Percolation presque-critique en deux dimensions, et quelques modèles liés

par Pierre Nolin

Thèse de doctorat en Mathématiques

Sous la direction de Wendelin Werner.


  • Résumé

    Cette thèse consiste en six chapitres, étudiant différentes questions liées à la percolation près du point critique en deux dimensions. Au chapitre 1, nous présentons en détail les résultats et les techniques dues à Kesten permettant de décrire la percolation presque-critique, et nous obtenons quelques nouvelles conséquences. Nous exploitons ensuite ces idées dans les chapitres suivants : nous étudions successivement un modèle d'incipient infinite cluster (chapitre 2), les propriétés géométriques des interfaces en régime presque-critique (chapitre 3), le modèle de percolation en gradient (chapitres 4 et 5), qui est un modèle de percolation inhomogène, et finalement un modèle de diffusion (chapitre 6), pour lequel on montre qu'une géométrie fractale apparaît spontanément.

  • Titre traduit

    Near-critical percolation in two dimensions, and some related models


  • Résumé

    This thesis consists of six chapters, studying various questions related to percolation near criticality in two dimensions. In chapter 1, we present in detail Kesten's results and techniques allowing to describe near-critical percolation, and we derive some new consequences. We then apply these ideas in the next chapters : we study successively a model of incipient infinite cluster (chapter 2), the geometric properties of interfaces in near-critical regime (chapter 3), the gradient percolation model (chapters 4 and 5), which is a model of inhomogeneous percolation, and finally some diffusion model (chapter 6), for which we show that a fractal geometry spontaneously arises.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (VIII-171 p.)
  • Annexes : Bibliogr. p. 167-171

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud (Orsay, Essonne). Service Commun de la Documentation. Section Sciences.
  • Disponible pour le PEB
  • Cote : 0g ORSAY(2008)236
  • Bibliothèque : Bibliothèque Mathématique Jacques Hadamard (Orsay, Essonne).
  • Disponible sous forme de reproduction pour le PEB
  • Cote : NOLI
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.