Prévision et analyse du trafic routier par des méthodes statistiques

par Guillaume Allain

Thèse de doctorat en Statistiques

Sous la direction de Fabrice Gamboa et de Jean-Michel Loubès.

Soutenue en 2008

à Toulouse 3 .


  • Résumé

    La société Mediamobile édite et diffuse de l'information sur le trafic aux usagers. L'objectif de ce travail est l'enrichissement de cette information par la prévision et la complétion des conditions de route. Notre approche s'inspire parfois de la modélisation physique du trafic routier mais fait surtout appel à des méthodes statistiques afin de proposer des solutions automatisables, modulaires et adaptées aux contraintes industrielles. Dans un premier temps, nous décrivons une méthode de prévision de la vitesse de quelques minutes à plusieurs heures. Nous supposons qu'il existe un nombre fini de comportements types du trafic sur le réseau, dus aux déplacements périodiques des usagers. Nous faisons alors l'hypothèse que les courbes de vitesses observées en chaque point du réseau sont issues d'un modèle de mélange. Nous cherchons ensuite à améliorer cette méthode générale de prévision. La prévision à moyen terme fait appel à des variables bâties sur le calendrier. Nous retenons le modèle de mélange des courbes de vitesse et nous proposons également des modèles de régression fonctionnelle pour les courbes de vitesses. Ensuite nous proposons une modélisation par régression locale afin de capturer la dynamique physique du trafic à très court terme. Nous estimons la fonction de noyau à partir des observations du phénomène en intégrant des connaissances a priori sur la dynamique du trafic. La dernière partie est dédiée à l'analyse des vitesses issues de véhicules traceurs. Ces vitesses sont irrégulièrement observées en temps et en espace sur un axe routier. Nous proposons un modèle de régression locale à l'aide de polynômes locaux pour compléter et lisser ces données.

  • Titre traduit

    Road tracking forecasting by statistical method


  • Pas de résumé disponible.


  • Résumé

    The industrial partner of this work is Mediamobile/V-trafic, a company which processes and broadcasts live road-traffic information. The goal of our work is to enhance traffic information with forecasting and spatial extending. Our approach is sometimes inspired by physical modelling of traffic dynamic, but it mainly uses statistical methods in order to propose self-organising and modular models suitable for industrial constraints. In the first part of this work, we describe a method to forecast trafic speed within a time frame of a few minutes up to several hours. Our method is based on the assumption that traffic on the a road network can be summarized by a few typical profiles. Those profiles are linked to the users' periodical behaviors. We therefore make the assumption that observed speed curves on each point of the network are stemming from a probabilistic mixture model. The following parts of our work will present how we can refine the general method. Medium term forecasting uses variables built from the calendar. The mixture model still stands. Additionnaly we use a fonctionnal regression model to forecast speed curves. We then introduces a local regression model in order to stimulate short-term trafic dynamics. The kernel function is built from real speed observations and we integrate some knowledge about traffic dynamics. The last part of our work focuses on the analysis of speed data from in traffic vehicles. These observations are gathered sporadically in time and on the road segment. The resulting data is completed and smoothed by local polynomial regression.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (106 p.)
  • Annexes : Bibliogr. p. 101-106

Où se trouve cette thèse ?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Disponible pour le PEB
  • Cote : 2008TOU30163
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.