Sur la 2-cohomologie non abélienne : corps des modules

par Bénaouda Djamaï

Thèse de doctorat en Mathématiques pures

Sous la direction de Jean-Claude Douai.

Soutenue en 2008

à Lille 1 .


  • Résumé

    Soit f : X ? Y un morphisme de schémas et G un Y -schéma en groupes. Lorsque G est abélien, la suite spectrale de Leray associée à f, Ep,q= Hp(Y,Rq,f. Gx)=> Hp+q(X,Gx), nous donne une suite exacte en basses dimensions : 0 ?H1(Y,f*G_x)? H1(X,Gx)?H0(Y,R1f*Gx)? H2(Y,f*Gx)?H2(X, Gx)tr?H1(Y,R1f*Gx)?H3(Y,f*Gx). Le but de ce travail est d'étudier l'analogue de cette situation lorsque G n'est plus abélien. La notion de gerbe introduite par Grothendieck permet de construire un substitut au cobord d0,1H0(Y,R1f*Gx)? H2(Y,f*Gx). Ici nous étudions plus particulièrement l'obstruction à descendre une Gx-gerbe sur X en une f*Gx-gerbe sur Y. Pour cela, à partir de l'interprétation de Giraud du R1f*Gx, nous construisons un substitut non abélien du H1(Y,R1f*Gx) et du cobord d1. 1 :H1(Y,R1f*GX)?H3(Y, f*Gx), en termes de condition de corps des modules et de 2-gerbes. Nous donnerons ensuite deux exemples de descente de gerbes dans le cas non abélien: le premier, considéré par Grothendieck, est celui des surface fibrées sur des droites, le deuxième, de nature arithmétique, concerne l'extension maximale abélienne d'un corps des fractions d'un anneau local, excellent, henselien de dimension 2.

  • Titre traduit

    On the non abelian 2-cohomology : field of moduli


  • Résumé

    Let f: X-Y be a morphism of schemes and G a group scheme over Y. If G is abelian, the Leray spectral sequence associated to f, Epq=HP(Y, Rqf*Gx)==>Hp+q(X,Gx), gives rise to an exact sequence in low dimensions: 0- H1(y ,f*Gx)- H1 (X,Gx)- W(Y,R If*GX)_ H2(y ,f*Gx)- H2(X, Gx)tr_ H1(Y,R1f*GX)_ H3(Y,f*Gx). Ln this thesis, we consider the case of a non abelian group G. The notion of a gerb, due to Grothendieck allows us to get an equivalent morphism to d0,1:H0(Y,R1f*Gx)-H2(Y,f*Gx). Here we study the obstruction to a Gx-gerb on X to be the image of an f*Gx-gerb on Y. For this aim, we use the Giraud's iterpretation ofR1f*Gx, to build an equivalent object to H1(Y,R1f*Gx) and an equivalent morphism to d1,1: H1(Y,R1f*Gx)_H3(Y,f*GX), in terms of field of moduli condition and 2-gerbs. We will then give two results in the non abelian case: a cohomological one, wich is the case of a surface fibred on a curve, studied by Grothendieck, and a arithrnetical one wich deals with the maximal abelian extension of the fractions field of a local, heselian, excellent ring of dimension 2.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Annexes : Bibliogr. p. [35]-37. 39 réf

Où se trouve cette thèse ?

  • Bibliothèque : Université des sciences et technologies de Lille. Service commun de la documentation. Bibliothèque virtuelle.
  • Accessible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.