Portfolio optimization in financial markets with partial information

par Sébastien Roland

Thèse de doctorat en Mathématiques

Sous la direction de Monique Jeanblanc.

Le président du jury était Marie-Claire Quenez.

Le jury était composé de Vincent Lacoste.

Les rapporteurs étaient Constantin Mellios, Patrice Poncet.

  • Titre traduit

    Optimisation de portefeuille sur les marches financiers dans le cadre d'une information partielle


  • Résumé

    Cette thèse traite - en trois essais - de problèmes de choix de portefeuille en situation d’information partielle, thématique que nous présentons dans une courte introduction. Les essais développés abordent chacun une particularité de cette problématique. Le premier (coécrit avec M. Jeanblanc et V. Lacoste) traite la question du choix de la stratégie optimale pour un problème de maximisation d’utilité terminale lorsque l’évolution des prix est modélisée par un processus de Itô-Lévy dont la tendance et l’intensité des sauts ne sont pas observées. L’approche consiste à réécrire le problème initial comme un problème réduit dans la filtration engendrée par les prix. Cela nécessite la dérivation des équations de filtrage non-linéaire, que nous développons pour un processus de Lévy. Le problème est ensuite résolu en utilisant la programmation dynamique par les équations de Bellman et de HJB. Le second essai aborde dans un cadre gaussien la question du coût de l’incertitude, que nous définissons comme la différence entre les stratégies optimales (ou les richesses maximales) d’un agent parfaitement informé et d’un agent partiellement informé. Les propriétés de ce coût de l’information sont étudiées dans le cadre des trois formes standard de fonctions d’utilités et des exemples numériques sont présentés. Enfin, le troisième essai traite la question du choix de portefeuille quand l’information sur les prix de marché n’est disponible qu’à des dates discrètes et aléatoires. Cela revient à supposer que la dynamique des prix suit un processus marqué. Dans ce cadre, nous développons les équations de filtrage et réécrivons le problème initial dans sa forme réduite dans la filtration discrète des prix. Les stratégies optimales sont ensuite calculées en utilisant le calcul de Malliavin pour des mesures aléatoires et une extension de la formule de Clark-Ocone-Haussman est à cette fin présentée.


  • Résumé

    This thesis deals - in three essays - with problems of choice of portfolio in situation of partial information, thematic that we present in a short introduction. The tests developed each address a particularity of this problem. The first (co-written with M. Jeanblanc and V. Lacoste) deals with the choice of the optimal strategy for a terminal utility maximization problem when the evolution of prices is modeled by an Itô- Lévy process whose trend and the intensity of the jumps are not observed. The approach is to rewrite the initial problem as a reduced problem in price-driven fi ltration. This requires the derivation of nonlinear filtering equations, which we develop for a Lévy process. The problem is then solved using dynamic programming by the Bellman and HJB equations. The second essay tackles the question of the cost of uncertainty in a Gaussian framework, which we de fi ne as the di ff erence between the optimal strategies (or the maximum wealth) of a fully informed agent and a partially informed agent. The properties of this information cost are studied in the context of the three standard forms of utility functions and numericalexamples are presented. Finally, the third essay addresses the issue of portfolio choice when market price information is only available on discrete and random dates. This amounts to assuming that price dynamics follow a marked process. In this framework, we develop fi ltering equations and rewrite the initialproblem in its reduced form in discrete price fi ltration. The optimal strategies are then calculated using Malliavin's computation for random measurements and an extension of the Clark-Ocone-Haussman formula is for this purpose presented.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université d'Evry-Val d'Essonne. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.