Chaînes de spins quantiques hors de l'équilibre

par Thierry Platini

Thèse de doctorat en Sciences Physiques

Sous la direction de Dragi Karevski.

Soutenue le 01-07-2008

à Nancy 1 , dans le cadre de EMMA , en partenariat avec Laboratoire Physique des Matériaux (laboratoire) .

Le jury était composé de S. Attal, J. M. Luck, B. Berche, D. Karevski.

Les rapporteurs étaient P. Calabrese, F. van Wijland.


  • Résumé

    Les travaux exposés dans ce manuscrit sont consacrés à l'étude de la dynamique hors équilibre de chaînes quantiques décrites par le modèle XY. Nous commençons par considérer la dynamique unitaire obtenue par la mise en contact de sous-systèmes voisins thermalisés à des températures différentes. L'état initial de la chaîne est inhomogène et la dynamique tend à l'homogénéisation. Lorsque le système est initialement divisé en deux sous-systèmes semi-infini préparés aux températures T_b=\infty et T_s, nous obtenons analytiquement la fonction de Green associée à l'évolution du profil d'aimantation. Les résultats sont généralisés pour les températures T_b finies. Dans le cas particulier où T_s=T_b=0, nous étudions le comportement de l'entropie d'intrication entre sous-systèmes. Cette quantité présente un accroissement "rapide", prédit par la théorie conforme (dans le cas d'un système critique), suivi d'une relaxation algébrique vers la valeur d'équilibre. Dans la dernière partie la dynamique du système est obtenue par l'interaction avec l'environnement, décrite par le processus d'interactions répétées. Nous examinons la structure de la matrice densité du système et donnons une équation d'évolution de l'ensemble des corrélateurs à deux points. Finalement, nous étudions l'évolution temporelle du modèle XX en contact avec un ou deux bains aux températures T_1 et T_2. Lorsque T_1=T_2, l'étude du comportement du système, pour les temps courts, dévoile l'état stationnaire. Dans la situation T_1\ne T_2, nous vérifions numériquement que le profil d'aimantation est plat et proposons l'introduction d'un désordre dynamique qui permet l'installation d'un gradient d'aimantation.

  • Titre traduit

    Non-equilibrium quantum spin chains


  • Résumé

    The work exposed in this thesis is focused on the analyze of the non-equilibrium dynamics of quantum spin chains described by the XY model. We start by considering the unitary dynamics obtained by the interaction of neighboring sub-systems thermalized at different temperatures. The initial state is inhomogeneous and the dynamics is evolving towards an homogeneous state. For a system, initially divided in two sub-systems thermalized at the temperatures T_b=\inflty and T_s, we obtain the analytic expression of the Green function associated to the evolution of the magnetization profile. This results are generalized for finite temperatures T_b. In the particular case T_b=T_s=0, we analyze the behavior of the entenglement entropy generated between sub-systems. This quantity presents a fast increase, predicted by the conformal theory, followed by a slow relaxation towards equilibrium. In the last part, the dynamics of the system is obtained by the interaction with the environment, descibed by the process of repeated interactions. We are analyzing the structure of the system density matrix and are giving the equation of evolution for the set of two-points correlators. Finally, we study the time evolution of the XX model in contact with two baths at the temperatures T_1 and T_2. For T_1=T_2, the analysis of the short time behavior reveals useful informations on the stationary state. For T_1\ne T_2 we numericaly check that the density profil is flat and propose the introduction of a dynamical disorder which lead to a linear density profile.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.