Bidirectional DC voltage conversion for low power applications

par Vincent Lorentz

Thèse de doctorat en Électronique

Sous la direction de Francis Braun et de Heiner Ryssel.

Soutenue en 2008

à l'Université Louis Pasteur (Strasbourg) en cotutelle avec Friedrich-Alexander-Universität Erlangen-Nürnberg - Allemagne .

  • Titre traduit

    Conversion bidirectionnelle de tension DC pour applications de faible puissance


  • Résumé

    Cette thèse se focalise sur la conversion de tension utilisée dans l’équipement mobile. Le concept présenté combine le convertisseur de tension avec l’unité de gestion de l’énergie en constituant un convertisseur de puissance intelligent (IPC) intégré dans la batterie et capable de fournir une tension régulée et ajustable, adaptable à tout équipement mobile. L’IPC doit permettre un flux d’énergie bidirectionnel car la batterie doit être rechargée. L’IPC a été conçu, simulé, tracé dans le layout et fabriqué avec une finesse de gravure de 0. 18μm dans une technologie mixed-signal CMOS de UMC. L’IPC possède une tension de fonctionnement de 1. 2V-3. 6V, un courant continu maximum de 2000mA, et une fréquence de fonctionnement de 100kHz-10MHz. Des solutions nouvelles ont été développées pour l’IPC. Premièrement, une méthode pour détecter automatiquement le chargeur de batterie a été développée. Deuxièmement, une boucle de régulation continue a été développée. Elle permet d’augmenter ou de diminuer la tension à convertir dans les deux directions et à des fréquences élevées. Troisièmement, le dimensionnement dynamique de MOSFET a été développé pour maximiser l’efficacité de conversion à faible charge. Quatrièmement, une méthode d’estimation du courant moyen à travers l’inductance a été développée pour des fréquences jusqu’à 10MHz. Cinquièmement, une interface I2C a été implémentée pour permettre la configuration de l’unité de gestion de l’énergie. Comme la batterie intelligente contient un système de management de batterie et offre une tension ajustable, elle peut être facilement remplacée. L’upgrade des batteries devient possible, et l’autonomie des équipements mobiles est allongée.


  • Résumé

    This thesis focuses on the voltage conversion used in mobile equipment. The novel concept exposed consists in combining the voltage conversion unit with the battery management unit, thus building an intelligent power converter (IPC), that is integrated into the battery and is able to provide a regulated and adjustable voltage directly to the mobile equipment, thus making it adaptable to every mobile equipment. Because the battery must also be recharged, the IPC must allow a bidirectional energy flow. The IPC has been designed, simulated, laid-out and manufactured in a 0. 18 μm mixed-signal CMOS technology from UMC. The IPC requires an operating voltage between 1. 2V-3. 6V, an average load current up to 2000mA, and an operating frequency in the range of 100kHz-10MHz. Novel solutions were developed for the IPC. First, a method was developed for detecting automatically the connection of a battery charger in parallel to the load. Second, a continuous regulation loop was developed, which enables highly efficient step-up and step-down conversion in both directions and at high switching frequencies. Third, dynamic MOSFET sizing was developed, to maximize the conver-sion efficiency at light load. Fourth, a current sensing method has been developed for estimating the average inductor current at switching frequencies up to 10MHz. Fifth, an I2C interface was imple-mented, to enable digital programming of the battery management. Since the intelligent battery contains a battery management and provides an adjustable voltage, it can be easily replaced. This enables battery upgrading, so that the operating time of the mobile equipment is extended.


  • Résumé

    Batteriebetriebene Mobilgeräte sind ein wichtiger Tragpfeiler des heutigen Markts, besonders seit Mobiltelefone und Digitalkameras eingeführt wurden. Allerdings haben Mobilgeräte einen Nachteil: die Batterie verfügt über eine begrenzte Kapazität, die nur auf zwei Wege erweitert werden kann. Der erste Weg besteht in der Entwicklung von neuen Batteriechemien, um die Energiedichte zu erhöhen. Der zweite Weg besteht in einer effizienteren Nutzung dieser Energie durch ein intelligenteres Ener-giemanagement. Diese Dissertation befasst sich mit dem zweiten Ansatz, und zwar mit der Span-nungswandlung, die üblicherweise in Mobilgeräten benutzt wird. Ziel des vorgestellten Konzeptes ist es, den Spannungswandler mit dem Energiemanagement zu kombinieren, um damit einen intelligen-ten Leistungswandler (IPC) zu realisieren, der in die Batterie integriert wird. Diese intelligente Batterie liefert eine geregelte und einstellbare Spannung. Damit ist sie in jedem Mobilgerät einsetzbar. Der IPC muss einen bidirektionalen Energiefluss erlauben, um die Batterie aufladen zu können. Der IPC wurde entwickelt und simuliert. Ein Layout wurde erstellt und in einer 0. 18 μm-Mixed-signal CMOS-Technologie von UMC gefertigt. Ein auf Cadence- Software basierender Full-custom-Designfluss wurde erstellt. Zusätzlich zu den Modellen von UMC wurden Monte-Carlo-Modelle entwi-ckelt, um die Variationen des Herstellungsprozesses bei den Simulationen berücksichtigen zu können. Um Elektromigration zu verhindern, wurden Designregeln geschrieben, damit eine Stromüberlastung der Metallverbindungen im Leistungsteil vermieden wird. Die technischen Daten des IPCs sind ein Betriebsspannungsbereich von 1,2 V-3,6 V, ein konstanter Laststrom bis zu 2000mA und eine Be-triebsfrequenz im Bereich von 100 kHz bis 10 MHz. Mehrere neue Lösungen wurden für den IPC entwickelt. Erstens wurde eine Methode entwickelt, um ein Batterieladegerät zu erkennen, da die Richtung des Energieflusses durch die Anwesenheit dieses Ladegerät parallel zur Last bestimmt wird. Zweitens wurde eine kontinuierliche Regelungsschleife entwickelt, die es ermöglicht, bei hohen Frequenzen die gewandelte Spannung in beide Richtungen hoch- und herunterzusetzen. Drittens wurde eine dynamische Einstellung der Weite des MOSFETs entwickelt, um den Wirkungsgrad im Schwachlastbereich zu erhöhen. Bei Frequenzen über 1MHz wurde eine absolute Wirkungsgraderhöhung von 25% erreicht. Viertens wurde für Betriebsfrequenzen bis 10MHz eine Methode zur Abschätzung des Stromes durch die Induktivität entwickelt. Fünftens wurde eine digitale I2C-Schnittstelle implementiert, um das Konfigurieren des Energiemanagement-systems zu ermöglichen. Da die intelligente Batterie ein Batteriemanagementsystem enthält und eine einstellbare Spannung ausgibt, kann sie einfach ausgetauscht werden. Das Upgraden von Batterien wird möglich (z. B. Ande-re Chemie, höhere Energiedichte), so dass die Betriebsdauer erweitert wird. Die Integration der Elekt-ronik erlaubt es, zusätzlich Schutzfunktionen gegen Kurzschlüsse, Überladung oder Fälschungen unterzubringen.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (XXXIII-181 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. 163-172. Index

Où se trouve cette thèse ?

  • Bibliothèque : Université de Strasbourg. Service commun de la documentation. Bibliothèque Blaise Pascal.
  • Disponible pour le PEB
  • Cote : Th.Strbg.Sc.2008;5784
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.