Intégrateurs géométriques : application à la mécanique des fluides

par Marx Chhay

Thèse de doctorat en Mécanique des fluides

Sous la direction de Aziz Hamdouni.

Soutenue en 2008

à La Rochelle .


  • Résumé

    Une approche récente permettant d'étudier les équations issues de la Mécanique des Fluides consiste à considérer les symétries de ces équations. Les succès des développements théoriques, notamment en turbulence, ont justifié la pertinence d'une telle approche. Sur le plan numérique, les méthodes d'intégration construites sur des arguments liés à la structure géométrique des équations s'appellent les intégrateurs géométriques. Dans la première partie de la thèse, on présente la classe d'intégrateurs géométriques probablement la plus connue; ce sont les intégrateurs symplectiques pour les systèmes hamiltoniens. Dans une seconde partie, on introduit les intégrateurs variationnels, construits pour reproduire les lois de conservation des systèmes lagrangiens. Cependant, la plupart des équations de la Mécanique des Fluides ne dérive pas d'un Lagrangien. On expose alors dans la dernière partie une méthode de construction de schémas numériques respectant les symétries d'une équation. Cette méthode est basée sur une formulation moderne des repères mobiles. On présente une contribution au développement de cette méthode; elle permet d'obtenir un schéma invariant possédant un ordre de précision déterminé. Des exemples issus des équations modèles de la Mécanique des Fluides sont traités.

  • Titre traduit

    Geometric integrators : application to fluid mechanics


  • Résumé

    A recent approach to study the equations from Fluid Mechanics consists in considering the symmetry group of equations. Succes of theoretical development, specially in turbulence, has justified the relevance of this approach. On the numerical side, the integrating methods based on arguments related to the geometrical structure of equations are called geometric integrators. In the first part of this thesis, a class of such integrators is introduced: symplectic integrators for hamiltonian systems, which are probably the most well known geometric integrators. In the second part, variational integrators are outlined, constructed in order to reproduce conservation laws of lagrangian systems. However most of Fluid Mechanics equations cannot be derived from a Lagrangian. In the last part of this thesis, a method of construction of numerical schemes that preserves equations symmetry is exposed. This method is based on a modern formulation of moving frames. A contribution to the development of this method is proposed; this allows to obtain an invariant numerical scheme that owns an order of accuracy. Examples from Fluid Mechanics model equations are detailled.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (183 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. 173-183

Où se trouve cette thèse ?

  • Bibliothèque : Université de La Rochelle. Bibliothèque universitaire.
  • Disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.