Dépôt organosilicie par plasma froid basse pression et pression atmosphérique sur substrats microstructurés

par Isabelle Savin de Larclause

Thèse de doctorat en Matériaux et procédés plasmas

Sous la direction de Patrice Raynaud, Yvan Ségui et de Nicolas Ghérardi.

Soutenue en 2008

à Toulouse 3 .

  • Titre traduit

    Organosilicon plasma deposition on microstructured substrate by microwave low pressure plasma and atmospheric pressure Townsend discharge


  • Pas de résumé disponible.


  • Résumé

    Ces travaux de thèse sont partie intégrante d'un projet centré sur l'optique ophtalmique, né de la volonté de la société Essilor de préparer un saut technologique, tant dans l'appréhension de la fonction optique des verres ophtalmiques que dans leur mode de production. L'idée novatrice du projet repose sur l'introduction de fonctions actives dans le verre, grâce à la discrétisation de ce dernier. Pour se faire, Essilor s'est tournée vers les technologies de la microélectronique et notamment les technologies plasma. La thématique abordée ici est le dépôt d'un film mince par plasma sur un substrat microstructuré. Afin de posséder une qualité, en terme de propriété finale, homogène sur l'ensemble de la microstructure, ce film doit être conforme, c'est-à-dire d'épaisseur, de composition et de structure égale sur l'ensemble du substrat. La problématique de cette thèse est donc la compréhension des mécanismes régissant cette propriété, la conformité, au travers de la comparaison de deux procédés, un réacteur plasma micro-onde ECR basse pression et une décharge de Townsend à la pression atmosphérique. L'incidence des paramètres opératoires (puissance, polarisation du substrat, température, mélange gazeux) sur la conformité a été étudiée. Ceci a permis de vérifier l'importance de l'effet d'ombrage à basse pression et de mettre en évidence le rôle majeur des ions. A pression atmosphérique, bien que le libre parcours moyen soit petit par rapport à la taille des microstructures, le dépôt se concentre essentiellement sur les régions supérieures de la microstructure. Afin de comprendre ce phénomène, des simulations de transports de matière et de champ électrique ont été mises en place. Il est apparu que la diffusion était susceptible d'expliquer ceci et que ces effets étaient accentués par la répartition du champ électrique à la surface de la microstructure. La prépondérance de l'un de ces phénomènes (la diffusion ou les effets de champ) semble varier selon les conditions, et en particulier selon le mélange gazeux.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (229 p.)
  • Annexes : Bibliogr. à la fin des chapitres

Où se trouve cette thèse ?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Disponible pour le PEB
  • Cote : 2008TOU30254
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.