Résidus de 2-formes différentielles sur les surfaces algébriques et applications aux codes correcteurs d'erreurs

par Alain Couvreur

Thèse de doctorat en Mathématiques fondamentales

Sous la direction de Marc Reversat et de Marc Perret.

Soutenue en 2008

à Toulouse 3 .


  • Résumé

    La théorie des codes géométriques s'est développée au début des années 80 sur l'impulsion d'un article de V. D. Goppa publié en 1981. Etant donnée une courbe algébrique projective lisse X sur un corps fini, on dispose de deux constructions de codes correcteurs d'erreurs. Une construction dite fonctionnelle qui fait intervenir certaines fonctions rationnelles sur X et une construction différentielle qui fait appel à certaines 1-formes différentielles rationnelles sur X. L'´étude de ces codes construits sur des courbes a donné lieu à la publication de plusieurs centaines d'articles. Parallèlement à ces travaux, une généralisation de la construction fonctionnelle à des variétés algébriques de dimension quelconque est proposée par Y. Manin dans un article publié en 1984. On dénombre quelques dizaines de travaux publiés portant sur l'étude de tels codes. Cependant, aucun développement n'a été effectué dans le sens d'une généralisation de la construction différentielle. Dans cette thèse nous proposons une construction différentielle de codes sur des surfaces algébriques. Nous étudions ensuite les propriétés de ces codes et plus particulièrement leurs relations avec les codes fonctionnels. De façon un peu surprenante, on observe l'apparition d'une différence majeure avec le cas des courbes. En effet, si sur une courbe l'orthogonal d'un code fonctionnel est différentiel, ce fait est en général faux sur une surface. Ce résultat motive l'étude des orthogonaux de codes fonctionnels. Des formules pour l'estimation de la distance minimale de tels codes sont données en utilisant des propriétés de systèmes linéaires sur une variété. . .

  • Titre traduit

    Residues of differential 2-forms on algebraic surfaces and applications to error-correcting codes


  • Pas de résumé disponible.


  • Résumé

    The theory of algebraic-geometric codes has been developed in the beginning of the 80's after an article of V. D. Goppa. Given a smooth projective algebraic curve X over a finite field, there are two different constructions of error-correcting codes. The first one, called "functional", uses some rational functions on X and the second one, called "differential", involves some rational 1-forms on this curve. Hundreds of papers are devoted to the study of such codes. In addition, a generalization of the functional construction for algebraic varieties of arbitrary dimension is given by Y. Manin in an article published in 1984. A few papers about such codes has been published, but nothing has been done concerning a generalization of the differential construction to the higher-dimensional case. In this thesis, we propose a differential construction of codes on algebraic surfaces. Afterwards, we study the properties of these codes and particularly their relations with functional codes. A pretty surprising fact is that a main difference with the case of curves appears. Indeed, if in the case of curves, a differential code is always the orthogonal of a functional one, this assertion generally fails for surfaces. Last observation motivates the study of codes which are the orthogonal of some functional code on a surface. . .

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (168 p.)
  • Annexes : Bibliogr. p. 165-168

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Disponible pour le PEB
  • Cote : 2008TOU30292
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.