Mesostructured porous materials : Pore and surface engineering towards bio-inspired synthesis of heterogeneous copper catalysts

par Kun Zhang

Thèse de doctorat en Chimie

Sous la direction de Laurent Bonneviot et de Mingyuan He.

  • Titre traduit

    Materiaux poreux mesostructurés : ingénierie de la porosité et de la surface pour la conception bio-inspirée de catalyseurs hétérogènes au cuivre


  • Résumé

    Le contrôle fin de la structure et de la chimie de surface en milieu confiné a été développé dans des silices poreuses mésostucturées de type MCM-41 pour synthétiser des catalyseurs hétérogènes combinant confinement moléculaire, hydrophobicité et spécificité de sites à l’instar des métalloprotéines. La surface considérée comme lisse a en fait une rugosité de type alvéolaire due à l’empreinte de la tête ammonium du tensioactif de synthèse. Pour des températures croissantes du traitement hydrothermal, la taille des mésopores augmente par érosion de cette rugosité puis diminue par épaississement des parois. On a aussi trouvé des conditions de synthèse de zéolihes mésoporeuses avec une micro- et mésoporosité hiérarchisée. Ces surfaces sont polyfonctionnalisées grâce à la technique de pochoir moléculaire pour isoler des fonctions bidentatés aminoéthylaminopropyles par des groupements hydrophobes triméthylsimyles. Les ions cuivriques sont alors retenus dans le matériau par complexation à ces fonctions diamino.


  • Résumé

    Advanced control of the surface structure and chemistry in confined space has been developed here in mesostructured porous silicas of MCM-41 type to design novel metal supported catalysts combining confinement, hydrophobicity and site specificity using the inspiring model of metalloproteins. First, it is demonstrated that the surface of such a type of materials usually seen as smooth has indeed an alveolar structure generated by the imprint of the ammonium surfactant head groups used here as directing agent. Increasing hydrothermal temperatures is shown first to enlarge the pore size by mere surface smoothing followed by a decrease explained by wall thickening. In addition, conditions were found to generate hybrid materials with hierarchical micro- and mesoporority. Finally, both rough and smooth surfaces were found amenable for multifonctionnalization using molecular stencil patterning technique and compared for isolation of bidentate aminoethyleaminopropyl tethers by trimethylsilyl grafted hydrophobic groups. Then copper (II) can easily be retained by complexation to these bidentate tethers inside the nanochannels of the material.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (174 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Notes bibliogr.

Où se trouve cette thèse ?

  • Bibliothèque : Bibliothèque Diderot Sciences (Lyon).
  • Disponible pour le PEB
  • Bibliothèque : Bibliothèque Diderot Sciences (Lyon).
  • Non disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.