Stratégies de segmentation d'images multicomposantes par analyse d'histogrammes multidimensionnels : application à des images couleur de coupes histologiques de pommes

par Sié Ouattara

Thèse de doctorat en Traitement du signal et des images

Sous la direction de Bertrand Vigouroux.

Soutenue en 2009

à Angers .


  • Résumé

    Des progrès techniques récents ont permis la mise en oeuvre de capteurs capables de caractériser une scène par un ensemble d'images appelé image multicomposantes (couleur, multispectrale et multisource ou multiprotocole). Les algorithmes de traitement développés en segmentation pour les images monocomposantes ne sont pas directement applicables aux images multicomposantes en raison de leur caractère vectoriel. Dans la littérature, la plupart des travaux s'appuient sur la segmentation d'images multicomposantes par analyse d'histogrammes marginaux en faisant fi de la corrélation existante entre les composantes de l'image ou sur des images requantifiées à cause de la difficulté de manipuler les histogrammes multidimensionnels (nD, n étant le nombre de composantes de l'image) dont le volume de données est considérable. Dans un premier temps, nous avons développé une méthode de segmentation d'images multicomposantes (n ≥ 3) à caractère vectoriel, non supervisée et non paramétrique appelée ImSegHier_nD. Elle repose sur une analyse hiérarchique d'histogrammes nD compacts, une structure de données algorithmique permettant de réduire sans perte de données l'espace mémoire occupé par les histogrammes nD classiques. Les modes sont obtenus grâce à la mise en oeuvre d'un algorithme d'étiquetage en composantes connexes (ECC) adapté à ce type d'histogrammes. L'évaluation de la qualité de segmentation d'ImSegHier_nD relativement à K-means a montré qu'en évaluation supervisée notre approche est meilleure que K-means et inversement en évaluation non supervisée. Les cas de moindres performances de ImSegHier_nD au regard des critères étudiés (Levine-Nazif, Zeboudj, Borsotti et Rosenberger) s'expliquent par l'aspect diffus des histogrammes nD et ont été étudiés pour différentes typologies d'histogrammes. Dans un deuxième temps, pour apporter une réponse plus générale à la problématique de la sur-segmentation engendrée par le caractère diffus des histogrammes nD quand n augmente, nous avons proposé un algorithme d'étiquetage en composantes connexes floues (ECCF) dont nous comparons les résultats sur la classification avec une requantification de l'histogramme. Nous aboutissons ainsi à quatre stratégies de segmentation dérivées d'ImSegHier_nD dont nous comparons les résultats sur des images naturelles et des images de synthèse. Enfin, nous avons appliqué ce travail à l'analyse de coupes histologiques de pommes en microscopie optique. Nos résultats ont mis en évidence la différence entre trois variétés de pommes en lien avec des analyses de texture et de fermeté.


  • Résumé

    Recent technical progresses supply sensors able to characterize a scene by multicomponent images. Most often, the segmentation of multicomponent images proceeds either through the analysis of their marginal histograms, ignoring the correlation between components, or by requantifying the components due to the difficulty of treating hudge n-dimensional (nD) histograms (n is the number of the image components). In a first step, we have developed a vectorial unsupervised and non parametric segmentation of multicomponent images (n ≥ 3), which is based on the hierarchical analysis of the compact nD histograms (an algorithmic data structure which diminishes the histogram size without losses). The modes of the histogram are obtained by labelling its connected components. The segmentation results are compared to those supplied by the classical K-means method, by using the criterions of Levine-Nazif, Zeboudj, Borsotti or Rosenberger. In a second step, to avoid the over-segmentation resulting from the diffuse character of the nD histograms, we propose to label their connected components in a fuzzy manner. The results are compared to those obtained by a requantification of the histogram. Thus we dispose of four segmentation strategies, and we compare their results on a set of natural as well as synthetic images. At last, this work is used to analyze histological cuts of apples in optical microscopy. The results show differences between three apples species, in relation with texture and firmness analyses.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (240 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. 149-163

Où se trouve cette thèse ?

  • Bibliothèque : Université d'Angers. Service commun de la documentation. Section Lettres - Sciences.
  • Disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.