La programmation DC et DCA pour l'optimisation de portefeuille

par Mahdi Moeini

Thèse de doctorat en Informatique

Sous la direction de Hoai An Lê Thi.

Soutenue en 2008

à Metz .


  • Résumé

    Les travaux présentés dans cette thèse concernent les nouvelles techniques d'optimisation pour la résolution de certains problèmes importants issus de finance. Il s'agit des problèmes d'optimisation non convexe de grande dimension pour lesquels la recherche des bonnes méthodes de résolution est toujours d'actualité. Notre travail s'appuie principalement sur la programmation DC (Différence de fonctions Convexes) et DCA (DC Algorithmes). Cette démarche est motivée par la robustesse et la performance de la programmation DC et DCA comparée aux autres méthodes. La thèse est divisée en deux parties et est composée de sept chapitres. Dans la première partie intitulée ¡Méthodologie¡ nous présentons des outils théoriques et algorithmiques servant des références aux autres. Le premier chapitre concerne la programmation DC et DCA tandis que le deuxième porte sur les algorithmes par séparation et évaluation. Dans la deuxième partie nous développons la programmation DC et DCA pour la résolution des problèmes en finance. Nous commençons par une introduction à la gestion de portefeuille (le Chapitre 3). Le Chapitre 4 est dédié aux généralisations du modèle moyenne-variance (MV) de Markowitz, où nous étudions le modèle MV sous les contraintes de seuil d'achat, de seuil et de cardinalité. Le Chapitre 5 est consacré à la mesure de risque de baisse et les contraintes de cardinalité. Le Chapitre 6 porte sur le problème de choix de portefeuille avec les fonctions des coûts de transaction en escalier. L'investissement robuste en gestion de portefeuille sous les contraintes de cardinalité est développé dans le dernier chapitre.

  • Titre traduit

    DC programming for DCA for portfolio optimization


  • Résumé

    The topics presented in this thesis are related to new optimization techniques for solving some challenging problems resulting from finance. They are large-scale non convex optimization problems for which finding efficient solving methods is currently the topic of numerous researches. Our work is based mainly on DC (Difference of Convex functions) programming and DCA (DC Algorithm). This approach is motivated by the robustness and efficiency of DC programming and DCA approaches in comparison to the other methods. The thesis is divided into two parts and consists of seven chapters. In the first part entitled Methodology ; we present theoretical tools and algorithms that we are going to use in the thesis. The first chapter is about DC programming and DCA and the second focuses on branch and bound algorithms. In the second part we develop DC programming and DCA for solving some problems in finance. We begin with an introduction to the modern portfolio theory (The Chapter 3). The Chapter 4 is dedicated to the generalizations of the mean variance (MV) model of Markowitz, where we study the MV model under the buy-in threshold constraints, threshold constraints, and cardinality constraints. The Chapter 5 is devoted to the portfolio selection problem under downside risk measure and cardinality constraints. The Chapter 6 deals with the portfolio optimization under step increasing transaction costs functions. Finally, the robust investment strategies with discrete asset choice constraints are developed in the last chapter.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Annexes : Notes bibliogr.

Où se trouve cette thèse ?

  • Bibliothèque : Université de Lorraine. Direction de la documentation et de l'édition. Bibliothèques Metz et Moselle.
  • Non disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.