Etude d'une méthode de volumes finis pour la résolution des équations de Maxwell en deux dimensions d'espace sur des maillages quelconques et couplage avec l'équation de Vlasov

par Siham Layouni

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Komla Domelevo et de Pascal Omnes.

Soutenue en 2008

à Toulouse 3 .


  • Résumé

    Nous développons et étudions une méthode de volumes finis pour résoudre le système de Maxwell instationnaire bidimensionnel sur des maillages presque quelconques (non-conformes, non-convexes, aplatis. . ). Nous commençons par la construction du schéma, qui est basé sur l'utilisation des opérateurs discrets de la méthode DDFV et sur un choix pertinent pour la discrétisation des conditions initiales et des conditions aux limites. Ensuite, nous prouvons que ce schéma préserve localement la condition de divergence, que l'énergie électromagnétique discrète est conservée ou décroissante (selon les conditions aux limites) et qu'elle est positive sous condition CFL. Nous montrons aussi la stabilité du schéma sous condition CFL et sa convergence dans les cas de champs réguliers et non réguliers. Ces résultats sont ensuite validés, numériquement avec quelques cas tests sur différents types de maillages. Nous vérifions aussi que l'utilisation des maillages non conformes n'amplifie pas les réflexions parasites. Enfin nous couplons ce schéma avec une méthode PIC pour résoudre le système de Maxwell-Vlasov. Nous calculons la densité de courant avec une généralisation de la méthode de Buneman à des maillages quelconques et nous montrons la conservation des équations de charge discrètes, ce qui permet de conserver la loi de Gauss. Le problème couplé est validé numériquement et la simulation de l'amortissement Landau confirme la décroissance de l'énergie, portée par le champ électrique, avec une précision dépendant du nombre de particules par maille.

  • Titre traduit

    ˜A œstudy a finite volume method for the resolution of bidimensional Maxwell equations on arbitrary meshes and coupling with Vlasovs equations


  • Pas de résumé disponible.


  • Résumé

    We develop and study a finite volume method to solve the bidimensional nonstationary Maxwell equations on arbitrary (non-conforming, non-convex, flat. . . ) meshes. We start by the construction of the scheme, which is based on the use of the DDFV discrete operators and a pertinent choice to discretize initial and boundary conditions. Then, we prove that the scheme locally preserves the divergence condition, that a discrete electromagnetic energy is conserved or decreasing (depending on boundary conditions) and that it is positive under a CFL condition. We also show the stability of the scheme under a CFL condition and its convergence for regular and non-regular fields. Then, these results are numerically validated with some tests using different types of meshes. We verify, also, that the use of non-conforming meshes doesn't amplify parasitic reflections. Finally, we coupled the scheme with a PIC method to solve the Maxwell-Vlasov system. We calculate the current density using a generalization of Buneman's method to arbitrary meshes and we prove that discrete charge equations, and thus Gauss' law, are conserved. The coupled problem is numerically validated and the simulation of Landau damping confirms the electric energy decrease with a precision depending on the number of particles per cell.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (150 p.)
  • Annexes : Bibliogr. p. 146-150

Où se trouve cette thèse ?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Disponible pour le PEB
  • Cote : 2008TOU30319
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.