Recherche dans les bases de données satellitaires des paysages et application au milieu urbain : clustering, consensus et catégorisation

par Ivan Kyrgyzov

Thèse de doctorat en Signal et images

Sous la direction de Henri Maître.

Soutenue en 2008

à Paris, ENST .


  • Résumé

    Les images satellitaires ont trouvé une large application pour l'analyse des ressources naturelles et des activités humaine. Les images à haute résolution, e. G. , SpOT5, sont trés nombreuses. Ceci donne un grand intérêt afin de développer de nouveaux aspects théoriques et des outils pour la fouille d'images. L'objectif de la thèse est la fouille non-supervisée d'images et inclut trois parties principales. Dans la première partie nous démontrons le contenu d'images à haute résolution. Nous décrivons les zones d'images par les caractéristiques texturelles et géométriques. Les algorithmes de clustering sont présentés dans la deuxième partie. Une étude de critères de validité et de mesures d'information est donnée pour estimer la qualité de clustering. Un nouveau critère basé sur la Longueur de Description Minimale (LDM) est proposé pour estimer le nombre optimal de clusters. Par ailleurs, nous proposons un nouveau algorithme hiérarchique basé sur le critère LDM à noyau. Une nouvelle méthode de ''combinaison de clustering'' est présentée dans la thèse pour profiter de différents algorithmes de clustering. Nous développons un algorithme hiérarchique pour optimiser la fonction objective basée sur une matrice de co-association. Une deuxième méthode est proposée qui converge à une solution globale. Nous prouvons que le minimum global peut être trouvé en utilisant l'algorithme de type ''mean shift''. Les avantages de cette méthode sont une convergence rapide et une complexité linéaire. Dans la troisième partie de la thèse un protocole complet de la fouille d'images est proposé. Différents clusterings sont représentés via les relations sémantiques entre les concepts.

  • Titre traduit

    Mining satellite image database of landscapes and application for urban zones : clustering, consensus and categorisation


  • Résumé

    Remote sensed satellite images have found a wide application for analysing and managing natural resources and human activities. Satellite images of high resolution, e. G. , SPOT5, have large sizes and are very numerous. This gives a large interest to develop new theoretical aspects and practical tools for satellite image mining. The objective of the thesis is unsupervised satellite image mining and includes three main parts. In the first part of the thesiswe demonstrate content of high resolution optical satellite images. We describe image zones by texture and geometrical features. Unsupervised clustering algorithms are presented in the second part of the thesis. A review of validity criteria and information measures is given in order to estimate the quality of clustering solutions. A new criterion based on Minimum Description Length (MDL) is proposed for estimating the optimal number of clusters. In addition, we propose a new kernel hierarchical clustering algorithm based on kernel MDL criterion. A new method of ”clustering combination” is presented in the thesis in order to benefit from several clusterings issued from different algorithms. We develop a hierarchical algorithm to optimise the objective function based on a co-association matrix. A second method is proposed which converges to a global solution. We prove that the global minimum may be found using the gradient density function estimation by the mean shift procedure. Advantages of this method are a fast convergence and a linear complexity. In the third part of the thesis a complete protocol of unsupervised satellite images mining is proposed. Different clustering results are represented via semantic relations between concepts.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (X-250 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : 128 réf. bibliogr. Résumé en français et en anglais. Résumé étendu en français.

Où se trouve cette thèse ?

  • Bibliothèque : Télécom ParisTech. Bibliothèque scientifique et technique.
  • Disponible pour le PEB
  • Cote : 7.345 KYRG
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.