Algorithmes rapides d'optimisation convexe : applications à la restauration d'images et à la détection de changements

par Pierre Weiss

Thèse de doctorat en Automatique, traitement du signal et des images

Sous la direction de Laure Blanc-Féraud et de Gilles Aubert.


  • Résumé

    Algorithmes rapides d'optimisation convexe. Applications à la restauration d'images et à la détection de changements. Cette thèse contient des contributions en analyse numérique et en vision par ordinateur. Dans une première partie, nous nous intéressons à la résolution rapide, par des méthodes de premier ordre, de problèmes d'optimisation convexe. Ces problèmes apparaissent naturellement dans de nombreuses tâches telles que la reconstruction d'images, l'échantillonnage compressif ou la décomposition d'images en texture et en géométrie. Ils ont la particularité d'être non différentiables ou très mal conditionnés. On montre qu'en utilisant des propriétés fines des fonctions à minimiser on peut obtenir des algorithmes de minimisation extrêmement efficaces. On analyse systématiquement leurs taux de convergence en utilisant des résultats récents dus à Y. Nesterov. Les méthodes proposées correspondent - à notre connaissance - à l'état de l'art des méthodes de premier ordre. Dans une deuxième partie, nous nous intéressons au problème de la détection de changements entre deux images satellitaires prises au même endroit à des instants différents. Une des difficultés principales à surmonter pour résoudre ce problème est de s'affranchir des conditions d'illuminations différentes entre les deux prises de vue. Ceci nous mène à l'étude de l'invariance aux changements d'illuminations des lignes de niveau d'une image. On caractérise complètement les scènes qui fournissent des lignes de niveau invariantes. Celles-ci correspondent assez bien à des milieux urbains. On propose alors un algorithme simple de détection de changements qui fournit des résultats très satisfaisants sur des image synthétiques et des images Quickbird réelles.

  • Titre traduit

    Fast algorithms for convex optimization : application to image restoration and change detection


  • Résumé

    This PhD contains contributions in numerical analysis and in computer vision. The talk will be divided in two parts. In the first part, we will focus on the fast resolution, using first order methods, of convex optimization problems. Those problems appear naturally in many image processing tasks like image reconstruction, compressed sensing or texture+cartoon decompositions. They are generally non differentiable or ill-conditioned. We show that they can be solved very efficiently using fine properties of the functions to be minimized. We analyze in a systematic way their convergence rate using recent results due to Y. Nesterov. To our knowledge, the proposed methods correspond to the state of the art of the first order methods. In the second part, we will focus on the problem of change detection between two remotely sensed images taken from the same location at two different times. One of the main difficulty to solve this problem is the differences in the illumination conditions between the two shots. This leads us to study the level line illumination invariance. We completely characterize the 3D scenes which produce invariant level lines. We show that they correspond quite well to urban scenes. Then we propose a variational framework and a simple change detection algorithm which gives satisfying results both on synthetic OpenGL scenes and real Quickbird images.

Autre version

Cette thèse a donné lieu à une publication en 2008 par [CCSD] [diffusion/distribution] à Villeurbanne

Algorithmes rapides d'optimisation convexe : applications à la restauration d'images et à la détection de changements

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (168 p.)
  • Annexes : Bibliogr. p. 159-167. Résumés en français et en anglais

Où se trouve cette thèse ?

  • Bibliothèque : Université Nice Sophia Antipolis. Service commun de la documentation. Bibliothèque Sciences.
  • Non disponible pour le PEB
  • Cote : 08NICE4032
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.