Mesures réduites, grandes solutions et singularités de quelques problèmes paraboliques

par Waad Al Sayed

Thèse de doctorat en Mathématiques

Sous la direction de Laurent Véron.

Soutenue le 15-12-2008

à Tours , dans le cadre de Ecole doctorale Santé, sciences, technologies (Tours) , en partenariat avec Laboratoire de mathématiques et physique théorique (Tours) (équipe de recherche) .

Le président du jury était Frederic Weissler.

Le jury était composé de Ahmad El Soufi, Mustapha Jazar, Luc Molinet.

Les rapporteurs étaient Mohammed Guedda, Alessio Porretta.


  • Résumé

    Cette thèse est constituée de trois parties. La première est consacrée à dégager les notions de "bonne mesure" et de "mesure réduite" pour deux problèmes paraboliques non linéaires. Pour chacun de ces problèmes et suite à un phénomène de relaxation, on construit une suite qui converge vers la plus "grande" sous-solution du problème donné. En plus, on cherche des "capacités universelles" et on établit des équivalences avec des mesures de Hausdorff. Dans la deuxième partie, on cherche des conditions d'existence et d'unicité de "grande solutions" pour des problèmes paraboliques dont le terme non linéaire est un terme d'absorption. Des conditions sur le bord du domaine permettent de prouver l'unicité de la solution. Dans la troisième partie, on étudie les "singularités" de deux problèmes paraboliques non linéaires.

  • Titre traduit

    Reduced measure, large solutions and singularities for some parabolic problems


  • Résumé

    The thesis at hand is composed of three parts. The first part is devoted to present the notions of "good measure" and "reduced measure" for two non-linear parabolic problems. For each of these problems we construct a sequence, after a relaxation phenomenon, which converges to the "greatest" sub-solution of the given problem. Moreover, we look for "universal capacities" and we establish equivalence with Hausdorff measure. In the second part, we establish existence and uniqueness conditions for "large solutions" of parabolic problems whose non-linear term is an absorption one. Some boundary conditions will permit to prove uniqueness of solutions. In the last part we study the "singularities" of two non-linear parabolic problems.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université François Rabelais. Service commun de la documentation. Bibliothèque de ressources en ligne.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.