la donnée del’ensemble de résultats de chacune d’entre elles. En particulier, aucune information sur la conséquence laplus susceptible de se produire n’est disponible. L’agent est supposé égoïste (au sens où seul compte pourlui son propre intérêt) et autonome. Il évolue de plus dans un environnement où il coexiste avec d’autresagents (qui sont aussi égoïstes et autonomes). Les actions d’un agent influent sur les autres agents. Ladémarche entreprise pour élaborer le modèle est la suivante. D’abord, nous caractérisons les critères dedécision rationnels d’un agent seul dans le contexte informatif étudié. Ensuite, nous étendons ces critèresde décision individuelle au cas multi-agent en nous appuyant sur la théorie des jeux qui est le meilleurcadre pour exprimer les interactions entre agents rationnels et en particulier les possibilités de coordinationentre les agents. Enfin, le domaine de la planification est un excellent cadre pour représenter etexprimer les concepts du modèle.

  • Titre traduit

    A model for multiagent decision making under strict uncertainty


  • Résumé

    The informative context in which an agent evolves is extremely important when she elaborates her futurebehaviour. A rational agent must base her choices on the available information. In realistic applications,the information is often rare and imprecise. Many models have been introduced to caracterize rationaldecision in each possible informative context. This thesis is about the elaboration of a model that allowsan agent to make rational decisions in an extremely poor informative context. The only informationthat is available to an agent about her actions’ consequences is the result set of each of her actions. Noinformation about which consequence of any action will eventually happen is available. The agent issupposed to be selfish (which means that her own interest is her only concern) and autonomous. Sheevolves in an environment in which she coexists with other agents (that are as selfish and autonomous asher). An agent action may inflence those of other agents. We used the following approach to build ourmodel. First, we caracterized the rational decision criteria for an agent to use in the context of completeignorance. Then we extended these criteria, by using game theory concepts, to a multiagent environment.Finally, the planning framework is an excellent framework to represent the introduced concepts.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université d'Artois (Arras, Pas-de-Calais). Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.