Conception et réalisation de méthodes de détection de polluants gazeux atmosphériques à l'aide d'un nez électronique portable

par Sophie Fuchs

Thèse de doctorat en Electronique

Sous la direction de Martine Lumbreras et de Maryam Siadat.

Le président du jury était Djilali Kourtiche.

Le jury était composé de Nicole Jaffrezic-Renault, Joop Schoonman.

Les rapporteurs étaient Jacques Nicolas.


  • Résumé

    La pollution atmosphérique malodorante provient essentiellement de quatre gaz SO2, H2S, NO2 et NH3. Afin de réduire au mieux ces effets néfastes sur la santé et l'environnement, il faut contrôler en continu les émanations de gaz le plus près possible de la source. Ce qui nécessite un appareil capable de détecter ces gaz polluants, simple d'utilisation, de taille et poids réduits. C'est dans cette optique que nous avons réalisé un nez électronique portable, servant à détecter les quatre gaz cibles déjà cités. La partie sensible de ce prototype est constituée d'une matrice de six capteurs à oxydes métalliques semi-conducteurs, dont nous utilisons la sensibilité croisée. Le nez électronique fonctionne sur le même principe que le nez humain, il doit apprendre à reconnaître une odeur. Cette phase d'apprentissage se déroule au laboratoire où nous envoyons sur les capteurs des mélanges gazeux connus et contrôlés. La réponse des capteurs varie en fonction de la nature du gaz (réducteur ou oxydant) et de leur sensibilité à celui-ci. Puis l'utilisation de méthodes d'analyse de données a prouvé que notre nez électronique peut discriminer un mélange gazeux complexe et le quantifier. Ensuite nous avons placé le nez électronique en situation réelle, en étudiant l'odeur dégagée par des fientes de canards dans une ferme expérimentale. Les résultats obtenus ont montré que cet appareil pouvait détecter de manière fiable les variations d'odeur en fonction des paramètres influents. Ainsi, nous avons réalisé la validation de notre prototype en laboratoire puis sur site. Mais les capteurs utilisés présentent un inconvénient, ils doivent conserver sans interruption leur température de fonctionnement (~ 350°C). Afin de prévenir cette forte consommation d'énergie, nous avons développé des capteurs polymères qui fonctionnent à température ambiante. La caractérisation en laboratoire a montré qu'ils sont sensibles aux gaz cibles étudiés. Leurs réponses à H2S laisse apparaître une bonne stabilité à court et moyen terme, qui permettra de les intégrer dans la matrice après complet développement

  • Titre traduit

    Conception and realization of polluant atmospheric gases detection methods with a portable electronic nose


  • Résumé

    The malodorous atmospheric pollution results essentially from four gases SO2, H2S, No2 and NH3. To reduce at best these fatal effects on the health and the environment, it is necessary to control continuously the gas emanations closer to the source, That requires adevice enable to detect these polluant gases, easy to use, with reduced size and weight. In this way, we have realized a portable electronic nose, to detect of the four target gases already mentioned. The sensitive part of this prototype is composed of a matrix of six semi conducting metal oxide sensors, offering a good cross sensivity. The electronic nose mimics the human nose, he has to learn to recognize an odour. This learning phase is realised in the laboratoy by introducing in the sensor cell gas mixtures with controlled composition, The sensor response varies with the nature of the gas (reducing or oxidizing) and their own gas sensitivity. The use of analysis and data methods proves that our electronic nose can well discriminate a complex gas mixture and quantify it. Then, we have placed the electronic nose in a real situation, by studying the odour coming from a duck experimental farm. The obtained results showed that this prototype could well detect the variations of the odour level in accordance with the influent parameters. So, we have realized the laboratory and the real site validation of our electronic nose. But the metal oxide sensors present an inconvenient : they have to keep continuously their working temperature (~ 350°C). To prevent this strong energy consumption, we have developed polymer sensors which work at room temperature. The characterization in laboratory showed that they are sensitive to studied target gases. Their responses to H2S have a good stability in short and middle term, allowing to integrate them into the matrix after complete development


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.