Thèse de doctorat en Mathématiques
Sous la direction de Michael Heusener.
Soutenue en 2008
Nous nous intéressons à l'étude des représentations du groupe d'un noeud dans un groupe de Lie résoluble algébrique connexe. Comme généralisation d'un résultat classique de Burde et de Rham, nous montrons que l'étude de l'existence de certaines représentations métabéliennes permet de retrouver la décomposition complète du module d'Alexander à coefficients complexes. En second lieu, nous étudions les déformations d'une représentation réductible métabélienne du groupe d'un noeud dans SL(3,C). Nous montrons que cette représentation est limite de représentations irréductibles non métabéliennes et qu'elle est un point lisse de la variété des représentations
Representation spaces of knot groups into solvable Lie groups
Pas de résumé disponible.