Maximum de vraisemblance et moindre carrés pénalisés dans des modèles de durée de vie censurées

par Amélie Detais

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Jean-François Dupuy et de Jean-Claude Fort.

Soutenue en 2008

à Toulouse 3 .


  • Résumé

    L'analyse de durées de vie censurées est utilisée dans des domaines d'application variés et différentes possibilités ont été proposées pour la modélisation de telles données. Nous nous intéressons dans cette thèse à deux types de modélisation différents, le modèle de Cox stratifié avec indicateurs de strates aléatoirement manquants et le modèle de régression linéaire censuré à droite. Nous proposons des méthodes d'estimation des paramètres et établissons les propriétés asymptotiques des estimateurs obtenus dans chacun de ces modèles. Dans un premier temps, nous considérons une généralisation du modèle de Cox qui permet à différents groupes de la population, appelés strates, de posséder des fonctions d'intensité de base différentes tandis que la valeur du paramètre de régression est commune. Dans ce modèle à intensité proportionnelle stratifié, nous nous intéressons à l'estimation des paramètres lorsque l'indicateur de strate est manquant pour certains individus de la population. Des estimateurs du maximum de vraisemblance non paramétrique pour les paramètres du modèle sont proposés et nous montrons leurs consistance et normalité asymptotique. L'efficacité du paramètre de régression est établie et des estimateurs consistants de sa variance asymptotique sont également obtenus. Pour l'évaluation des estimateurs du modèle, nous proposons l'utilisation de l'algorithme Espérance-Maximisation et le développons dans ce cas particulier. Dans un second temps, nous nous intéressons au modèle de régression linéaire lorsque la donnée réponse est censurée aléatoirement à droite. Nous introduisons un nouvel estimateur du paramètre de régression minimisant un critère des moindres carrés pénalisé et pondéré par des poids de Kaplan-Meier. Des résultats de consistance et normalité asymptotique sont obtenus et une étude de simulations est effectuée pour illustrer les propriétés de cet estimateur de type LASSO. La méthode bootstrap est utilisée pour l'estimation de la variance asymptotique.

  • Titre traduit

    Maximum likelihood and penalized least squares in censored survival data models


  • Pas de résumé disponible.


  • Résumé

    Life data analysis is used in various application fields. Different methods have been proposed for modelling such data. In this thesis, we are interested in two distinct modelisation types, the stratified Cox model with randomly missing strata indicators and the right-censored linear regression model. We propose methods for estimating the parameters and establish the asymptotic properties of the obtained estimators in each of these models. First, we consider a generalization of the Cox model, allowing different groups, named strata, of the population to have distinct baseline intensity functions, whereas the regression parameter is shared by all the strata. In this stratified proportional intensity model, we are interested in the parameters estimation when the strata indicator is missing for some of the population individuals. Nonparametric maximum likelihood estimators are proposed for the model parameters and their consistency and asymptotic normality are established. We show the efficiency of the regression parameter and obtain consistent estimators of its variance. The Expectation-Maximization algorithm is proposed and developed for the evaluation of the estimators of the model parameters. Second, we are interested in the regression linear model when the response data is randomly right-censored. We introduce a new estimator of the regression parameter, which minimizes a Kaplan-Meier-weighted penalized least squares criterion. Results of consistency and asymptotic normality are obtained and a simulation study is conducted in order to investigate the small sample properties of this LASSO-type estimator. The bootstrap method is used for the estimation of the asymptotic variance.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (139 p.)
  • Annexes : Bibliogr. p. 131-138

Où se trouve cette thèse ?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Disponible pour le PEB
  • Cote : 2008TOU30232
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.