Etudes expérimentales de surfaces et de films minces isolants par microscopie à sonde locale sous ultra vide

par Miguel Angel Venegas de la Cerda

Thèse de doctorat en Nanophysique

Sous la direction de Sébastien Gauthier.

Soutenue en 2008

à Toulouse 3 .


  • Résumé

    Dans ce travail de recherche nous avons réalisé des études expérimentales de surfaces et de films minces isolants par microscopie à sonde locale sous ultra vide à température ambiante. En particulier nous avons utilisé la microscopie à effet tunnel (STM) et la microscopie à force atomique en mode non-contact (NC-AFM). Nous présentons des résultats qui concernent deux systèmes : la surface isolante KBr(001) et le film mince isolant d'alumine formé par oxydation de la surface (110) d'un cristal de NiAl. Dans un premier temps, nous avons modifié la tête du microscope STM/AFM en changeant le dispositif de détection optique des oscillations du cantilever. L'amélioration importante apportée nous a permis de mener une série d'expériences sur la surface de clivage du cristal ionique KBr(001). Nous avons mis en évidence à partir d'images de marches monoatomiques acquises avec la résolution atomique des changements de contraste réversibles déclenchés par le passage de la pointe sur le bord de marche. Ces observations ont été interprétées en terme de déplacements atomiques à l'extrême apex de la pointe entraînant un changement de signe de l'ion terminal, qui détermine le type d'image observée. Cette hypothèse a été confirmée en analysant les courbes expérimentales donnant la force entre la pointe et la surface en fonction de la distance pointe-surface. Cette étude a été suivie de quelques tentatives pour imager des molécules organiques sur cette surface isolante. Le système Pd/Al10O13/NiAl(110) à été étudié par microscopie à effet tunnel. La couche d'oxyde est formée par l'exposition à O2 à une température particulier (~280°C) de la surface (110) d'un cristal de NiAl sous ultravide. Nous avons obtenu des images en résolution atomique qui nous ont permis de remonter à la structure atomique de la couche isolante d'alumine, de stœchiométrie Al10O13, ainsi que de l'un des types de parois de domaine du film isolant. . .

  • Titre traduit

    Exploring bulk insulating surfaces and thin insulating films, at the atomic level by UHV-SPM techniques


  • Résumé

    In this research work we carried out experimental studies of insulating surfaces and insulating thin films surfaces by scanning probe microscopy techniques under ultra vacuum at room temperature. In particular we used Scanning Tunneling Microscopy (STM) and Atomic Force Microscopy in the non contact mode (NC-AFM). We present experimental results on two systems: the insulating surface KBr (001) and the thin insulating alumina film formed by oxidation of the (110) surface of a NiAl crystal. Initially, we modified the STM/AFM head by changing the optical device of the detection of the cantilever oscillations system. This crucial improvement enabled us to carry out a series of experiments on the (001) cleaved surface of the ionic crystal KBr at the atomic level. We have evidence obtained from atomic resolution images, that shows a change in contrast when the tip passes through a step edge. Where we could observe a systematic and reversible change in the contrasts of the image. These observations were interpreted in terms of the atomic displacements of the last extremity tip apex, involving the change of last ion sign. This change of ion determines the type of image observed at atomic resolution. This assumption was confirmed by analyzing the experimental curves giving the force between the tip and the surface according to the tip to surface distance. This study was followed of some attempts to images organic molecules on this insulating surface. The Pd/Al10O13/NiAl (110) system was explored by STM and scanning tunneling spectroscopy (STS), where the oxide layer is formed by exposing the NiAl(110) surface to an oxygen atmosphere, while keeping the sample temperature at (~280°C) under ultra-high vacuum. The atomic resolution images obtained enabled us to go down into the atomic structure of the insulating alumina layer, with stoichiometry Al10O13. In addition, it could be possible to atomically resolve a unit cell of one type of defects formed. We also carried out electrical measurements in order to characterize its electric properties on a nanometer scale. . .

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (138 p.)
  • Annexes : Bibliogr. p. 123-130

Où se trouve cette thèse ?

  • Library : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Disponible pour le PEB
  • Odds : 2008TOU30116
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.