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INTRODUCTION

(1) General framework. The problem considered in this Thesis is the following: given two
Banach spaces X and Y of holomorphic functions on the unit disc D = {z € C: |2| <1}, X DY,
and a finite set ¢ C D, what is the best possible interpolation by functions of the space Y for the
traces f|, of functions of the space X, in the worst case? Precisely, the matter is to compare the
restriction (or quotient) norms on the finite dimensional space X\, = Y|;, namely the norms

1, = inf (1 9 llx: 9 € X, g = fie)

Iflly, =inf(lgly: 9€Y. 90 = fio) -

The classical interpolation problems- those of Nevanlinna-Pick and Carathéodory-Schur (on the
one hand) and Carleson’s free interpolation (on the other hand)- are of this nature. Two first are
“individual”, in the sens that one looks simply to compute the norms || f|| e OF [l o0 o proc for @

given f, whereas the third one is to compare the norms [|af|, ) = mazie, [ax| and

inf (|| g llo: g(A) =ax, A€o).

Here and everywhere below, I1* stands for the space (algebra) of bounded holomorphic functions
in the unit disc D endowed with the norm || f||., = sup.ep|f(2)|. Looking at this comparison
problem, say, in the form of computing/estimating the interpolation constant

c(o, X, V) = supsex pyc<vinf {lglly = 9o = fio}
which is nothing but the norm of the embedding operator <X|,,, ||||X‘ ) — <Y|J, ||||Y| ), one

can think, of course, on passing (after) to the limit- in the case of an infinite sequence {\;} and
its finite sections {);}7_;- in order to obtain a Carleson type interpolation theorem X|, = Y.
But not necessarily. In particular, even the classical Pick-Nevanlinna theorem (giving a necessary
and sufficient condition on a function a for the existence of f € H* such that |||, < 1 and
f(A) = ax, A € 0), does not lead immediately to Carleson’s criterion for Hi> = [°(0). (Finally, a
direct deduction of Carleson’s theorem from Pick’s result was done by P. Koosis [K] in 1999 only).
Similarly, the problem stated for ¢ (o, X, Y) is of interest in its own. For this Thesis, the following
question was especially stimulating (which is a part of a more complicated question arising in an
applied situation in [BL1] and [BL2]): given a set ¢ C D, how to estimate ¢ (o, H?, H*) in terms
of n = card(c) and maxye, |A| = r only? Here, H? is the standard Hardy space of the disc,
see below for the formal definition. The last general remark before passing to a more detailed
description of the Thesis: looking for a possible choice of an interpolating space Y, one can find
many interesting candidates, which in addition are important for various applications (in matrix or
numerical analysis), see a short list of such candidates below, in this Introduction. However, in this
Thesis, we deal with H* interpolation only. Therefore, conditions of the type ay = f()\), f € X
play the role of constraints for interpolation expressed in form of a norm inequality ||f]|, < 1.
Now, we pass to technical details.

(2) The spaces considered in this Thesis. For our interpolation problem, we consider the
following scales of Banach spaces:
e X = H? = [HP(D), 1 <p < oo, the standard Hardy spaces on the disc D,



OX:lZ<(

k++)a,1>, a > 1, the Hardy weighted spaces of all f(z) =", f(k)2* satisfying

2

k>0

e

f(k‘) m

< o0,

o X = [2 ((1 - |z|2)BdA), B > —1, where dA stands for the area measure, the Bergman

weighted spaces of all holomorphic functions f such that
/ P (1= 12P) dA < .
D

For the case 8 = 0, we shorten the notation to X = L2. Notice that two latter series of spaces

coincide:
1 20—3
ﬁGFﬁF3>@<U—M3 aA). o> 1

For all three series we show that

1-— 1-—
C1Px (1——T> <sup{c(o, X, H®): #0<mn, |\| <r, A€o} < capx (1— T),
n n

where px(t), 0 <t < 1 stands for the norm of the evaluation functional f — f(¢) on the space X.
Other spaces considered are the following:

e X = (grr) ez 1< p< o

.X:Lg((1—|z|2)5dA),ﬂ>—1,1gp§2.

For these spaces we also found upper and lower bounds for ¢ (o, X, H*) (sometimes for special
sets o) but with some gaps between these bounds. (See details below, in this Introduction).

(3) Principal results. Let 0 = {1, ..., A1, Ao, ..., Ay ooy Ay, .., A} be a finite sequence in the unit
disc, where every )y is repeated according its multiplicity my , 22:1 ms = n and 7 = maw;=1_|\i|.
Let X, Y be Banach spaces of holomorphic functions continuously embedded into the space Hol(ID)
of holomorphic functions in the unit disc D. In what follows, we systematically use the following
conditions for the spaces X and Y,

(P) Hol((1+ €)D) is continuously embedded intoY" for every e > 0,

(Py) Poly C X and Pol, is densein X,

where Pol, stands for the set of all complex polynomials p, p(z) = Z,JCV:O a2,

(P5) [f € X]= |2"f € X, ¥n > 0andlim ||"f||" <1|,



f
zZ— A

(Py) [fEX,)\E]D),Cmdf()\):O]:[ EX].

We are interested in estimating the quantity

c(o, X, Y) = supsc<iinf {|lglly : g €Y, GO N) =fDN) Vi, 5, 1<i<t,0<j< m;} .

In order to simplify the notation, the condition
g N)=FPN) Vi, G, 1<i<t,0<j<my
will also be written as
Yo = fio-

Supposing X verifies property (P;) and Y C X, the quantity ¢ (o, X, Y') can be written as
follows,

c(o, X, Y) = supypc<iinf{llgly : g€Y, g — f € B X},

where B, is the Blaschke product

B, = Ili=1 nby,,
A—2z

corresponding to o, bx(z) = 7= being an elementary Blaschke factor for A € D.

The interesting case is obviously when X is larger than Y, and the sens of the issue lies in
comparing || . ||x and || . |y when Y interpolates X on the set o. For example, we can wonder
what happens when X = H? | the classical Hardy spaces of the disc or X = LP, the Bergman
spaces, etc..., and when Y = H* but also Y = W the Wiener algebra (of absolutely converging
Fourier series) or Y = Bj |, a Besov algebra (an interesting case for the functional calculus of
finite rank operators, in particular, those satisfying the so-called Ritt condition). Here, H? stands
for the classical Hardy space of the disc (see below).

It is also important to understand what kind of interpolation we are going to study when
bounding the constant ¢(o, X, Y). Namely, comparing with the Carleson free interpolation, we
can say that the latter one deals with the interpolation constant defined as

c(0,1%(0), H®) = sup{inf (|| g [|c: g € H*, go =a) : a €1®(0), || a|ji=< 1} .

We also can add some more motivations to our problem:

(a) One of the most interesting cases is Y = H*. In this case, the quantity c (o, X, H®)
has a meaning of an intermediate interpolation between the Carleson one ( when | f]| X, =

supi<i<n |f (N\i)]) and the individual Nevanlinna-Pick interpolation (no conditions on f).
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(b) There is a straight link between the constant ¢ (o, X, Y') and numerical analysis. For exam-
ple, in matrix analysis, it is of interest to bound the norm of an H*-calculus ||f(A)| < ¢||f]l .
f € H®, for an arbitrary Banach space n-dimensional contraction A with a given spectrum
o(A) C 0. The best possible constant is ¢ = ¢ (o, H*, W), so that

0(0-7 Hoo) W) - Sup“f”ooﬁlsup{”f(A)H DA ((Cn7 H) - (Cn7 ||)7 ”AH < 17 U(A> C 0}7

where W = {f = k>0 Flk)z* > k>0 ’f(k)‘ < oo} stands for the Wiener algebra, and the

interior sup is taken over all contractions on n—dimensional Banach spaces. An interesting case
occurs for f € H* such that f|, = %Ia (estimation of condition numbers and the norms inverses

of n x n matrices) or fi, = 7

=t (for estimation of the norm of the resolvent of an n x n matrix).

The Thesis is organised as follows.

Chapter 1 is devoted to upper bounds for generalized Nevanlinna-Pick interpolation (excepting
for Section 1.11, which deals with generalized Carathéodory-Schur interpolation).

In Chapter 2, we discuss the sharpness of some of the upper bounds obtained in Chapter 1.

Finally, Chapter 3 deals with an application of H* interpolation to an estimate of condition
numbers of Toeplitz matrices, this is the content of [Z].

Chapter 1 starts studying general Banach spaces X and Y and gives some sufficients conditions
under which C,, ,(X,Y) < oo , where

Cnr(X)Y) =sup{c(o, X)Y) : #0 <n,V¥j=1.n, |\| <r}.
In particular, we prove the following basic fact.

Theorem. 1.1.1 Let X, Y be Banach spaces verifying properties (P;), i = 1..4 , then

Crr(X,Y) < 00,
for everyn>1 andr, 0 <r < 1.

We also give in Section 1.1 a general lower bound for the quantity C, (X, H*) using the
evaluation functionals ) for \ € D,

eAlf) =f(N), feX,

and more generally, the evaluation functionals for the derivatives @) (s = 0,1, ...),

ers(f) = PN, feX.
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Theorem. 1.1.3 (1) For every sequence o C D, we have

clo, X, H®) > mazeo ||l -

(2) Moreover, writing 0 = {1, ..., A1, Mgy .oy Aoy ooy Mg, ooy A}, Where each A is repeated according
its multiplicity m,, we have

i1
c(o, X, H®) > max1<s<t,0<j<m, <||90As,j|| (1= %) ;) :

Next, we add the condition that X is a Hilbert space, and give in this case a general upper
bound for the quantity C,, (X, Y).

Theorem. 1.2.1 Let Y be a Banach space verifying property (Py) and X = (H, (.),) a Hilbert
space satisfying properties (P;) for i = 2,3, 4. We moreover suppose that for every 0 < r < 1
there exists € > 0 such that ky € Hol ((1 4 €)D) for all |\| < r, where k), stands for the reproducing
kernel of X at point X\, and X — ky is holomorphic on || < r as a Hol((1+ ¢)D)-valued function.
Let 0 = {1, ...; A1, Agy ooy Mgy ooy Mgy ooy Mg} be a sequence in D, where g are repeated according their
multiplicity my, zzzl mg = n. Then we have,

i

1
n 2
(o, X, ) < (znekna) |
k=1

where (ey)_, stands for the Gram-Schmidt orthogonalization (in the space H) of the sequence

k/\l,()y k)q,l; k/\1,2"'7k)\1,ml—17 k/\2707 k}\Q,l? k,\272...,k)\27m2_17 (RS} k/\t,()y k}\t,lu k)\t,2--~7k;)\t7mt—17

)

kyi= <%) ky and ky is the reproducing kernel of X at point A for every A € D.

ii) For the case Y = H™, we have
6(0-7 HJ HOO) S SUPzeD ’lPngzHH7
where Pg, = 1_, (., ex) e stands for the orthogonal projection of H onto Kp,,

Kp, = span (k‘,\j)i c1<i<my,j=1,..,1).

After that, we specialize the upper bound obtained in Theorem 1.2.1 (ii) to the case X = H?
and prove the following (see Corollary 1.3.0 and Proposition 1.3.1).
For every sequence o = {\1, ..., A\p} of D, we have

1
1—|B,(2)]?\2
C (07 H27 HOO) S SUPzeD <1‘TZ(’2)’> 9
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, 1 - 1- |)\z|2 Bo(C) %
H2 H>®) < +/2 . |B 2 =+/2 =
¢(o, H?, H®) < V2supi1 [B'(Q)]? = V2sup=1 Zzzl (1= Xi¢)* ()

Corollary. 1.3.2 Let 0 = {1, ..., \p} and r = maxi<i<n|Ni|. Then

H? H®) <2 v )
c(a, , )_ i

Next, we present a slightly different approach to the interpolation constant ¢ (o, H?, H*) prov-
ing an estimate in the following form.

Theorem. 1.3.3 For every sequence o = {1, ..., \p} of D,
1

2
00 - (1 — ‘/\k|2)
c(o, H?, H*) < super (ZW ,

k=1
and hence

n

1
0(0_7 HQ, Hoo) < Z 1+|)\J| .
1=

Jj=1

In particular, we get once more the same estimate for ¢(o, H*, H*), and hence for C,,,.(H?, H>)
as in Corollary 1.3.2.

Later on, (see Chapter 2), we show that the estimate of Corollary 1.3.2 is sharp proving the
following theorem.

Theorem. 2.1.2 We have

foralln>1,0<r<1.
Then, we extend these results to the H? spaces.

Theorem. 1.5.0 Let 1 < p < 0. Then

Coy (H, H“)SAP<1n )

—-T

foralln>1,0<r <1, where A, is a constant depending only on p.

(VI

In particular, this gives yet another proof of the fact that C,, ,(H2 ) < 23 (&)

). Later on,
(in Chapter 2), we show that the latter estimate is sharp for even p.
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Theorem. 2.2.0 Let p€ 2Z, and oy, = {\, ..., A} (n times), then

1

1 n P
(0-)\717 H HOO) < > )
325 \1 =}l

for all X € D, n > 1, where oy, = {\, A, ..., A\}. Hence, for everyn >1,0<r <1,
1 1

1 P 2 P

( - )pSCM(H”,H“’)§< " )

397 \1—r ’ 1—r

We also consider the case where X is a weighted space X = (¥ (wy),

lo(wy) = {f PFIGE ||f||”—2|f(k’)lpwi<00},

k>0 k>0

with a weight w satisfying wy > 0 for every k > 0 and %k(l/wi/k) = 1. The latter condition
implies that [?(wy,) is continuously embedded into the space of holomorphic functions Hol(D) on
the unit disc D = {2 € C: |z| < 1} (and not on a larger disc, i.e. {?(wy) does not contained in
Hol(rD) for every r > 1).

Our principal case is p = 2, where [2(wy) is a reproducing kernel Hilbert space on the disc D.

Theorem. 1.6.0 Let o be a sequence in ID. Then

(o2 () ) <2 ()

On,r<l§ (W) > - > p42
Cn,r<Li((1—|Z|) dA) ) A <1_T> B

foralln>1,0<r<1,a>1, > -1, where A= A(a — 1) is a constant depending only on «
and A" = A'(B) is a constant depending only on 3.

Otherwise,

S

Later on, (see Chapter 2), we show that for a = 2, (which is equivalent to § = 0), the latter
estimate is sharp. Precisely, in the case of the Bergman space L2, we have the following theorem.

Theorem. 2.1.3 We have

foralln>1,0<r<1.
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In a more general case of X = [4 <%>, where N > 1 is an integer, we prove a similar

(k+1)" 2
result but with quite a worse constant.

Theorem. 2.1.0 Let N > 1 be an integer and oy, = {\, ..., A\} (n times). Then,

1 n £
c(onm 2 [—L ) 1= >a (—>
(A’ A<w+1ﬂz> ) MAVESIY

for a positive constant an depending on N only. In particular,
N
2

N
GN< r > Scn,r lg ;N—l 7HOO §A< n > 5
L= (k+1)= 1—r

foralln>1,0<r <1, where A=A (%) s a constant defined in Theorem 1.6.0.

In Sections 1.7, 1.8 and 1.9, we deal with an upper estimate for C,, , (X, H*) in the scale

k+1)a-1
in Chapter 2 (for sharpness) ). We start giving a result for 1 <p < 2.

Theorem. 1.8.0 Let 1 <p <2, a>1. Then

1 1
1 \*# 1 n \%?

B <C S [ H® | < A
<1—r> < ”””(Za<<k+1>a—1>’ )- (1—r> ’

for allr €0, 1[, n > 1, where A = A(a — 1, p) is a constant depending only on o and p and
B = B(p) is a constant depending only on p.

of spaces X = [} (%), a>1,1<p<+oco. (The case p = 2 is solved in Section 1.6 and

It is very likely that the bounds of Theorem 1.8.0 are not sharp. The sharp one should be

_1
probably (2-)“ 7. In the same way, for 2 < p < oo, we give the following theorem, in which we

)a+§—2

feel again that the upper bound (l—fT ? is not sharp. The sharp one probably should be the

lower bound (l—fr)a P

Theorem. 1.10.0 Let 2 <p<oo,a>1. Then

1 \*» 1 n \“ti e
B <Cpr ||l ——),H*) <A )
() "= (b (i) ) = (75

for allr €0, 1], n > 1, where A = A(a — 1, p) is a constant depending only on o and p and
B = B(p) is a constant depending only on p.

In Section 1.11, we suppose that X = L? ((1 - |z|2)ﬁdA>, f>—-land 1< p < 2 Our

goal in this section is to give an estimate for the constant for a generalized Carathéodory-Schur
interpolation, (a partial case of the Nevanlinna-Pick interpolation),
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c(oam: X, H®) = sup {||fllg=pu~: f€X, |flx <1},

where || f[|goojppare = inf {|[f + gl 1 g € X}, and 03, = {A A, ..., A}, A € D. The
corresponding interpolation problem is: given f € X, to minimize | k|| such that
hO(N) = fI(N), 0<j <n.

For this partial case, we have the following generalization of the estimate from Theorem 1.6.0.
Theorem. 1.11.0 Let A€ D, > —1 and 1 < p < 2. Then,

B2
¢(onm 12 (= 1eP) an), 1<) < ()
’ 1—|A|
where A" = A'(B, p) is a constant depending only on (3 and p.

We finish Chapter 1 with Section 1.12 in which we compare the method used in Sections
1.2, 1.3, 1.4 and 1.6, with those resulting from the Carleson-free interpolation. Especially, we
are interested in the cases of circular and radial sequences o (see below). Recall that given a
(finite) set 0 = {1, ..., \y} € D, the Carleson interpolation constant C(o) is defined by

Cr(0) = supjajpe<rinf (|| g lloo: g € H*, gjo = a) .

Theorem. 1.12.0 Let X be a Banach space, X C Hol(D). Then, for all sequences o = {Aq, ..., An}
of distinct points in the unit disc D,

mazi<i<y |lox || < clo, X, H*) < Cr(0).mazi<i<n ||@x,

where Cy(o) stands for the Carleson interpolation constant.

)

Theorem 1.12.0 tells us that, for o with a “reasonable” interpolation constant C(o), the quantity
c(o, X, H*®) behaves as max; ||@y,||. However, for “tight” sequences o, the constant Cy(o) is so
large that the estimate in question contains almost no information. On the other hand, an advan-
tage of the estimate of Theorem 1.12.0 is that it does not contain #o = n explicitly. Therefore, for
well-separated sequences o, Theorem 1.12.0 should give a better estimate than those of Corollary
1.3.2, and of Theorem 1.6.0.

Now, how does the interpolation constant C(o) behave in terms of the caracteristics  and n of
o? We answer this question for some particular sequences o.

Example. 1.12.2 Two points sets. Let o = {1, Ao}, A\i € D, Ay # Ao, Then,

1 2
T O ) e —
b O] = = o O
and Theorem 1.12.0 implies
2
clo, X, H®) < ————maw;— Al
( ) o )] 12 [[exll

whereas a straightforward estimate gives (see Section 1.12)

cloy, X, H?) < o |+ mazp<p [loaall (14 M),
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where r = max (|\1|, |Aa|) and the functional @y 1 is defined above just after Theorem 1.1.1. The
difference is that the first upper bound blows up when Ay — A9, whereas the second one is still
well-bounded.

Example. 1.12.3 Circular sequences. Let 0 <r <1 and o = {1, Ag, ..., \n}, M # Aj, [ M| =7
for every i, and let o = %%M Then, £ < Cy(o) < 8eK/(1+a£3), where K, K' > 0 are absolute
constants. Therefore,

c(o, X, 7)< 8¢5 () mazyy ., ol
for every r — circular set o (an estimate does not depending on n explicitly). In particular, there

exists an increasing function ¢ : Ry — Ry such that, for any n uniformly distributed points

ALy oy Ay [Nl =7, A — Niga] = 2rsin (%), we have

(1) c(o, H?, H®) < ¢ (M) ﬁ , for every n and r, 0 < r < 1 and in particular, for
—r)2
n < [r(1 —7r)7] we obtain
1
A-nt
whereas our specific Corollary 1.5.2, (which is sharp over all n elements sequences o), gives
1

(1—r)

clo, H*, H®) < ¢

clo, H?, H®) < ¢

only.

(2) clo, L2, H®) < ¢ ("(1;”) (1_2‘) , for every n and r, 0 < r < 1 and in particular, for

n < [r(1—r)"] we obtain

1
I H®) < c———
C(U? a’ )—C(l_r)>

whereas our specific Theorem 1.6.0, (which, again, is sharp over all n elements sequences o), gives
c(o, L2, H®) < c——
( I a’ ) — (1 _ T')2
only.
We finally deal with a special case of radial sequences, in which we study sparse sequences,
condensed sequences, and long sequences, and prove the following claim.

Example. 1.12.4 Radial sequences.

Claim. Let o = {1 — pp+k}Z:1, 0<p<1,p>0. The estimate of c(o, H?, H®) via the Carleson
constant C1(o) (using Theorem 1.12.0) is comparable with or better than the estimates from Corol-
lary 1.5.2 (for X = H?) and Theorem 1.6.0 (for X = L? and X = L2 <(1 — |z|2)ﬁ>) for sufficently
small values of p (as p — 0) and/or for a fized p and n — oco. In all other cases, as for p — oo

(which means \y — 1), or p — 1, or n — 00 and p — 1, it is worse.

In Chapter 3, we study the condition numbers CN(T) = ||T|| . ||[T~!|| of Toeplitz and analytic
Toeplitz n x n matrices T. Tt is shown that the supremum of C'N(T') over all such matrices with
IT|| <1 and the given minimum of eigenvalues r = min;—_,|A\;| > 0 behaves as the corresponding
supremum over all n x n matrices (i.e., as & (Kronecker)), and this equivalence is uniform in n and
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r (see |Z|). The proof is based on a use of the Sarason-Sz.Nagy-Foias commutant lifting theorem
and the Carathéodory-Schur interpolation.

Let H be a Hilbert space of finite dimension n and T an invertible operator acting on H such
that || T ||< 1. We are interested in estimating the norm of the inverse of T :

-1
(A
More precisely, given a family F of n—dimensional operators and a T' € F, we set
Tmm(T) = mzn,:1n|)\l| > 0,

where {A1, ..., \y} = o(T) is the spectrum of T. We are looking for “the best possible” majorant
®,, (r) such that

1T < @ulr)
for every T € F, |T|| < 1. This leads to define the following bound ¢, (F,r), where 0 < r < 1,

en(For) = sup {|T7Y|: T € F TN <1, roin(T) = 7}

The following classical result is attributed to Kronecker ( XIX c.)

Theorem. 3.0 (Kronecker):
Let F be the set of all n-dimensional operators defined on an euclidean space. Then

1

cn(r) = cp(F,r) = =

Since obviously the upper bound in ¢,(r) is attained (by a compactness argument), a natural
question arises: how to describe the extremal matrices T  such that ||T| < 1, 7in(T) > r and
|77 = %. The answer is contained in N. Nikolski [N3], where it is shown that such T”s are

of a very special form (the so-called model operators) and are never Toeplitz. Recall that T is a
Toeplitz matrix if and only if there exists a sequence (ak)k:”_l 1 such that

k=—n+
a G-1 . . G_pp1
ay . . . .
T=T, = : A . ,
a1
An—1 . .oap aop

and that T is an analytic Toeplitz matrix if and only if there exists a sequence (ak)],zzg_l such that

ap 0 . . 0
ai

anpn-1 . . A1 Qo
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We denote by 7, the set of Toeplitz matrices of size n, and 7,* will be the set of analytic Toeplitz
matrices of size n. This leads to the following questions.

How behave the constants ¢,(7,,r) and ¢,(Z,%,7) when n — oo and/or r — 07 Are they
uniformly comparable with the Kronecker bound ¢,(r)? The answers seem not to be obvious, at
least the obvious candidates like T' = %, where J,, is the n—dimensional Jordan matrix, do
not lead to the needed uniform (in n and r) equivalence. For short, we denote

ta(r) = co(Zn, 1)

and

tn

(r) = cal Ty, 7).
Obviously we have,

19(r) < talr) < ealr) = —

rn’

The following theorem (see |Z]) answers the above questions.

Theorem. 3.1 1) For all r €]0,1] and n > 1,

< rto(r) < rley(r) =1

N —

2) For everyn > 1

limg_or™te(r) = lime_yr"to(r) =1
and for every 0 <r <1

limy—oor™te(r) = 1.
The proof of the theorem is given in Section 3.2. It depends on a Carathéodory-Schur interpolation

treated via the corona equation fg + 2"h = 1.
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1. Upper bounds for ¢(o, X, Y), as a kind of the
Nevanlinna-Pick problem
1.1. GENERAL BANACH SPACES X AND Y SATISFYING PROPERTIES (P;) ,i=1..4

The following theorem shows that if X and Y satisfy properties (P;) for i = 1...4, then our
interpolation constant c¢(o, X,Y’) is bounded by a quantity M, , which depends only on n = #o
and 7 = mazi<i<y|\i| (and of course on X and Y). In this generality, we cannot discuss the
question of sharpness of the bounds obtained. First, we prove the following lemma.

Lemma. 1.1.0 Under (P), (Ps) and (Py), B, X is a closed subspace of X and moreover,
B, X ={fe€ X: f(\) =0, VX € o (including multiplicities) } .
Proof. Since X C Hol(ID) continuously, and evaluation functionals f +— f(\) and
ff®N) k=12, ..,
are continous on Hol(D), the subspace
M=A{feX: f(\) =0,V € o (including multiplicities)} ,

is closed in X.
On the other hand, B,X C X, and hence B,X C M. Indeed, properties (P,) and (Ps) imply

that h.X C X, for all h € Hol((1 + ¢)D) with € > 0; we can write h(z) = Y., h(k)z" with
‘;\l(l{})‘ < Cq¢", C >0and ¢ <1 Then ) ., E(k)zka < oo for every f € X. Since X is a
= X

Banach space we can conclude that hf = Enzoﬁ(k)zkf € X.
In order to see that M C B, X, it suffices to justify that

feXand f0) =0 — | L — (-7~ x|
b)\ A— 2z
But this is obvious from (P;) and the previous arguments. O

Theorem. 1.1.1 Let X,Y be Banach spaces verifying properties (P;), i = 1...4 , then
Crnr(X,Y) < 00,
for everyn>1 andr, 0 <r <1.

Proof. For k = 1..n, we set

) = 15

and define the family (ej),_,, (which is known as Malmquist basis, see [N1] p.117), by

er=(1— |>\1|2)% f1,

and

(Ij=1.k-1by,) fr = Lﬂf;llbkj
| i [l2

(NI

€L — (1 — |)\k|2)
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for k = 2...n. Now, taking f € X , we set

where the series

are absolutely convergent. Indeed,

. 1 e (w
en(j) = 2_m/RT £§+1)dw,
forall j > 0and forall 1 < R < ?% For a subset A of C and for a bounded function h on A, we
define
17l 4 := supzea [h(2)].
As a result,

So

S |i0ae)| < 1l 5

Jj=0 Jj=0
since R > 1 and f is holomorphic in D.

Next, we observe that the map

®: Hol(D) — Y C Hol(D)

@;fHZ

n
k=1

(Z f(j)@(j)) a8
>0
is well defined and has the following properties.

(a) @2 = Pp, where Pp, is the orthogonal projection on the n-dimensional subspace of H?, Kp,
defined by

Kg, = (B,H?*)* = H*©B,1I?,
the last equality being a consequence of Lemma 1.2.0 of Section 1.2. Here, H? stands for the
classical Hardy space H?(D) of the disc,

H*(D) = {f =Y i S |iw| < oo} ,

k>0 k>0
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or equivalently,

(D) { f € Hol(D) : supocso: /T F(r2)|? dim(z) < oo},

m being the normalized Lebesgue measure on T. See [N2| p.31-p.57 for more details on the Hardy
spaces H? 1 < p < o0.

(b) @ is continuous on Hol(D) for the uniform convergence on compact sets of D.
Indeed, the point (a) is obvious since (eg),_, is an orthonormal basis of Kp, and

S TEG) = (foen)

j>0
where (.,.) means the Cauchy sesquilinear form (h, g) = >, h(k)g(k). In order to check point
(b), let (f1),cn be a sequence of Hol(ID) converging to 0 uniformly on compact sets of D. We need to
see that (@ (f;)),cy converges to 0, for which it is sufficient to show that lim; |> .-, aGa)| = o,
for every k =1, 2, ..., n. Let p €]0, 1], then

fl(]) - % T wj+1 )
for all 7,1 > 0. As a result,
~ 1 1
‘fl(])’ < o i 12l
So
il e =~ 1
S RGED)| < 3 |R0EG)| £ 5 Y la6) -
§>0 >0 §>0

Now if p is close enough to 1, it satisfies the inequality 1 < % < %, which entails

Z]ek |—<+oo

>0
for each k£ = 1..n. The result follows.
Let
U = Idy — Opx.
Using point (a), since Pol, C H? (Pol, standing for the set of all complex polynomials p, p(z) =
Soalo axz®), we get that Tm (U|py, ) C B, H?. Now, since Pol, C Y and Im(®) CY , we deduce
that
Im (¥pq,) C B.H*NY C B,H*N X,

since Y C X. Now W (p) € X and satisfies (¥ (p)),, = 0 (that is to say (¥ (p)) (A\) =0, VA € o
(including multiplicities)) for all p € Pol,. Using Lemma 1.1.0, we get that Im (U py, ) C B,X.
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Now, Poly being dense in X (property (P)), and ¥ being continuous on X, we can conclude that
Im(¥) C B,X.

Now, we return to the proof of Theorem 1.1.1. Let f € X such that || f ||[x< 1 and g = ®(f).
Since Hol (%]D)) C Y, we have

g=2o(f)eY
and
f—g:\:[l(f) EBO'X'
Moreover,
lglly < > 1KF endlllewlly -
k=1.n
In order to bound the right hand side, recall that for all j > 0 and for R = €|, 1[
~ lex H r+1
> [iae]| <~ > o] (751)
>0 >0

/f(j)’ (%)] is continuous on Hol(D), and the inclusion X C Hol(D)
is also continuous, there exists C,. > 0 such that

S[ro] (1) < ix

j>0
for every f € X. On the other hand,
2
Hol (D) c v
r+1
(continuous inclusion again), and hence there exists K, > 0 such that

Since the norm f+— > ..,

lexlly < K rSUP|z < 2 _en(2)] = K, HekH%T.

It is more or less clear that the right hand side of the last inequality can be bounded in terms
of r and n only. Let us give a proof to this fact. It is clear that it suffices to estimate

SUP1<|2)<-2; fek( )|

In order to bound this quantity, notice that

A—ZQ_l (2> = 1)1 = ]AP)

1—Xz| |1 — Az|? ’

for all A € D and all z € ﬁ]D). Using the identity (1.1.0) for A = \;, 1 < j < n, and z = pe”,

(1.1.0) ba()]? <

p= T%, we get
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2
ity |2 - |2 |
estpe)* = (1= ef) (I o, (o) |
- o 1’
oo < (14 o) (=)
for all £k = 2..n,
2
ity |2 k—1 (p* = D — [N[%) !
Hence,
2
i\ 2 - 2(%2 - 1) 1
lex (pe)| g2<H§:%<1+HT ey
(r+1)2 r+1
Finally,
leell 2 ¢ <
1 2z — 1
S - - 9 (Hj:l..n—l (1 + 1(7'22—4))> = Cl(r, n)
- =5 e
and

Cr llexll 2,

Z FOED| < I f ks
C,.Cy(r,n)
<

On the other hand,

lexlly < K llexl] 2q < K;Ci(r,n).
So

n
lglly <> 1f enlllerlly <
k=1

" C.Cy(r,n) nC, K,
<3 EOU Kt = P ) I
ot T i
which proves that
C. K,
(0, X,Y) € = (Calrym)?
T

and completes the proof of Theorem 1.1.1. [J
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We now give some lower bounds for the quantity C, (X, H*) . A partial case of our general
interpolation problem- the so-called generalized Caratheodory-Schur interpolation- will be useful
(see Lemma 1.1.2 below). The latter correspons to the case Ay = Ay = ... = A\, = A, and hence con-
sists in the following: given a function f € X, to find inf {|| g [l g (A) = fFE(N), 0 < s <n}.
This means to compute or estimate the quantity

c(orn, X, H*) = supypy<i || f ||z ppares
where,
Oxan = {A, A, ., Ay with multiplicity n,
and
1S Nere ppriee=inf{ll g lloo: g — f € 03X} =

= inf {]| g lle: 90N = FON), 0< s <n}.

The following simple lemma will be useful for studying c(o, X, H*).

Lemma. 1.1.2 Let A\ € D, n > 1, and f € Hol(D). Then

1

=y OISV e
A @D < Il g <
7=0 J:
Ut OISY ,
<SPy
j=0 J:

Proof. Let g € (f + 2"Hol(D))( H*® and p = 1 — |\|. By Parseval,
2

1 [ L2 g(j)()\) ~
2 = it — 2j
loll% = 5 | |9+ pe)["dt =3 a|
Jj=20
2o
j
§=0
which shows the left hand side inequality. For the right hand side one, we simply bound the
polynomial g = Z;:& %(z — M) replacing z — X by 1+ |)|. O

To give the first application of this lemma, we introduce the evaluation functionals ) for A € D,

wA(f) =FfN), feX

as well as the evaluation of the derivatives ¢, (s = 0,1, ...),

oas(f) = PN, feX
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Theorem. 1.1.3 (1) For every sequence o C D, we have

c(o, X, H®) > mazyeo |loall -

(2) Let 0 = {1, ...; A1, A2, ooy A2, ooy Aty ooy A}, where each g is repeated according its multiplicity
ms. Then

i1
c(o, X, H®) > mazi<s<t,0<j<m, <||<PAS,J’H (1= NP ?> :

Indeed, by Lemma, 1.1.2,
FO0)

J!

2\J
(L= [Asl)" <l f Maepoms oo < f Mo, 1o,

for all \s € 0 and 0 < j < my and for every f € X. Taking a sup over f, || f [|x< 1, we get the

result.

1.2. THE CASE WHERE X IS A HILBERT SPACE

In the following theorem, we suppose that X is a Hilbert space and both X, Y satisfy properties
(P;) for i = 1...4. In this case, we obtain a better estimate for ¢ (o, X, Y') than in Theorem 1.1.1
(see point (i) of Theorem 1.2.1). For the case Y = H*, (point (ii) of Theorem 1.2.1), we can
considerably improve this estimate.

Lemma. 1.2.0 Let 0 = {1, ..., A1, A2, ooy A2,y oo, Ay oo, M} e a finite sequence of D where every
\s is repeated according to its multiplicity ms, Y. ms = n. Let (I, (.)) be a Hilbert space
continuously emebedded into Hol(D) and satisfying properties (P;) for i =2, 3, 4. Then

Kg, =: (B(,.H)l = span (]@\N 1 1<j<t,0<i<m;— 1) ,
where ky ; = <d%> ky and ky is the reproducing kernel of X at point A for every A € D.

Proof. First, we explain the notation. Namely, since I C Hol(D) (with continuous inclusion), the
function A — f(\) is holomorphic and since f(A) = (f, ky)y for every f, the function A — k)

is (weakly, and hence strongly) holomorphic. We have f'()\) = ( f, %lﬁ) , and by induction,
H

f(i)()\) — (f7 <d%>l k,\> for every i, 1 =0, 1, .... Denote
H

d /L'
—— k :k iy
( dA) NN
we know, (see Lemma 1.1.0), that
BoH ={fecH: f9N\)=0,Vi,j1<i<myj=1 .t} =
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={feH: (f ki), =0 Vi j1<i<myj=1,..,t}
This means that
(B,I)" = span (ka,i: 1<i<my, j=1,.,1).
O

Theorem. 1.2.1 Let Y be a Banach space verifying property (Py) and X = (H, (.),) a Hilbert
space satisfying properties (P;) for i = 2,3, 4. We moreover suppose that for every 0 < r < 1
there exists ¢ > 0 such that ky € Hol ((1 4 ¢)D) for all |\| < r, where k), stands for the reproducing
kernel of X at point X, and X — ky is holomorphic on || < r as a Hol((1 4+ ¢)D)-valued function.
Let 0 = {1, ..., A, Ay ooy Ay oy Mgy oo At} be a sequence in D, where \g are repeated according their
multiplicity my, Zizl ms = n. Then we have,

i

c(o, X, V) < (Z ||ek||§,> ,
k=1

where (ey)_, stands for the Gram-Schmidt orthogonalization (in the space H) of the sequence

k/\l,()y k)q,l; k/\1,2"'7k)\1,ml—17 k/\2707 k}\Q,l? k,\272...,k)\27m2_17 [ARS} k/\t,Oy k}\t717 k)\t,2--~7k;)\t7mt—17

notation ky; s introduced in Lemma 1.2.0.
ii) For the case Y = H*®, we have

6(07 Ha HOO) < SUPzeD ||PBokZ||H7
where Pg, = 1_, (-, ex) e stands for the orthogonal projection of H onto Kp,,

Kp, = span (k‘,\j,i 1 <i<my, g =1, .., t).

Proof. i). Let f € X, ||f|ly < 1. Lemma 1.2.0 shows that

g=Pp, [ = Z(faek)}[@k
k=1
is the orthogonal projection of f onto subspace Kp,. Function g belongs to Y because all ky, ; are

in Hol((1+ ¢)D) for a convenient € > 0, and Y satisfies (Py).
On the other hand,

g — f € B0H7
again by Lemma 1.2.0.

Moreover,

n
lglly <> 10f el llexlly
k=1
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and by Cauchy-Schwarz inequality,

H9”Y§<Z|(f7€k)H|2> (Zl\eklfy) <

k=1

2

< [If1ls <Z ||€k||§/> ,
k=1

which proves i).
ii). If Y = [, then

9(z2)| = (P, f, k) | = |(f, P k) gl < Wl 1 Pmo kel
for all z € D, which proves ii). O

1.3. UPPER BOUNDS FOR c (o, H? H™)

In this section, we specialize the estimate obtained in point (ii) of Theorem 1.2.1 for the case
X = H?, the Hardy space of the disc. Later on, we will see that this estimate is sharp at least
for some special sequences o (see Chapter 3 ). We also develop a slightly different approach
to the interpolation constant ¢ (o, H?, H*) giving more estimates for individual sequences o =

{A1, oy An} of D
Corollary. 1.3.0 Let 0 = {1, ..., Ay} be a sequence in D. Then,

1 — |By(2)?\ ?
¢ (o, H?, H®) < sup.ep <—| (Z)|> :

1—|z[?
Indeed, applying point (ii) of Theorem 1.2.1 for X = H? and Y = H*, and using
1
k,(C) =
©=1=%
and
1 — By(2)Bs(()
Pp, k. - ’
(Po.k) (O = =~

(see [N1] p.199), we obtain

which gives the result.
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Proposition. 1.3.1 For every sequence 0 = {\y, ..., \n} of D we have

1
2

. 11— |)‘z’2 Bo(g)
2 RO

Proof. We use Corollary 1.3.0. The map ¢ — || Pg (k¢)|| = sup {|f({)| : f € Kg, || f|]| <1}, and

hence the map
L= B
o= ()

1-|B(OP? . 1— [Blrw)l?\ :
Sup|¢|<1 (1_—|C|2 SSUP|w|=1llmrH1 W .

Now apply Taylor’s Formula of order 1 for points w € T and v = rw, 0 < r < 1. (It is applicable

1
¢ (o, H?, H®) < V2supy=1 |B'(Q)|* = V2sup;¢—1

is a subharmonic function so

=

because B is holomorphic at every point of T). We get

B= B _ prw) + 001,
and since
lu—w| =1 ul,

‘B(“Z:i(w)] = B =B j5(w) + o)
Now,

|B(u) = B(w)| = [B(w)| — [B(u)| = 1 = |B(u)],

L= 1Bl _ B = B@)| _ e
d Tl S T = ) o),

N 71 < / .
llmrﬂl ( 1 |7"w| |B (w)|

Since we have

i=1 t
for all w € T . This completes the proof since

L= [B(rw)l? _ (1= [Brw))(1 + [B(rw)|) _ 1= |B(rw)|

— . O
1 —|rw|? (1 = |rw|)(1 4+ |rw]|) - 1 — |rw|
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Corollary. 1.3.2 Let 0 = {1, ..., \p} and r = maxi<i<n|Ni|. Then

2 oo n %
¢(o, H*, H )§2<1—r> )

and hence,

Cn,T(HQ,HOO)§2< o > .
1—7r

Indeed, we apply Proposition 1.3.1 and observe that
— )12
5 (1_|)\i|) 1—r 1—r

|B(w)] <

Now, we develop a slightly different approach to the interpolation constant ¢ (o, H?, H*).
Theorem. 1.3.3 For every sequence 0 = {1, ..., \p} of D,

1
n
(1= [Aef?)
¢ (o, H?, H®) < sup.cr BT
o1 17%) <o (£ G5
Proof. We give two proofs to this estimate. The first proof is shorter than the second one, but it

contains an extra \/5 factor.
First proof. Using Proposition 1.3.1, we obtain

1
2

i 1— |\ B,

= (1=%0) 0y

1 1
") SO DY AN
S ﬂsup‘clzl e — = \/ésuplclzl —_ .
D 2
Second proof. In order to simplify the notation, we set B = B,. Consider K g, the n-dimensional
subspace of H? defined by

¢ (o, H*, H®) < \/§sup‘<|:1

Kp = (BH?)* = H*©0BH*
Then the family (ex)?_; introduced in the proof of Theorem 1.1.1, (known as Malmquist’s basis),
is an orthonormal basis of Kp, (see [N1], Malmquist-Walsh Lemma, p.116). Recall that

_h
MAl

€1
and

Jr

ey = ——I152 by
I filly 7=

for all £ = 2..n, where
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1
fk_l——)\_kz’

is the reproducing kernel of H? associated to \;. Now, let f € [I? and

9="Psf = _(f ex) o ex.
k=1

Function g belongs to H* because it is a finite sum of H* functions. Moreover,

9 (Xi) = f(N)
for all i = 1...n, counting with multiplicities. (Indeed, we can write f = Pgf + g, with ¢, € K3 =
BH?). We have

Ol < Y 1 en) el lew()]

for all ¢ € D. And by Cauchy-Schwarz inequality,

1

g AN ANCITWE >>1
g S f?ekH2 )
) (;u > |> ( Ll

~ (1= )
9l < I1£1l, supcer
2T = AP

Since f is an arbitrary H? function, we obtain

1

(1= P
c(o, H*, H®) < su (— ;
( ) D¢eT <k:1 1€ = A2

which completes the proof.
Corollary. 1.3.4 For any sequence 0 = {1, ..., \p} in D,

0(0_7 [_[27 HOO) S Z 1+ ’)\]|
= 1= 1A

Indeed,

(SO

"= ) (s (1 )
2T S( FEWE )

k=1
and the result follows from Theorem 1.3.3. [J
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Remark. 1.3.5 As a result, we get once more the same estimate for C,,.(H?, H>) as in
Corollary 1.3.2, with the constant v/2 instead of 2: since 1+ |\;| <2 and 1 — |[\;| > 1 -7,
applying Corollary 1.3.4, we get

Cor(H? H®) < /2 vn .
) ( ) —_ \/m
It is natural to wonder if it is possible to improve the bound \/5\/\1/% We return to this question

in Chapter 2 below. To finish this section it can be interesting to mention the following remark.
We can apply explicitly Theorem 1.1.3 here in order to look for a lower bound for C,, .(H?, H*).

Remark 1.3.6 For X = 2, ||p,] = o IiIQ)% and since ¢, ;(f) = fO(\) = %j (f, k), (where
k» is the reproducing kernel for H?, ky(z) = 1=5;) we get @y ;(f) = (f, j!(lj—i)jﬂ> and

N2
lox;l* = U—TIQ)%H ST o < ‘; > A", (see [N1] p.228). This gives, if

0=,y AL A9, oy Agy oy Aty o, A}, where each A is repeated according its multiplicity mg,

1 ] . 2 2 ) 1
c(o, X, H®) > mai<s<t,0<jcm, | ——————7 <Z < ]l > |>\8|2l> (1 B |)\s|2)j F >

(1- |/\S|2)j+% 1=0

1 1 (&N )
Zﬂ—l\/jmax1§sgt,0§j<ms ﬁ <l§;< l> |As]

1.4. ESTIMATION OF c (o, H? H*) FOR CIRCULAR SEQUENCES o

In this section, we consider with more details the case of circular sequences, that is ()\j)?zl such
that |\ =rVi=1.n0<r <1,

Definition. 1.4.0 We say that a sequence o = (X;)_, is r-circular (0 <r < 1) if and only if

Before studying this kind of sequences o, we give a general lemma which is going to be useful in
this section.

Lemma. 1.4.1 Let 0 = {1, ..., \y} and r = max;|\;|, then

1o
V21 —71

clo, H*, H®) >

7

Proof. We apply Theorem 1.1.3 (1), which implies

clo, H?, H®) > maxi<j<n HgoAjHZ = max,; L = 1 )

(1-P)F (=)

D=
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O
Lemma. 1.4.2 Let 0 = {\y, ..., \p} be an r-circular sequence with #0 = n. Then,
c(o, H?, H*) < c(0),
where,
3
(1—r
c(0) = sup.er (Z = AkP)
Proof. This is a straightforward consequence of Theorem 1.3.3. ([l

Remark. The quantity c(o), regarded for an arbitrary r-circular sequence o, is comparable with
C,, = Ch,(H?* H>) because, taking a “sup” over all r — circular sequences, we get

n7
l
— (1 —r®)Zsup,
(1 —r*)2sup.ersup (Z P )\k|2>

To the contrary, for some special circular o’s , the constant ¢(o) is \/n times less than the general
1

estimate for C,, , = C, (H? H®), C,, < (£%)?, from Corollary 1.3.2. This follows from the
following proposition.

2

2

(SIS

Proposition. 1.4.3 Let o, = {z1,..., 2.} be a sequence of distincts unimodular numbers (z; #
2;, Y1 # j, |zi| =1, Vi =1..n) and o, = ro,, where 0 < r < 1. Then,

()

C(UT)

(SIS

Vvn < limsup,_1

Proof. Clearly

1 —7r? (1—1?)

1—|—
> —— (take z =
_1_T(aez 2K),

which shows the right hand side inequality of Proposition 1.4.3.

2 2
Moreover, it implies that for a maximal term ‘ A=) — maxy 4= )2 we have -U=) > _Lr_
20—rzj| |z0—72k]| |z0—72zj] n(l—r)

This gives |zg —rz;| < (1 —7)y/n. Let now a = min;z|z — 2] and 0 < 1 —7r < 3.7~ Then

|20 — r2;| < &, and
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2
e £
—r g (rlz =zl =z — 2ol)
14r 1—-r%) 1+r (1—1r%)
< +> 7 < +(n—1)—73"
b-rim (3 b (%)

Therefore, (1 —7)c(0,)> <147+ (1—7r)(n—1) (1:22), and the last expression obviously tends to
2 as r — 1. This shows the left hand side inequalit%y of Proposition 1.4.3. 0

Remark 1.4.4. In fact, there is a more general result than Proposition 1.4.3. Indeed, we can
give a special estimate for circular sequences using a new parameter «, which is a kind of relative
separation constant for o (relative to the distance to T):

() < — (a4 2)’
dosr= e )

where b = (3)? and « is defined as

o mm#]\)\l - )\]| o ra

1—r 1—7’

with a = miniz; |z — 2] -
It is natural to wonder wether we can obtain a better bound using techniques of Carleson
interpolation. We compare these approaches in Section 1.12 below.

1.5. THE CASE X = HP

The aim of this section is to extend Corollary 1.3.2 to all Hardy spaces HP. This is the subject
of the following theorem.

Theorem. 1.5.0 Let 1 < p < 0. Then

n P
Coup (H?, H) < A, <1 > ,
for alln >1, 0 <r <1, where A, is a constant depending only on p.

We first prove the following lemma.

Lemma. 1.5.1 Let 0 = {)\1, ceny )\n} and r = max1§i§n|)\i|, then
2n
HY H*®) <
6(0-7 ) ) — 1 —r
and hence,
2n

Cpr(HY, H®) < .
,( Y )_1_T
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Proof. Let f € H' such that || f||, <1 and let,

g="Psf= > (fiex)ex

k=1..n
where, as always, (ej);_, is the Malmquist basis corresponding to o, and where (.,.) means the
Cauchy sesquilinear form (f, g) = >, h(k)g(k). That is to say that,

9(¢) = > (frex)ex() = <f7 > €k€k—(0>,

k=1..n k=1..n

for all ¢ € D, which gives,

9O < F 1l || D exex(Q)
k=1..n Ho> k=1 Hoe
Now, we recall that
1
(1 — [ )2 k-1
er = -0
k= (1 — )\kz) ( )‘])
and, as we saw it in Theorem 1.3.3 (second proof),
(L+ A2
lexll oo < ————77
(1= |Akl)?

As a consequence,

< k|| oo |€ = ekl 3 < ( < :
<3 lewl e(©)] 2 Nleell= < 2 T3y <15

for all ¢ € D, which completes the proof. O

Proof of Theorem 1.5.0. Let 0 = {\, ..., Ay} be a sequence in the unit disc D, B, = III" ,b,,,
and T : H? — H*/B,H®> be the restriction map defined by

Tf={9eH>: f—-ge BH"},
for every f. Then,

| T ||HPHHoo/BUHoo: C(U, HP, HOO) )

There exists 0 < 0 < 1 such that % = 1—0, and since (we use the notation of the interpolation

theory between Banach spaces see [Tr| or [Be]) [H', H*°], = H? (a topological identity: the spaces
are the same and the norms are equivalent (up to constants depending on p only), see [S]| Section
5.5), by a known interpolation Theorem (see [Tr| , Theorem 1.9.3, p.59),

1-6
|| T ||[H1,H°°]9—>H°°/BUH°°§ (Alc (O’, Hl,Hoo)) <AOOC (O', HOO,HOO))G,
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where A;, A are numerical constants, and using both Lemma 1.5.1 and the fact that ¢ (o, H>, H*®) <

1, we find

hSAL

I T Wi ey te =< <A1 7“) Al = (2477 AL (m) ,

which completes the proof.

1.6. THE CASE X = I2 (wy)

In this section, we generalize Corollary 1.3.2 to the case of spaces X which contain H?: X =
12 <(k+1—>, a > 1, the Hardy weighted spaces of all f(z) =37, f(k)2* satisfying

S|

2(a—1
&

< 0.

It is also important to recall that

zg(ﬁ) :Lg((1 E 3dA>,a>1,

where 2 ((1 — |z|2)BdA>, f > —1, stand for the Bergman weighted spaces of all holomorphic

functions f such that

/]f \)dA<oo

Notice also that H? = [2(1) and L?(D) = [? ( L ), where L2(D) stands for the Bergman space

a

(k+1)2
of the unit disc D.

Theorem. 1.6.0 Let o be a sequence in D. Then

(o2 () ) <4 ()

(
o (2 ertn) ) <2 (72)
ur (12 (0- ) aa) ) <4 (1) 7

foralln>1,0<r<1,a>1, 3> —1, where A= A(a — 1) is a constant depending only on «
and A" = A'(B) is a constant depending only on a.
In particular, for a = % (or equivalently 3 = 0) we get

Cn,r (L2> HOO) < \/ﬁ&a

Otherwise,

3

foralln>1,0<r<1.
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First, we prove a following lemma. In fact, Lemma 1.6.1 below is a partial case (p = 2) of the
following K. Dyakonov’s result [D] (which is, in turn, a generalization of M. Levin’s inequality [L]
corresponding to the case p = 00): for every p, 1 < p < oo there exists a constant ¢, > 0 such that

|1 B Ml

for all f € Ky, where B is a finite Blaschke product (of order n) and ||.||, means the norm in
L*°(T). For our partial case, our proof is different and the constant is slightly better.

’

<c
m — F

Lemma. 1.6.1 Let B = II}_,by;, be a finite Blaschke product (of order n), r = max;|)\;|, and
fe Ky—: H©OBH2. Then,
5 n
< —— .
1711, < 372 1l

Proof. Since f € Kp, f = Pgf =3 1_, (f. €x) g ex. Noticing that,

!

for k = 2..n, we get
f/ — (PBf)l — (f’ 61)H2 6/1 + Z (f, ek)H2 e;c =
k=2

k— lb 1
:(f7 61)H2( 61+Z f & H2§_: )\i (1—)\kz)ek7

which gives

, 5\ n n—1 b/ n . 1
- 5 2 S — ‘l‘ 5 2 7 + 5 2 ANp———
f (f el)H (1 _ )\12 Ly L f ek’ H ZekX[l k— 1]( ) — (f 6k’)H k (1 _ Akz)

= (/, el)Hz( Z Z (f, ex H2€k+z s ex HQAk(l—)\kz) ks

=1 ’kz-{—l

€L —

where x[1,x—1) is the characteristic function of [1, k — 1]. NOW,

5\1 /_\1
, € ———¢€ S , € e (& S
H(f 1)H2 (1 _ )\12) 1 o |(f 1)H2’ (1 — )\12) N H 1||H2
1
< Wl leale Nl < W fls 1

using both Cauchy-Schwarz inequality and the fact that e; is a vector of norm 1 in H2. By the
same reason, we have

no 1 .
e (f, er) gz T——=—=—¢ Ak
; i (1 — )\kZ)

lexll g2 <

< ST el
k=2

1
(1-%2)

H?2 oo
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NI

n

1 = 1
< S el < ( . ek>H2|2> VI2 <l VA2
k= k=2
Finally,
n—1 b' n — n
Ai
Zb)\- Z €k (f7 ek)H2 N Z (fv ek)H2 Ck -
i=1 v k=i+1 = "loo Ilk=i+1 H2
1
—1 n 2
= <m€t$1<¢<n 1 > Z ( Z I(f, Gk)H2|2> < maw; Z ||f||H2
i=1 \k=i+1 0o i=1

Moreover, since

by, Ail* =1 2 2
- - — S S )
b)\i o (1—)\12) ()\l—Z) © 1- |>\z| 1—r
we get,
S 2(n — 1)
Z > (Femer| <=l
i=1 i k=i+1 H2
Finally,
: ( ) (2n—14++vn-2)
17, = T 10 + e+ VA= 2 e < S g <
5 n
<o e
for all n > 2 and for every f € Kp. (The case n = 1 is obvious since Hf/HHz < =1 ) O

Corollary. 1.6.2 Let B = II7_,by,, be a finite Blaschke product (of order n), r = max;|);|, and

f € Kg=: H*©BH?. Then,
5 k k
90 <1 (3) (125 ) 1l

Indeed, since f*~1 € Kpi, we obtain applying Lemma 1.6.1 for B* instead of B,

5 kn
Hf(k)HH2 — 21

for every k=10, 1, ...

and by induction,

ot

k
179 e < & (21ﬁr) 7l O
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Corollary. 1.6.3 Let N > 0 be an integer and o a sequence in . Then,

2N+1

(e () ) <)

where A = A(N) is a constant depending on N (of order N* from the proof below).

In particular,
cl o l21 —1 H < 7\/§ i %
’ (k + 1) ’ 1—1 '

Indeed, if f € [2 ( k+1)N> = H then |Ppf(C)| = (PBf, kc)| = [{f, Pgk¢)|, where (., .) means

the Cauchy pairing and k¢ = (1 — Ez)_l . Denoting H* the dual of H with respect to this pairing,
H* =12 ((k+1)N), we get
H2) '

IPof(OL < Il 1 Pokllge < A1l Ko (IPskell e + || (Poke) ™)

where

k+ 1N
Ky = N¥ ( -
N max{ ) SUpksz(k_1)_..(k—N+1)}

N (N+1)N NN,ifN>3
:mm{N CTONT STl W N =2

(Indeed, the sequence <$&{VM)@N is decreasing since (1+2)™ > 1— Nax forall x € [0, 1],

and [NV > (NH) } <= N > 3). Since Pgk. € Kp, Corollary 1.6.2 implies

5 n

N
IPoF(O < Il 1 Pokele < 1FlLy K (HPBkcHHz e HPBkcHHz) <

AN) [ 2 "
< _
<am) (72) il
where A(N) = 2Ky (1 + N! (g)N) , since || Pgke|l, < \/\/12 =2, A(1)="7y2. 0

Proof of Theorem 1.6.0. Let B, = I ;by, and T : [} <W) — H*/B,H* be the
restriction map defined by

Tf:{gEH"O: f—gGBJEl(W)},

for every f. Then,

1
_ 2 (_ - )
|| T ||l2 ((k+11)a 1>—>H°°/BUH°°7 & <07 lA ((k_l_ 1)a—1> 7H > .
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Moreover, there exists an integer N such that N < o < N+1. In particular, there exists 0 < 0 <1
such that « — 1 = (1 — 0)(N — 1) + ON. And since (as in Theorem 1.5.0, we use the notation of
the interpolation theory between Banach spaces see [Tr| or [Be])

) el o (=) )

= 2 1 — 2 o
a (k+1)(170)(N71)+0N A (k_l_l)aq )

this gives, using Corollary 1.6.3 and (again) [Tr|] Theorem 1.9.3 p.59,

<
—H> /By H® =

17l

W)

(o) ) o) )
< <A(N— 1) <1fr>N> (A(N) (1&) N+> _
< .

(2N-1)(1-0) , (2N+1)0
2 + 2

= AN — 1) A(N)?

1—r
It remains to use §# = o — N and set A(a — 1) = A(N — 1)1=?A(N)?. In particular,
3 1
A <§> = A(0)7D A1)z = V27 (TV2)2 = V14,

1.7. THE CASE X = [}(wy)

The aim of this section is to prove the following theorem, in which the upper bound (l—ﬁr)a_g

is not as sharp as in Section 1.6. We suspect (i)afl is the sharp bound for the quantity

1-r
Cor (1 (ertr ) - 1) -

Theorem. 1.7.0 Let o > 1. Then,

1 n \%2
1 o0 <
C"”(”((kﬂ)ul)ﬂ )-Al <1—r> ’

for all v € [0, 1], n > 1, where Ay = Ay(a — 1) is a constant depending only on .

First, we prove the following lemma.

Lemma. 1.7.1 Let B = II}_by;, be a finite Blaschke product (of order n), r = max;|);|, and
f € Kg. Then,

179, < k'( ) £l

for every k=10, 1, ...
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Proof. By A. Baranov (see |[B| Theorem 5.1 p.50),
171,

for every f € Kpg. (A private communication with A. Baranov shows that Theorem 5.1 of |B]
is also true for the Hardy spaces of the unit disc D). Since f =1 € Kk, we obtain, applying
Baranov’s inequality for B¥ instead of B,

159 < |8 B 15

and by induction,

ik
1O < ([ B| 1N
On the other hand, |B/‘ = ‘— Zj (1%’\;2;2% < Z]. im < %, which completes the proof. [

Corollary. 1.7.2 Let N > 0 be an integer. Then,

1 n \ V2
1 00 <
o () ) =4 ()

for allr €10, 1[, n > 1, where Ay = A1(N) is a constant depending only on N (of order N*V from
the proof below).

Indeed, if f € I} (W) = H then |Pgf(C)| = (Prf, k¢)| = [{f, Pke¢)|, where (., .) means

the Cauchy pairing and k; = (1 — Zz)_l . Denoting H* the dual of H with respect to this pairing,
H* =12 ((k+ 1)), we get,
1P f (O < f1lu 1 PBk| e <

@Uf)’ , supgs | (Peke)™ (k — N>‘} <

Hl}’

k+1)N
Ky = NY ( -
N max{ ; SUkaNk(k_l)_..(k‘—N—l-l)}

B NN if N >3
We)” ifN=1,2
(see the proof of Corollary 1.6.3 for the last equality). Since Pgk: € Kp, Lemma 1.7.1 implies

< |Ifllg Knmax {Supogkgjv—l

< WSl Kovma {|1Pokcl |

(PB/fc)(N)‘

where

N
n
1P f(O] < Nl IPskll e < 1F 1l K { [1Pskcll g + N2V —— |1 Pekcllpn | <
1—r

N 1 N
2n \? n
< oV (1 < — 127
< Kn |1 fllg |1 Pk, (1—|—N.2 <1_‘/\|> )_KNHfHH<1_T> (1+N.2 <1—r> ),

which completes the proof setting A;(N) = v/2 (1 4+ N12V) Ky.

O
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Proof of Theorem 1.7.0. This is the same reasoning as in Theorem 1.6.0. Let B, = II?_;b,, and
T :1! (W) — H* /B, H* be the restriction map defined by

1
Tf = H*: f— B} ——
r={oems rmven (i)}
for every f. Then,

1
T . - o — s L
| Hlé(W)HH""/BGH” C<J’ ¢ ((k+1)“1>’ )

Moreover, there exists an integer N such that N < a < N + 1. In particular, there exists
0 <6 <1suchthat « —1=(1—0)(N —1)+ 0N. Therefore, we can use the same kind of
interpolation between Banach spaces as in the proof of Theorem 1.6.0. We get

11—9

st o), (o) i)

_p 1 _ 1
“ \ (k + 1)@= -1)+oN “\(k+1)1)"

This gives, using Corollary 1.7.2 and (again) [Tr| Theorem 1.9.3 p.59,

”T||l}l< 1 )HHOO/BUHOOS

(k+1)a—T

(o) ) o () )

0

_ (Al(N_ Y <1 _nMI)N—;)l_Q (Al(N) (1 _"|A|>N+;> _

n O\ (N=3)a-0+(N+5)0
1- r)
It remains to use § = o — N and set A;(a— 1) = A;(N — 1)1 A (N)?.

n N+6-3
:AﬂN—1W9MﬂNV< > .

1—7r

:AﬂN—lweMﬂNW<

1.8. THE CASE X = P(w) , 1 <p<2

_1
The aim of this section is to prove the following theorem, in which the upper bound ()"
is not sharp as sharp as in Section 1.6. We suppose that the sharp upper (and lower) bound here

should be of the order of (I—Z)M%



42

Theorem. 1.8.0 Let 1 <p <2, a>1. Then

1 1
1 \%»r 1 n \" 2
B < C Pl — H® | < A
<1—r> < "’T(l‘l((kﬂ)a—l)’ )— (1—r> ’

for all r € [0, 1], n > 1, where A = A(a — 1, p) is constant depending only on « and p and
B = B(p) is a constant depending only on p.

Proof. We first prove the right hand side inequality. The scheme of the proof is completely the
same as in 1.6.0 and 1.7.0, but we simply use interpolation between ! and [? (the classical Riesz-

Thorin theorem). Let B, = I ;b), and T : 2 (W) — H*°/B,H* be the restriction map
defined by

1
Tf:{geH"o: f—gEBglé’<W>},

for every f. Then,

1
— ) S
||T||l5<W>HHm/BUH°° C<07 la((k+1)a_l> 7H ) .

There exists 0 < 6 < 1 such that

and then,

! () (o) |, = # ()

This gives, using both Theorem 1.6.0&1.7.0 and (again) [Tr| Theorem 1.9.3 p.59,

|| T ||lg(W)_)Hoo/BoHooS

(o) 7)) )

< <A1(a— 1) <1ﬁr>a_5>1_9 (A(a— 1) <1fr>2a21>9 _

) (af%)(lfG)Jr@(af%)

n
1L — Al
In order to prove the right hand side inequality, it remains to use § = 2(1— %) and set A(a—1, p) =
(A1 (a—1)1"DA(a—1)?. Now, we prove the left hand side one. We use Theorem 1.1.3 (1). Indeed,

1
y2 - oo > ’ =
G (l“ <(l<:+ 1)“‘1> ! ) = leelly esnyes

1
7

= (Z(k 4 1)(a71)p’ (ﬂ?’)k) ! ,

k>0

= A= 1) A(a—1)° <
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where ¢, is the evaluation functional

er(f) = f(r), feX,

and p’ is the conjugate of p: % + 1% = 1. Now, since

E kS N/ tirldt ~T(s+1)(1—2)* " asa — 1,
k>1 1
for all s > —1, we get

’ N\ k e A
Z(k‘ + 1)(ebp (rp > ~ / tle=VP P tdt asr — 1.
1

k>0

S ;o 1 1+(a71)p, 0 ’
/ Pyt — <—> / P ptar ~
1 p p/

1\ a1y oo , 1\ Ha-Dp / /
~ <_> / tOIP it ~ <—,> r <(04 —1lp + 1) (1—r)~ @ P asr — 1.
p 1 p

This gives

B T R S

k>0

But

A

This completes the proof since i =1- O

S

1.9. THE CASE X = [2°(wy)

L)M% is

1—r
not as sharp as in Section 1.6. We can suppose here that the constant (1—2)04 is the sharp bound

for the quantity C,, , <l3° (W) , HOO).
Theorem. 1.9.0 Let o« > 1. Then

1 n \°"
C N, H* | <A
(= () 1) <2 (1)

for all v €0, 1[, n > 1, where Ay, = Aso(a — 1) is a constant depending only on «.

The aim of this section is the following theorem, in which -again- the upper bound (

First, we prove the following partial case of Theorem 1.9.0.

Lemma. 1.9.1 Let N > 0 be an integer. Then,

1 n \N*:
o0 o <
e (& (o) ) <= (r5)

for all v € [0, 1, n > 1, where Aye = Ax(N) is a constant depending on N (of order N*V from
the proof below).
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Proof. We use literally the same method as in Sections 1.6, 1.7 and 1.8. Indeed, if f € [3° (W) =
H then |Pgf(C)| = (Psf, k¢)| = |{f, Pgkc)|, where (., .) means the Cauchy pairing and k. =
(1- Zz)i1 . Denoting H* the dual of H with respect to this pairing, H* = I} ((k+1)V) , we get

Paf (O < Il 1 Pakcly < 11 K (IPakelly + |[(Pak) ™| ).

where W = {f = k>0 f(k)zk Il = 2kso

f(k)‘ < oo} stands for the Wiener algebra, and
(k+1)N B
k(k—1)..(k—N+1)f

NN if N>3
- (N+1) fN_12 )

(see the proof of Corollary 1.6.3 for the last equahty). Now, applying Hardy’s inequality (see |[N2]
p.370, 8.7.4 (c)),

Po O 1 Ko (]| (Poke) |||+ 1(Poke) (O] + || (Pok) 2|

Ky = max {NN, SUPK>N

+|(Pek) ™ ()]}
which gives using Lemma 1.7.1,

IPa(O)] <
< 1l Koo ( (122 ) WPkl + [(Poke) O)+

N+1

)
=

N+1
HN+W(F3> u%mm+NW%mmJ-

R e L R WMJM@DS

<WMKw( >H%&MﬁW%mm+

1
This completes the proof since || Pgke|| ;2 < (£)2 - O

Proof of Theorem 1.9.0. This is the same application of interpolation between Banach spaces, as
before. Let B, =II" by, and T" : [ (W) — H*/B,H® be the restriction map defined
by

1
Tf= H*>: f— Byl% | ————
f {ge f g € O'lA <(k+1)a_1>}7
for every f. Then,

1
T = X — ), H").
1T g % (G ) =1/ Ba 1= C<U7 4 <<k+1)a_1>7 >
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Moreover, there exists an integer N such that N < o < N+1. In particular, there exists 0 < 0 <1
such that « — 1= (1 —0)(N — 1) + ON. We get

= (i) = (v, = (i) ()

~la (k_|_1)(1—9)(N—1)+9N A (k+1)a—1 ‘

This gives, using Lemma 1.9.1 and (again) [Tr] Theorem 1.9.3 p.59,

=l

|| T ||l3“<(k+11)a,1>—>H°°/BaH°°§

(o () ) o () )
(v ()Y (a2

(N+1)(a-0)+(N+2)o N+6+1
i ) = A (N = 1) A4 (N)? ( & ) .
1—7r 1—r

It remains to use = a — N and set Ay (a0 — 1) = Ay (N — 1)3=0A_(N)?. O

AmMﬂJfPQAJNﬁ<

1.10. THE CASE X = P(wy) , 2<p <0
The aim of this section is to prove the following theorem.

Theorem. 1.10.0 Let 2 <p < o0, a>1. Then

ati-
B < (o) m=) <a2
1—r ’ (k4 1)1 1—r

for all v € [0, 1[, n > 1, where A = A(a — 1, p) is a constant depending only on « and p and
B = B(p) is a constant depending only on p.

1_2
Remark. As before, the upper bound (1—27,)a+2 ? is not as sharp as in Section 1.6. We can

_1
suppose here the constant (l—ﬁr)a ?should be a sharp upper (and lower) bound for the quantity
Cn’T (lg (W) ) HOO) ) 2 Sp S +00.

Proof. We first prove the right hand side inequality. The proof repeates the scheme from previous

theorems. Let B, = 11" ,by, and T : [P <W) — H*/B, H* be the restriction map defined
by

1
Tf = H>: f— BP [ —m—
f {96 f—g€ a%<%+1wq>},
for every f. Then,
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1
_ p{__ - 00
e G (=

There exists 0 < 0 < 1 such that

(1-0),

.
() = (o) |, = ()

this gives, using both Theorems 1.6.0&1.9.0, and using again [Tr| Theorem 1.9.3 p.59,

and then,

<
—H> /By H® =

1 e (i)

(ot ) o () )

0

5;(A@y—l)(1ﬁr>2%1>kﬂ(Am@1_1)<1ﬁr>wﬁ> _

n O\ (D)0t N
= Ala -1 DA (a0 —1)° < ) = Al —1D)DA (a0 —1)° < >

L= 1—r
In order to prove the right hand side inequality, it remains to use § = 1 — I%, and set A(a—1, p) =

Ala — 1)3=DA (o — 1)?. The proof of the left hand side inequality is exactly the same as in
Theorem 1.8.0. O

1.11. CARATHEODORY-SCHUR INTERPOLATION IN WEIGHTED BERGMAN SPACES

We suppose that X = L2 ((1 — |z|2)’8dA), f>—1and 1 < p < 2. Our aim in this section is

to give an estimate for the constant for a generalized Carathéodory-Schur interpolation, (a partial
case of the Nevanlinna-Pick interpolation),

c(oan, X, H™) = SUP{HfHHoo/bgHoo fe X, |fllx < 1};

where || f[|goojppare = inf {|[f + gl 1 g € X}, and 03, = {A\ A, ..., A}, A € D. The
corresponding interpolation problem is: given f € X, to minimize | k|| such that
RO (A) = fO V), 0< 5 <n.

For this partial case, we have the following generalization of the estimate from Theorem 1.6.0.
Theorem. 1.11.0 Let N\ € D, 8> —1 and 1 < p < 2. Then,

c <O’)\)n, Ly ((1 - |z\2)ﬂdA) : H°°> <A (%‘/\Oﬁf :

where A" = A'(B, p) is a constant depending only on 3 and p.



We first need a simple equivalent to I,(5) = fol r2HL (1 — r2)Pdr, B> —1.

Lemma. 1.11.1 Let k>0, 3> —1 and It(0) = fol r# (1 —r2)Pdr. Then,

() ~ P,

for k — oo, where I stands for the usual Gamma function, I'(z) = f0+oo e %57 1ds.

Proof. Let a = \/m, b =max(1,d?). Since 1 — e ™ ~ u as u — 0, we have

1 o0
Ii(B) = / P = r?)Pdr = / e~ @AV _ em2)Bet gt =
0 0

:/ 672(k+1)t(1 _ e2t)ﬂdt_|_/ 672(k+1)t(1 _ 672t)ﬁdt _
0 a

“ b
_ —2(k+1)t 1 — —2t Bdt 9] —2a(k+1) | _
/0 e (1—e)7dt + i

@ b
= (1 1 2(k+1)t (94)8 10 —2a(k+1) | _
(14 o ))/Oe (2t)7dt + <k+16

2(k+1)a S B ds b
— (1 1 —s oV 241 _
(1+of ))/0 € <k+1> E <k+1€ >

1 1 2(k+1)a ﬂd O b 2a(k+1)
e (14001 = D -
2(k+1)5+1( + o ))/0 e *s’ds + <k+1€ >

il F(5+1) b —2a(k+1 _
~ TR+ o)+ 0 (e ) -

1 T(B+1) 10(B+1)
UG A e T

which completes the proof. []
Proof of Theorem 1.11.0. Step 1. We start to prove the Theorem for p = 1.

Let fe X =1L1 <(1 - ]z|2)5dA> such that ||f]|5 < 1. Since X o by = X, we have
fobyx=>"150 apz® € X. Let p, = ZZ;(I) apz® and g = p, o by. Then, f oby —p, € 2"X and

f=pnoby € (2"X) 0oby = X. Now, p, oby = S.i— ab and
[Pn 0 ballo = [Pl < Anllf o bal[x
where A, = sz>oakz DI Oakz HX oo

I bl < [ 1F (a(a)] (1= ") dA = / 7 @)l (1~ ea(w)?) o3 (0)| 44 =




=P =P\ (=Y
§25/D!f(w)!< T ) (ll—W) a4 =
_ ey (N
— [ 1@ (- op) (ll—W) i<

(1- 1 )8 (1- M)W
SUDweD w|”) dAL | ——% e
< sup <| - w|> [1r@ia- o) <<(1_M|) 191

which gives,

14 A7
£ ot < (o) Il

We now give an estimation for A,. Let g(2) = 3,50 9(k)2* € X, then

n—1 n—1
D a2 <D la(k)]
k=0 o k=0
Now, noticing that
1 2
/g (w)w* (1 — |w\2)6 dA = (re")rfe ™ (1 — r2)ﬁrdtdr =
D 0o Jo

1 2 1
= / (1- 7’2)67’“1 fre®e *dtdr = / G (k)r* (1 —rHPar,
0 0

0
where g,(2) = g(rz), g.(k) = r*g(k). Setting I(0) = fo r#HL (1 — r2)Pdr, we get

i | [t 0= ) ) < sl

n—1 n—1
1
S| < (z 2l s
— . — I(PB)
Now using Lemma 1.11.1,

n—1 1 9 n—1 205
= AN Nn—>oo /. 4N k6+1 ~ —nﬂ+27
kzo Iu(B) IB+1) ]; rB+1)

where cg is a constant depending on 3 only. This gives

Then,

which gives

> gk

k=0

< Cpn®* gy .

o
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where Cj is also a constant depending on 3 only. Finally, we conclude that A,, < an5+2, and as
a result,

1+ AN
oo bl < G () 7l

which proves the Theorem for p = 1.
Step 2. This step of the proof repetes the scheme from Theorems 1.8.0&1.10.0. Let T

Ly ((1 — \z|2)ﬂ dA) — H>™/bYH* be the restriction map defined by
Tf= {g € H®: f—gebyLh <(1— IZ!Q)ﬁdA>},

for every f. Then,

p 0
| T HLE((l—lz\Q)ﬁdA)an/bgHoo: c <J, Ly <(1 — |z|2) dA) H ) .

Now, let v > B and P, : L? <(1 - |z|2)ﬁdA> — LP <(1 - |z|2)ﬂdA> be the Bergman projec-
tion, (see [H], p.6), defined by

ow=(7+1)/ 2= Jul)

D (1 — ZE)2+’y

f(w)dA(w),

for every f. P, is a bounded projection from L? <(1 - |z|2)ﬁ dA) onto L2 ((1 - |z|2)ﬁ dA) (see [HI,
Theorem 1.10 p.12), (since 1 < p < 2). Moreover, since L? ((1 - |z\2)ﬂdA> cLp ((1 —2»)7 dA> ,
we have P, f = f for all f € LP ((1 — \z|2)BdA> , (see [H], Corollary 1.5 p.6). As a result,

|| T ||Lg((1—|Z|2)ﬁdA)—>H°°/bKH°°S|| TP'y ||Lp((1—‘z|2)ﬁdA>—>H°°/b§H°°’

forall 1 < p < 2. We set

ci(B) = 1Py

Li((1-122) aa) g ((1-121%) "aa) -

for e = 1, 2. Then,
HTP’YHLl((lf‘z‘z)BdA>~>H°°/bz\’H°° S

< HT”L}Z((1—\z|2)ﬁdA)—>H°°/b§H°° ||P7||L1((1—|z|2)5dA>—>L}1((1—\z\2)ﬂdA> -

—¢c (a, Ik ((1 - |z|2)ﬂdA) ,H‘”) a(B) <
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) n B+2
<A 1
<46 () et
using Step 1. In the same way,

- <7l

TP “L2 <(17\z\2)ﬁdA)ﬂH°°/b’A‘H 2 <(17\z\2)ﬁdA)ﬂH°°/b§H°° c2(6)-

Now, we recall that
LZ ((1 — |Z|2)ﬁdz4> = l¢2z ((%) , ﬁ > —1.

As a consequence,

1
_ 21 - )
'm%wwwm%www_c&%<w+n?>H>’

and, applying Theorem 1.6.0,

 (B+1 n ’
HTP’YHLZ((17|Z|2)5dA)~>HOO/bK’HOO < (B)A < 2 2) <1 — ‘/\|> =

B+2
- L (B+1 no\E
—e0 (52) ()

We finish the reasoning applying Riesz-Thorin Theorem, (see [Tr] for example), to the operator
TP,. If p € [1, 2], there exists 0 < § < 1 such that
1 1 1 0
—=1-0)=+0==1—-=
P ( )1 + 2 2’

Ly (1= 12P)da) 22 (= 1) aa) | = zi((1=12P)”an).

and then,

and

||TP'7||LP((1—|z|2)ﬁdA>—>H°°/bT)\lH°° S

1-0 9
< <"TP7||L1<(1z2)ﬁdA>HH°°/bZ\‘H°O> <HTP’V”L2((1|z2)5dA)HH°°/b§H°°> <

: (Cl(ﬁ)Al(ﬁ’ Y <1—LIM>M> ) (CQ(@A/ (6;1’ 2) <1nA|>ﬁ;2>g

_ (Cl(ﬁ)A/(ﬁ, 1))1_9 <62(ﬁ)A/ <%7 2))" <1 _n’)\’>(ﬁ+2)(10)+9ﬂ;.
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Now, since 0 =2(1— 1), (3+2)1—0)+ 022 =3 — (1-1)f+2-2+2 =22 and

||T||Lg<(1—\z\2)BdA)—>H°°/b’;H°° < ||TP7||Lp<(1—|z|2)'6dA>—>H°°/b§fH°° )

we complete the proof. [J

1.12. ABOUT THE LINKS WITH CARLESON INTERPOLATION

In this section, we compare the method used in Sections 1.3, 1.4 and 1.6, with those resulting
from Carleson-type interpolation. Especially, we are interested in the case of circular sequences
o and radial sequences 0. Recall that given a (finite) set o = {1, ..., Ay} C D, the interpolation
constant C(o) is defined by

Ci(0) = supjae<rinf (|| g llso: g € H®, gjo = a) .

Theorem. 1.12.0 Let X be a Banach space, X C Hol(D). Then, for all sequences o = {1, ..., Ay}
of distinct points in the unit disc D,

mazi<i<n |l || < clo, X, H*) < Cr(o).mavi<icn [[on ]l

where Cr(o) stands for the interpolation constant.
Proof. Let f € X. By definition of C;(0), there exist a g € H* such that

with
19 llo< Cr{o)maz; [f (As)] <
< Cr(o)maz; [|ox ]l 1 f1]x -
Now, taking the supremum over all f € X such that || f|y < 1, we get the right hand side
inequality. The left hand side one is proved in Theorem 1.1.3; (1). O

Comments 1.12.1

Theorem 1.12.0 tells us that, for o with a “reasonable” interpolation constant C(o), the quantity
c(o, X, H*®) behaves as maz; ||y, |- However, for “tight” sequences o, the constant C(o) is so
large that the estimate in question contains almost no information. On the other hand, an advan-
tage of the estimate of Theorem 1.12.0 is that it does not contain #o = n explicitly. Therefore, for
well-separated sequences o, Theorem 1.12.0 should give a better estimate than those of Corollary
1.3.2, and of Theorem 1.6.0.

Now, how does the interpolation constant Cr(o) behave in terms of the caracteristic r and n of
o? In what follows we try to answer that question when o is a r — circular sequence. In that case,

we recall the definition of the constant a:
_ minigi A=l ra

1-r 1—r"




Example. 1.12.2 Two points sets. Let 0 = {A1, Ao}, Ay € D, Ay # Xy, Then,
1 2
— <o)< ——,
o Ol = = )

and Theorem 1.12.0 implies

c(o, X, H®) mazi=1,2 ||

< 2
= oA (A2)]
whereas a straightforward estimate gives

c(o, X, H®) < o || + mazy<, [[oa ]l (1 + A1),

52

where 1 = max (|A\1|, [A2|) and the functional vy 1 is defined in 1.1. The difference is that the first

upper bound blows up when A\ — Ao, whereas the second one is still well-bounded.
Indeed, for an H*-function f solving the interpolation f(A;) =1, f(Ay) = —1, we have

2= f (M) = f ()] < 2|1l [ba, (A2l

(indeed, the function g = % is holomorphic in D and its H°°— norm on T is equal to
1
|f (A1) = fllo » (which is less or equal than 2| f]|_.), since the Blaschke factor by, has modu-

lus 1 on the torus T). Hence, || f]|
On the other hand, setting

, which shows Cy(o)

> 1 > 1
0 = |ba, (o) = |oa, )|

. + , . .
for arbitrary a;, a; € C, we get || ]|, < ||Zi (/\\Zz)|| < ma|:£§\1a(1/\|2|)a|2\)’ This implies Cr(0) <

For the second estimate stated in the example, taking f € X we set

_ f ) = (M)
g=[f()+ N — (z = A),

and we get

f )= f ()
lalloe < 1F Q] + | 25—

< lea || + mazaepa, ao) loa 1]l (14 A1),

(T+ M) <

and the result follows.

2
|bh(}‘2)|'

O

Example. 1.12.3 Circular sequences. Let 0 <1 < 1 and o = {1, Mg, ..., A}, Ni Z A, [N =7
for every i, and let o = minii | di A, Then, é < Cilo) < gl (1+§3)’ where K, K' > 0 are absolute

1—7r
constants. Therefore,

clo, X, H®) < (&eK (1%)) maz— ol

for every r — circular set o (an estimate does not depending on n explicitly). In particular, there

exists an increasing function p : Ry — Ry such that, for n uniformly distincts points Ay, ...

IXi| =7, [Xi = Aiga| = 2rsin (), we have

Y >\n;
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(1) c(o, H*, H®) < ¢ (”(1;”) T 1)1 , for every n and r, 0 < r < 1 and in particular, for

[N

n < [r(l—r)"] we obtain
1
15

(1—r)
whereas our specific Corollary 1.5.2, (which is sharp over all n elements sequences o), gives
1

(1—=7)

clo, H?, H®) < ¢

clo, H*, H®) < ¢

only.

(2) c(o, L2, H®) < ¢ <@) (1:) , for every n and r, 0 < r < 1 and in particular, for

n < [r(1 —7)"'] we obtain

1
L2, H®) <
c(o, Lz, )_C(l—r)’

whereas our specific Theorem 1.6.0, (which, again, is sharp over all n elements sequences o), gives
1
(1—1r)?

clo, L}, H®) < ¢

only.

In order to explain the statements of this example, we observe first that the Carleson interpo-
lation constant Cr(o), for r — circular sets o, essentially depends on « only. Indeed, as is known,
the separation constant

A = in fi<j k<n, j2610x; (An)],

is of the order of min(a, 1), and the Carleson measure density for g = >0, (1 — [\[?) 4y, also
depends on « only. All together, C;(o) is bounded if and only if « is separated from 0; see [N1]
p.158 for the details of this reasoning. In fact, we can show that

<A<a
l+oar = =

and

Lo (o) < K 0+5)
(6%

)

(as claimed as above), where K, K "> 0 are absolute constants, see Appendix 1.12.5 for details.
Now, checking point (1) for n equidistant points on the circle |z| =7, \; = re’nt j

n 7._7 = 17 27 ey n)

one obtains [A; — Ais1| = 2rsin (35) > %, and hence a > ;#5. The above estimate for C;()

entails that we can take p(t) = 8¢* (+K#) and then,

Ci(o) < 8 (1435) < <M> :

Since, for the space H2, we have ||| = (1—|A]*)~2, the upper estimate for ¢(o, H2, H*) follows.
Since for the space L2, we have ||oy]| = (1 — |A]*), the same reasoning works for (o, L2, H*®).

O
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Example. 1.12.4 Radial sequences. Now we compare our two estimates of the interpolation
constant c(o, X, H*) (through the Carleson interpolation, and by the preceding general and
specific methods) for special (geometric) sequences on the radius of the unit disc D, say on the
radius [0, 1). Let 0 < p < 1, p € (0, oo)and

N=1=p"P =0, ..n

so that the distances 1 —\; = p/pP form a geometric progression; the starting point is \g = 1 — pP.
Let

r = mal'ogjgn/\j = >\k =1- pn—&-p’

and § = 0(B) = mino<p<n |Br, ()|, where By = 2. It is known that + < Cj(0) < . (The left
hand side inequality is easy: if f € H*®, f(\ ) = 1 (A ) = 0 for j ;é k, then f = Byg and
1 fllee = gl = g (Ae)| = m, and hence Cr(0) > F5 (/\ p for every k =0, 1,2, .., n. The
right hand side inequality is a theorem by P. Jones and S. Vinogradov, see (|[N1], p 189) So, we
need to know the asymptotic behaviour of 0 = 6(B) when n — oo, or p — 1, or p — 0, or p — o0,
or p — 0.

Claim. Let o0 = {1 — pp”“}zzl, 0<p<1,p>0. The estimate of c(o, H*, H®) via the Carleson
constant Cr(o) (using Theorem 1.12.0) is comparable with or better than the estimates from Corol-
lary 1.5.2 (for X = H?) and Theorem 1.6.0 (for X = L2 and X = L2 ((1 — |z|2)ﬁ>) for sufficently
small values of p (as p — 0) and/or for a fized p and n — oco. In all other cases, as for p — oo

(which means \y — 1), or p — 1, orn — oo and p — 1, it is worse.

In order to justify that claim, we use the following upper bound for §(B) = mino<g<n |Br (Ar)],
assuming (for the notation convenience) the n is an even integer n = 2k and computing By, (Ax),

Ak — Aj Aj— Ak
By, (A)] = IIFZ] LI,
| k( k)| ]11_)\>\ ]k+11 A)\k
= 115! 1—pt 2k L—p*
I=LT Y i — phtp IR T ik it
k L—p k 1—p

=1II;_ dI5-
S (L ) T (= )

1_ps 2 1_ps 2
< (T8 <(oF,— | =4 .
< (M) < (i) = A0 e

For a lower bound, we proceed as in [N1] p.160 and get

1—p° _ 1—p°
B, (\)| = I 0
| k( k)’ 5—11 _I_ ps (1 _ pp+kfs) s=1 1 ‘l’ ps (1 _ pp+k) il

2<H": L—/7 )>2:C(n7 P, p)

s 11_|_p5<1_pp+n

for every k =0, 1, ..., n. Hence,

C(n, p, p) < 0(B) < A(n, p, p).
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On the other hand, using Corollary 1.3.4 (for X = H?)

SRS "2\’
1) < | L) <D= =
A = (jl b= ’/\J'l) - (jl p]+p>

) (5) - () () o

Now, we can compare the behaviour of D(n, p, p) and C(o).max; Hcij HH2 for every parameter
n, p, p.

1.12.4 (a) Sparse sequences o (p — 0, or at least 0 < p < e < 1).

If p — 0, one has lim,_oC(n, p, p) = 1, and hence lim,.cC; (0,,,,,) < 8. So, asymptotically,
Theorem 1.12.0 implies

N
o=

(SIS

2
(0n, ppy H? H®) < (84 ¢) <1 — r> ,

and Corollary 1.3.4 gives slightly better but comparable estimate,

NI

2
o 1% 1) < (1) (1)

In our definition, if p > 0 is fixed and p — O then A\ = A (p, p) — 1. In order to keep A\;
at a fixed position we can set p = p(p) = log( 7 Then \y =1 —pP =1—¢e7% ¢ > 0. Still,

Mmp—ﬂ)c (n7 P, p(/))) =L

1.12.4 (b) Condensed sequences o (p — 1). In this case, lim,_oD(n, p, p) = (127~) vn+1,

and hence using Corollary 1.3.4 we cannot get better than the general estimate of Corollary 1.3.5,
1

c(o, H?, H®) < (vVn+1+¢€) (%)% To the contrary, A(n, p, p) ~ ( ) (1—p)2, and therefore

Cr(o) > 67 > (A(n, p, p))~" which blows up as £25L  So, as it can be predicted, in this case

(1=-p)""
the Carleson interpolation is worse for our problem. Fixing A\; = 1 — pP at an arbitrary position

( = —logE1)> will not change the conclusion.

P

1.12.4 (c) Long sequences (n — oo). With fixed p and p, let n — oco. Then, by Corollary 1.3.4,

s (12) ()"

(Observe, however, that is also not constant 1 — r = p"*?). In its turn, Theorem 1.12.0 gives

8 1 1—p\* 8
clo, H?, H®) < — ——— ~y oy <H§°1 p> ,
92 (1—1r)2 1+ p? (1—r)

=

o\
because lim,C(n, p, p) = lim,A(n, p, p) = (H? 11;p ) for every p, 0 < p < 1. Of course,

the latter estimate is much worse than the former one, because 113 11—% VQW exp < 15 %p) as
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p — 1. Indeed, setting p(p) = I for all p € [0, 1[, we have (see [Ne] p.22),

sllp

p(p) = 12;#[)6179 <71T2 1 J_r Z) [1+0(1=)p)].

NOW7 Setting 1/’( ) H§o11+p we get ( ) ( ) W = (pZ) and;

w Ltp_ol) o elo) _ (2(p)”
=1-p v ") e(p?)
1—0p m21+1 2m 2 1+1
= St (G oo (“apy ) o) =
VT (31
NG <ElTp

) [1+o0(1)], as p — 1.

Appendix 1.12.5
Let 0 = {\1, ..., \u} be a r — circular sequence, |\;| =7rVi=1..n, 0 < r < 1; here we show the

links between the constants A = A(o) = infiz; [by, (A)], and a = mir g

fp—- , and establish an
estimate for the Carleson interpolation constant Cy(o )

Lemma. 1.12.6 In the above notation, we have
Q@

14+ ar
Proof. The right hand side inequality is clear, since
R I Y| R Ll |

<A<a.

b )l = PR ST T S
For the left hand side one, we have
Ai — A Ai — A
o )| = izl AL
’1— )\ _()\Z_)\j))| }1—7"24‘/\1(/\1—)\]){
Ai = Al S [Ai = Al _

_1—T2+T|)\i—)\j‘_1—T+T|)\i—/\j| ﬁ‘l—r
1 B a
al+r 14ra

O

Lemma. 1.12.7 In the above notation, we have the following estimate for the Carleson interpo-
lation constant C;(c) : there exists numerical constants K, K' > 0 such that

Cr(o) < 8¢ (1435),
Proof. We recall that,

Mo — Aj

5= 6 (By) = infiepenll jun | £ 20
(Bo) = infick<ally jze T

= inflgkénnjd#k |b>\j ()‘k)‘ :
We have
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o> eng*E?,
where A = A(o) still stands for the separation constant of o, A = infi<;j p<n, j2r|0r;(A)| , and £
is the embedding constant in Carleson’s embedding theorem. Using a theorem by P. Jones and S.
Vinogradov, see [N1] p.189, we have

8
C](O') S ﬁ
From [N1] p.158, we have

c?
§> e 27,

where C'is the constant defined in Carleson’s imbedding theorem (Imbedding Theorem see [N1]

p.151). We know moreover that C' anf E are linked by the following inequality:

1
— E<(C%*< .
147E_C' <6F

(see [N1] p.153). As a consequence,

_c? _3B
0> e 227 > ¢ Az,

Moreover,

Q)
l

p= > (1= |\,

j=1l.n
see [N1] p.153). We recall that a = 1min,;.;|\; — \;| and we notice that
r #J J

E = supiso™

where,

0 ifl<l—r
w(@Qi) < (1—1r?%) ifl—r<i<ra _
(1 = 72).(number of \j belongingtoQ;) if 1 > ra
Indeed,
if | <1 —r then none of the \; belong to @),
and if 1 —r <1 <ra, one of the \; belongs at most to ;.

As a result,
E < max (‘Supl—rglgra’uTC?l)v SuplZTa@> .
But,
1
Sup1r<l<7“alu(lQl> S (1 + 7”)(1 - T) X Suplfrglgraj
<2(1-r) L 2
— /,"' P
- 1—r

On the other hand,



R
supl>m'u(?l) <(14+7r)1-r)x A%
1— 1
<oA=l _ 9=
ra «
where A is a numerical constant and ra
@ 1—7r

Finally,

E < 2max(1, Al) <2 <1 + é) )
o a

2
§2<1+r> <1+é> <
(8] (0%

F
A2
2
§2<1+1> <1+é)2<1+2+A+2Aj1+ A) <
(0] (0%

and, using Lemma 1.12.6, we get

« « o’

/ K
< (14 K),
[0

/ . SE ! K . .
where K, K > 0 are numerical constants. As a result, 8672 < 8ea? < 8¢°X (1+ a3), which gives

Cilo) < 85 (143%)

Y

and completes the proof. [J
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2. Lower bounds for C, (X, H®)

2.1. THE CASE X = [2 (wy)

Here, we consider the weighted spaces [%(wy) of polynomial growth and the problem of lower
estimates for the one point special case 0y, = {\, A, ...; A}, (n times) A € D. Recall the definition
of the semi-free interpolation constant

C(UA,naHv HOO) = SUP{||f||H<><>/bgL151<>o c fed, ||f||H < 1},

where || f[| oo jpraree = inf {||f + b3glles : g € H}. In particular, our aim is to prove the sharpness
of the upper estimate for the quantity

Cn,r lZ ;Nfl aHOO )
(k+1)=

(where N > 1 is an integer), in Theorem 1.6.0.

Theorem. 2.1.0 Let N > 1 be an integer. Then,

N

1 n 2

A R — |, H® | >a (—)
(*’ A((kﬂ)%) ) MAVEDY

for a positive constant ay depending on N only. In particular,

5 1 5
n n
o <, 2 H*® | <A
aN(l—r) - ”””<Z“<(k+1)%l)’ )‘ <1—r> ’

foralln>1,0<r <1, where A=A (%) is a constant defined in Theorem 1.6.0.

(1) We first recall some properties of spaces X = ?(wy). As it is mentionned in the Introduction,

o (wy) = {f =D SR P =D (k)P < OO} :

k>0 k>0

with a weight w satisfying wy > 0 for every k > 0 and Wk(l/wi/k) = 1. The latter condition

implies that [2(wy,) is continuously embedded into the space of holomorphic functions Hol(D) on
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the unit disc D = {z € C: |z| < 1} (and not on a larger disc, i.e. [?(wy) does not contained in
Hol(rD) for every r > 1). In this section, we study the case p = 2, so that [%(wy) is a reproducing
kernel Hilbert space on the disc D. The reproducing kernel of [2(wy), by definition, is a
I2(wy,)-valued function A — k¥, X € D, such that (f, kY) = f(A) for every f € I2(wy,), where

(-,.) means the scalar product (f, g) = >~ h(k)g(k)w?. Since one has
fO) =20 f(k))\kwi’%w,% (A € D), it follows that

Akzk
k;”(z)zz 272611)).
k>0 Wy

2
a

kx(z) = (1 —=X2)7,

In particular, for the Hardy space H? = [2(1), we get the Szegd kernel

for the Bergman space L2(D) = [2 <(k+11)%> - the Bergman kernel ky(2) = (1 — A\z)~2

(2) Conversely, following the Aronszajn theory of RKHS (see, for example [A] or [N2] p.317),
given a positive definit function (A, 2) — k(A,2) on D x D (i.e. such that ), @a;k(Ni, A;) > 0
for all finite subsets (\;) C D and all non-zero families of complex numbers (a;)) one can define
the corresponding Hilbert spaces H(k) as the completion of finite linear combinations >, @;k(\;, -)

endowed with the norm
IS k(00 P = L)
i

When k£ is holomorphic with respect to the second var1ab1e and antiholomorphic with respect to
the first one, we obtain a RKHS of holomorphic functions //(k) embedded into Hol(DD).

For functions k of the form k() z) = K(\z), where K € Hol(D), the positive definitness is
equivalent to K(j) > 0 for every 7 > 0, where K(j) stands for Taylor coefficients, and in this
case we have H(k) = (2(w;), where w; = 1/1/K(j), j > 0. In particular, for K(w) = (1 —w)~?,
kx(z) = (1 =X2)%, 8 > 0, we have K(j) = (gf{_l) (binomial coefficients), and hence w; =

Nf=

(5(B+1)j—|(B+J—1)) . Indeed, deriving =, we get by induction
(1—2)" ,Zg+ﬁ—1 G+ =D GH
ji>0 j>0
Clearly, w; ~ 1/]'%, where a; ~ b; means that there exist constants ¢; > 0, ¢co > 0 such that
cra; < bj < caa; for every j. Therefore, H(k) = [2 (#) (a topological identity: the spaces
k1) 2

are the same and the norms are equivalent).

(3) Reproducing kernel Hilbert spaces containing H?. We will use the previous observations
for the following composed reproducing kernels (Aronszajn-deBranges, see [N2] p.320): given a
reproducing kernel k and an entire function ¢ = 7. ¢(5)2/ with $(j) > 0 for every j > 0, the
function @ o k is also positive definit and the corresponding RKHS

H(pok) =: o(H(k))
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satisfies the following. For every f € H(k) we have pof € p(H(k)) and [l fII2 1y < (I f i)
(see [N2] p.320). In particular, if ¢ is a polynomial of degree N and k is the Szegd kernel then
poka(z) = 350 ;N 20 with ¢, ~ (k+1)¥~1, and hence

2y _ 72 1
p(H”) = la((/{:—l—l)l\f;l)

(a topological identity: the spaces are the same and the norms are equivalent). The link between

spaces of type [2 (%) (already mentionned in Section 1.6) and of type p(H?) = H, being

(]{;+1)T
established, we give the following result.

Lemma 2.1.1 Let ¢(2) = Son o, ax2*, ar > 0 (ay > 0), and H, = @(H?) be the reproducing
kernel Hilbert space corresponding to the kernel ¢ (ﬁ> Then, there exists a constant a =
a(p) > 0 such that

|z

50 n
C(O‘)\m, Hcpa H ) 2 a (1_—|)\|>

Proof. 1) We set
-1
A 1/2
Z’i A
k=

U= b,
Then ||Q,]|5 = n, and hence by the Aronszajn—deBranges inequality, see [N2| p.320, point (k) of
Exercise 6.5.2, with ¢(z) = 2" and K(), z) = kx(2) = =53, and noticing that H(p o K) = H,,

19117, < 0% (I1Qull2) = b*¢(n).
Let b > 0 such that b*p(n) = 1.

2) Since the spaces H, and H> are rotation invariant, we have ¢ (o n, H,, H®) = ¢ (0,0, H,, H®)
for every A, u with [A\[ = |u| = 7. Let A\ = —r. To get a lower estimate for ||¥|y,/ppm, consider G
such that ¥ — G € by Hol(D), i.e. such that b, oby — G oby € z"Hol(D).

3) First, we show that

= Woby= bH,oby
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is a polynomial (of degree nN) with positive coefficients. Note that

n—1
A=)
k
Qnob)\—z 1_)\[))\ )

=(1- |)\|2)_% (1—{— (1 —X)nz_lzk —Xz”) =

k=1

n—1
= (1—r%)712 (1 +(1+47r) sz + rz”) = (1 —r?)"Y2y,.

k=1
Hence, 1 = W o by = bH, o by = by o ((1 — r2)_% 1/11) and

N
poth =Y ai(z)
k=0

(In fact, we can simply assume that ¢ o ¢y = ¥{'(z) since H, = [ <(k ;N1> = H_~). Now, it
+1)7 2
is clear that v is a polynomial of degree Nn such that

P(1) = Z?/AJ(]) =byp ((1 — TQ)_l/Q(l + r)n) = by < 1J_r:n> > 0.

4) Next, we show that there exists a constant ¢ = c(¢) > 0 (for example, ¢ = /22N (N — 1)!, «
is a numerical constant) such that

W) =D (i) = Y () = (D),

where m > 1 is such that 2m = n if n is even and 2m — 1 = n if n is odd.

Indeed, setting

3

Sy = 2,
7=0
we have
m m n—1 k m
Z( 9 :Z <1+(1—|—7’)sz+7“2”) > Z(Sﬁ,l)
k=1

Next, we obtain
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where o > 0 is a numerical constant. Finally,
S m* (n/2)*

o (1 +7)n)* a
SRk (THrF T 2R )Rk — 1) (1) 2

SPACE Ly (1"

Summing up these inequalities in 32" (1)) = b3 (p o) = b3 n g ar (1 — 1) /23" (k) (or
simply taking k = N, if we already supposed ¢ = 2"V), we obtain the result claimed.

5) Now, using point 4) and the preceding Fejer kernel argument and denoting F,, = ®,, + 2" ®,,,
where @, stands for the k-th Fejer kernel, we get

1 TN+
1€ pgrzee = [l e > 5% Falloe > 53 (0) 2
7=0

>

2 2 (p(n)?

( 1+r>
14 1—7"n

(assuming that ¢ = z%)

()

Proof of Theorem 2.1.0. In order to prove the left hand side inequality, it suffices to apply

Lemma 2.1.1 with p(z) = 2" . Indeed, in this case H, =2 (( ;N1> = H_~. The right hand
k+1)" 2

side inequality is a straightforward consequence of Theorem 1.6.0.
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In the case of the Hardy space H?, recall that H? = [2 (ﬁ), with N =1 (or equivalently
k+1)" 2

H? = H,, with ¢(z) = z), we can explicit the constant a = a; of Theorem 2.1.0 (or a = a(p) of
Lemma 2.1.1).

Theorem. 2.1.2 We have

1 Vn vn
_—<Cn7’ H27HOO < 2
4Wo1—r = " ( )_\/_ 1—r

)

7

Vn>1,vrelo,1].

In the same way, recall that the Bergman space L2 verifies L2 = [2 (( ;N,l >, with N =2 (or
k1)

L% = H,, with ¢(z) = 2?), we can also give explicitly the constant a = as = a(p) of Theorem
2.1.0.

Theorem. 2.1.3 We have,

Yn > 1, vre o, 1].

2.2. THE CASE X = HP

The aim of this section is to prove the sharpness ( for even p) of the upper estimate, found in
Theorem 1.5.0, of the quantity C,, , (H?, H*). This is the subject of the following theorem.

Theorem. 2.2.0 Let pe 27, then

1 n %
C(U)\m, Hvaoo) = L <—) 7
325 \1— [}l

for every A € D and every integer n > 1, where oy , = {\, A, ..., A} and hence
1 1
1 n o \? n o \*
< Cp,r(HP,H®) < A ;
3211:(1—7") < el ) p<1—7“>

for alln >1, 0 <r <1, where Ay is a constant depending only on p which is defined in Theorem
1.5.0.

We first prove the following lemma.

Lemma. 2.2.1 Let p,q such that § € Zy, then ¢ (o, H?, H®) > ¢ (o, HY, HOO)% for every sequence
o of D.

Proof. Step 1. Recalling that
0(0-7 HP’ HOO) = Sup“f“pfllnf{”gnoo : g € Y7 g|0 = f\o‘}y

we first prove that

C(O', pr Hoo) - SuprHpgl,fexteMorinf {Hg“oo e K glo = f|0} .
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Indeed, we clearly have the inequality

Supﬂfﬂpgl,fezteriorinf {Hg”oo g€ K 9o = f\a} < 0(0'7 Hp> Hoo))
and if the inequality were strict, that is to say

sup|fly<1, f exterior f {9l = 9 €Y, 9o = fio} < supyp,<rinf {9l : 9 €Y, 910 = fio}
then we could write that there exists e > 0 such that for every f = f;.f. € HP (where f; stands
for the inner function corresponding to f and f to the exterior one) with [|f||, < 1 (which
also implies that ||fe|l, < 1, since [[fel|, = [If]|,). there exists a function g € H* verifying

both |gll,, < (1 = ¢€)c(o, HP, H®) and g, = fe,. This entails that fi, = (fig), and since
I figll = ll9lloe < (L —€)c(o, HP, H*) , we get that ¢ (o, HP, H*®) < (1 —¢)c (o, HP, H*), which
is a contradiction and proves the equality of Step 1.

Step 2. Using the result of Step 1, we get that Ve > 0 there exists an exterior function f, € H?
with [[fe[|, < 1 and such that

’Lnf{”gHoo /NS Y> 9o = fe\a} > C(O‘, quHoo) — €

Now let F' = f& € HP, then | F|[7 = [[fell; < 1. We suppose that there exists g € H> such that
Jje = I, with

9]l < (c(o, HY, H*) —€)v.
Then, since g (\;) = F (A;) = f. (\;)? for all i = 1..n, we have g ()\;)

£ € Zy. We also have
lo% | = Nl < (eto, 1, 1) = )3
which is a contradiction. As a resiﬁt, we have
l9llue = (e (o, HEH) = €)7,
for all g € H* such that g, = F|,, which gives

Y]

= fe (\i) and gg € H> since

P

g

c(o, HP, H®) > (¢ (o, HI, H®) — €)? ,
and since that inequality is true for every ¢ > 0, we get the result. U

Proof of Theorem 2.2.0. We first prove the left hand side inequality. Writing p = 2.5, we apply
Lemma 2.2.1 with ¢ = 2 and this gives

2
2 1 n P
C{Oxn, -qu7[—-[oo ZC O\n, H27Hoo P> < )
( ) ( ) 32% 1— |/\|
for all integer n > 1. The last inequality being a consequence of Theorem 2.1.2. The right hand
side inequality is proved in Theorem 1.5.0. [
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3. Toeplitz condition numbers as an H*
interpolation problem

Let H be a Hilbert space of finite dimension n and T an invertible operator acting on H such
that || 7' ||< 1. We are interested in estimating the norm of the inverse of T :

-1
[
More precisely, given a family F of n—dimensional operators and a T' € F, we set
Tmm(T) = mmlzlnp\z\ > 0,

where {A1, ..., \n} = o(T) is the spectrum of T. We are looking for “the best possible” majorant
®,,(r) such that

|7 < @alr)
for every T € F, |T|| < 1. This leads to define the following bound ¢, (F,r), where 0 < r < 1,

Cn(]:a T) = Sup{HT_lH T e f? HT“ < 17 Tmm(T) 2 T}'

The following classical result is attributed to Kronecker ( XIX c.)

Theorem. 3.0 (Kronecker)
Let F be the set of all n-dimensional operators defined on an euclidean space. Then

1

cn(r) = con(F,r) = )

Since obviously the upper bound in ¢,(r) is attained (by a compactness argument), a natural
question arises: how to describe the extremal matrices T such that ||T] < 1, rmin(T) > r and

|T74|| = = The answer is contained in N. Nikolski [N3] in the following form: the case of equality
1
1T ==
rn

occurs for a matrix 7" with || 7" ||= 1 if and only if:
(1) either » = 1 and then T is an arbitrary unitary matrix.

(2) or r < 1, and then the eigenvalues \;(T) of T are such that

AT =7

and given o = {\, ..., A\, } on the circle, there exists a unique extremal matrix 7" (up to a unitary
equivalence) with the spectrum {\y, ..., A, } having the form

T=U+K
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where K is a rank one matrix, U is unitary and U and K are both given explicitly. (In fact, T
is nothing but the so-called model operator corresponding to the Blaschke product B = II}_;by; ,
see [N2] for definitions).

For numerical analysis, the interest is in some classes of structured matrices such as Toeplitz,
Hankel etc.... In that note, we are going to focus on the Toeplitz structure. Recall that T is a
Toeplitz matrix if and only if there exists a sequence (ak)zz:frl such that

G a-1 . . A_py1
ay . . . .
T=T,= . S . :
a1
Anp—1 . .oap ao

and that T is an analytic Toeplitz matrix if and only if there exists a sequence (ak)],zzg_l such that

ap 0 . . 0
a1
T=T, = .
0
anpn—-1 - . A1 Qo

We denote by 7, the set of Toeplitz matrices of size n, and 7,* will be the set of analytic Toeplitz
matrices of size n. This leads to the following questions.

How behave the constants ¢,(7,,7) and ¢,(7,%,7) when n — oo and/or r — 07 Are they
uniformly comparable with the Kronecker bound ¢, (r)? Are there exist Toeplitz matrices among
extremal matrices described above? The answers seem not to be obvious, at least the obvious
candidates like T = m, where J,, is the n—dimensional Jordan matrix, do not lead to the
needed uniform (in n and r) equivalence. For short, we denote

tn(r) = ca(Tn, 1)
and

Obviously we have,

t2(r) <tp(r) < eu(r) = i

T-TL

The following theorem (see |Z]) answers the above questions.

Theorem. 3.1 1) For all r €]0,1] and n > 1,

< r"te(r) < rley(r) =1

N | —

2) For everyn > 1
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limg_or™te(r) = lime_ r"te(r) =1

and for every 0 <r <1

limy—oor™te(r) = 1.

The proof of the theorem is given in Section 3.2 below.

3.1. OPERATOR M,, AND ITS COMMUTANT
Let M, : (C", < .,.>) — (C", < .,.>) be the nilpotent Jordan Block of size n
0
1
M, =
10
It is well known that the commutant {M,} = {A € M,(C): AM, = M,A} of M, verifies
{M,} ={p(M,): p€ Pol,},

where Pol, is the space of analytic polynomials. On the other hand, we can state this fact in the
following way. Let

Ko = (z"H?) " = Lin (1, 2, ..., 2",
H? being the standard Hardy space in the disc D = {z : |z| < 1}, and
My Koo — Ko
such that

A/{znf — Pzn(Zf), Vf E Kzn.
Then the matrix of M,» in the orthonormal basis of K.», B, = {1, z,..., 2" '} is exactly M, and
hence

{p(My), p € Poly} = {M,} = {M.n}

The following straightforward link between n x n analytic Toeplitz matrices and {M,}" is well

known.

Lemma. 3.1.0 72 = {M,} .
Proof. Let
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Then,
(0)
nol ¢(1)
¢ (Mo) =Y d(k)M) = .
k=0 . .
pn—1) . . ¢(1) ¢(0)
(0] 0 0
ay .o . .
Conversely, if A = .. . . . | €Tethen A= (332 wndb) (M,). O
0
ap—1 . . Q1 Qg

We also need the Schur-Caratheodory interpolation theorem (1912), which also can be considered
as a partial case of the commutant lifting theorem of Sarason and Sz-Nagy-Foias (1968) see [N2]
p-230 Theorem 3.1.11.

Proposition. 3.1.1 The following are equivalent.
i) T is an n x n analytic Toeplitz matriz.
ii) There exists g € H® such that T = g (M,,).
Moreover

I TI=infill g llo: 9 € H*(D), g (M) =T}

=min{|| g llc: g € H*(D), g(M,) =T},
where || g [lsc= supzer|g(2)].
3.2. PrROOF OF THEOREM 3.0
Lemma. 3.2.0 Let T be an invertible analytic Toeplitz matriz of size n X n (which means that
there exists f € Pol, C H* such that T = f(M,)). Then
HT‘1H =inf{l| glloc: g, h€ H®, fg+ z"h=1}.

Proof. Since T~ belongs also to { M, }/, there exists g € Pol, C H> such that T~! = g (M,,). This
implies in particular that

(fg) (My) = I,
which means that fg — 1 annihilates M,,. That means that

fg—1
is a multiple of 2™ in H*°. Conversely, if g € H* verifies the above Bezout equation with h € H*°

then

g(M,)=T"".
But by Proposition 3.1.1, we have
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1T = inf {l g lle: g € H*, g (M) =T},
and hence

|7 = inf{ll g lw: 9, h € H®, fg+2"h =1}
O

Proof of Theorem 3.0. First, we prove that for every r €0, 1] there exists an analytic n x n
Toeplitz matrix 7, such that
1) [T <1,
2) o (T;) ={r},
3) 1T = % - L.
Indeed, let
r—2z
b = € H™
(2) 1—rz
be the Blaschke factor corresponding to r. The H* calculus of M, tells us that the operator

T, = b, (M,)

satisfies property 1):

1T < bl oo = 1.
On the other hand, by the spectral mapping theorem

o (Ty) = {br (0 (M)} = {0:(0)} = {r}.

In particular this proves that T, is invertible. Finally, using Lemma 3.2.0, we get

1T = inf {I| g lloo: g, h € H®, bog+2"h =1} =

1—2"h
-

=inf{||1—2"h ||e: h € H® r"h(r) = 1}.
But if h € H*®and r"h(r) = 1, we have

che H® r"h(r) = 1} =

.

11— 2 o> o [loe —1
and

1
h oo> h )
Fh ooz [R(r)] = =

which gives



1
1= 2R o> — — 1.
T.n

Therefore

I > -,

which completes the proof of property 3) of T,.

Now we obtain

=™ <™ ||T7H| < r™e(r) < rtalr) < rlep(r) =1

for every r €]0,1[. On the other hand, we have ||T. | |T,|| > 1 and hence

1
17|

I =z 7z

As a result for all r €]0, 1],

e

and combining with the previous estimate, we obtain

% <max(r”, 1 —r") <o T <) < ra(r) < ren(r) = 1,

which completes the first claim of the theorem. The second claim follows from the previous

inequalities. [

Remark. Tt should be mention that we have not obtained an explicit formula for ¢%(r). Regarding
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the description of extremal matrices (for the quantity c,(r)) mentioned in the Introduction, it

seems likely that ¢%(r) < ¢,(r) = =. In the same spirit, it would be of interest to know the limits

limy—q (infr>17"t%(r)) and limg,—eo (infocr<1r™t8 (7)) .
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Résumé de la thése:

La thése est consacrée a une étude d’interpolation complexe “semi-libre” dans le sens suivant:
étant donné un ensemble fini o du disque unité D = {z € C : |2| < 1} et une fonction f holomorphe
dans D appartenant & une certaine classe X, on cherche g dans une autre classe Y (plus petite
que X) qui minimise la norme de g dans Y parmi toutes les fonctions ¢ satisfaisant la condition
9je = fio- Plus précisément, nous nous intéressons a la constante d’interpolation suivante

c(o, X, V) = supsex, rix<vinf {lglly : 90 = fio} -

Dans la thése, nous étudions le cas ou Y = H* et ou I’espace des contraintes X est choisi parmi
les espaces suivants: les espaces de Hardy, les espaces de Bergman pondérés a poids radial ou
encore les espaces de fonctions holomorphes dans D ayant leurs coefficients de Taylor dans [ (w)
(w étant un poids). La thése contient également certaines applications au conditionnement des
matrices de Toeplitz.

Mots-clés:

interpolation

interpolation de Nevanlinna-Pick
interpolation de Carathéodory-Schur
interpolation de Carleson

espaces de Hardy

espaces de Bergman a poids
inégalité type Bernstein
conditionnement

matrices de Toepitz



