Bigèbres généralisées : de la conjecture de Kashiwara-Vergne aux complexes de graphes de Kontsevich

par Emily Burgunder

Thèse de doctorat en Mathématiques

Sous la direction de Alain Bruguières et de Jean-Louis Loday.

Soutenue en 2008

à Montpellier 2 .


  • Résumé

    Cette thèse se compose de quatre articles autonomes s'articulant en trois thèmes: la conjecture de Kashiwara-Vergne, le graphe-complexe de Kontsevich et les bigèbres magmatiques. Ces articles sont liés par la notion de bigèbre et les idempotents qui leurs sont attachés: dans le premier cas on utilise les propriétés des bigèbres classiques et dans le second des bigèbres Zinbiel-associatives. Le résultat principal du premier article consiste à donner une solution complète et explicite de la première équation de la conjecture de Kashiwara-Vergne en utilisant les propriétés intrinsèques de l'idempotent Eulérien et de l'idempotent de Dynkin. Dans le second article on généralise un théorème de Kontsevich à l'homologie de Leibniz. On démontre que l'homologie de Leibniz des champs de vecteurs symplectiques sur une variété formelle se reconstruit à partir de l'homologie d'un nouveau type de complexe de graphes : le graphe complexe symétrique. La troisième partie est composée de deux articles traitant des bigèbres magmatiques. Dans le premier on démontre que toute bigèbre magmatique infinie se reconstruit à partir de ses primitifs. En collaboration avec Ralf Holtkamp, on généralise ce résultat à des bigèbres magmatiques partielles en construisant une nouvelle structure d'algèbres vérifiée par les primitifs.

  • Titre traduit

    Generalised bialgebras : from Kashiwara-Vergne conjecture to Kontsevich graph complexes


  • Résumé

    This thesis contains four articles developed around three themes : the Kashiwara-Vergne conjecture, Kontsevich's graph complex and magmatic bialgebras. The results obtained are linked by the notion of generalised bialgebras and their idempotents: in the first case we use the properties of classical bialgebras and in the second, a structure theorem for Zinbiel-associatives bialgebras. The main result of the first article is to construct explicitly all the solutions of the first equation of Kashiwara-Vergne conjecture, using the interplay between the Eulerian idempotent and the Dynkin idempotent. In second chapter we generalise the Kontsevich's theorem that computes the Lie homology of vector fields on a formal manifold. Indeed, we prove that the Leibniz homology of these symplectic vector fields on a formal manifold can be reconstructed thanks to the homology associated to a new type of graphs: the symmetric graphs. The third part contains two articles on magmatic bialgebras. In the first one, we prove a structure theorem which permits to reconstruct any infinite magmatic bialgebra through its primitives. In collaboration with Ralf Holtkamp, we extend this result to partial magmatic bialgebras and we construct a new type of operad that encodes the algebraic structure satisfied by the primitives.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (116 p.)
  • Annexes : Bibliogr. p. 113-116. Annexes

Où se trouve cette thèse ?

  • Bibliothèque : Bibliothèque interuniversitaire. Section Sciences.
  • Disponible pour le PEB
  • Cote : TS 2008.MON-248
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.