
 

N° ordre : 3702 
 
 

THESE 
 

Présentée à 
 

L’UNIVERSITE BORDEAUX 1 
ECOLE DOCTORALE SCIENCES CHIMIQUES 

 
 
 

Par Sophie LARDY-FONTAN 
 

Pour obtenir le grade de 

DOCTEUR 
 

SPECIALITE : CHIMIE ANALYTIQUE ENVIRONNEMENT 
 
 
Les substances émergentes dans les écosystèmes aquatiques français.  

Une application aux alkylphénol-polyéthoxylés et aux substances 
pharmaceutiques. 

 
 
Soutenue le 9 décembre 2008 
 
Après avis de : 
 
Mme H. FENET, Maître de Conférences, Université de Montpellier 1, Rapporteur 
M. P. DOUMENQ, Professeur, Université Paul Cézanne Aix-Marseille III, Rapporteur 
 
Devant la commission d’examen composée de : 
 
M. J.M. SCHMITTER, Professeur, Université Bordeaux 1, Président et Rapporteur de soutenance 
Mme H. FENET, Maître de Conférences, Université de Montpellier 1, Rapporteur 
M. P. DOUMENQ, Professeur, Université Paul Cézanne Aix-Marseille III , Rapporteur 
Mme H. BUDZINSKI, Directrice de recherche CNRS, Université Bordeaux 1 
Mme. M. COQUERY, Directrice de recherche, CEMAGREF, Lyon, Examinateur 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

A Marie-Thérèse Lardy 

Ma grand-mère, 
 

A André Fontan 

Mon grand-père 

 

 

 

 

 

 

 
 



 

REMERCIEMENTS 
 

Ce manuscrit est le résultat d’un travail de thèse, réalisé au laboratoire de Physico- et 
Toxico-Chimie (LPTC) des systèmes naturels de l’université Bordeaux I. Son contenu est la 
somme du travail d’une multitude de personnes, sans qui tout ceci n’aurait pas été possible. 
 

Je voudrais tout d’abord remercier Hélène Budzinski, directrice du laboratoire LPTC 
(responsable du groupe Contaminants organiques du LPTC lors de mon doctorat) d’avoir 
dirigé ma thèse. Une nouvelle fois, Merci, d’avoir eu confiance en moi pour conduire cette 
étude.  
 

Je remercie madame Fenet, enseignant-chercheur de l’université Montpellier 1 et 
monsieur Doumenq, enseignant-chercheur de l’université Marseille Paul Cézanne d’avoir 
accepté d’évaluer ce travail en tant que rapporteurs et également pour leurs observations, 
remarques et conseils avisés sur ce manuscrit et ce travail de recherche. 
Je souhaite également exprimer ma gratitude à madame Coquery, directrice de recherche au 
Cemagref Lyon et à monsieur Schmitter, enseignant-chercheur à l’Institut Européen de 
Chimie de Bordeaux (IECB) pour avoir accepté de faire partie de mon jury de thèse. 
 

Je souhaiterais une nouvelle fois réaffirmer ma gratitude aux membres du LPTC pour 
les expériences transmises et parce que sans ce travail d’équipe, cette thèse n’aurait jamais 
pu aboutir. Ces remerciements s’adressent tout particulièrement à Karyn Le Menach, Sylvie 
Augagneur, Patrick Pardon, Laurent Peluhet, Marie-Hélène Devier. Je tiens à remercier 
Sylvain Coulon, Sylvain Frémy, Nicolas Blanchard et Damien Guillaume pour leur 
contributions  «ponctuelles» à ce travail. Un grand merci à l’ensemble des thésards passés et 
présents et tout particulièrement à : Anne Togola, Nathalie Tapie, Coralie Soulier, Marion-
Justine Capdeville pour leur soutien à ce travail. Une pensée forte pour l’ensemble des autres 
membres de l’équipe LPTC. Belle route à tous. 
 

Ce travail de thèse repose sur de nombreuses collaborations et a requis la 
mutualisation de nombreuses forces d’action que je souhaite ici remercier : les membres du 
LEMA, les membres du SNS et l’ensemble des équipes impliquées dans le programme Seine-
Aval ; les équipes de préleveurs et l’ensemble des équipes impliquées dans le programme 
AMPERES, les marins et les équipes impliquées dans le programme MEDICIS METROC ; les 
équipes impliquées dans le programme ECCODYN. 
 

D’un point de vue plus personnel, je souhaiterais remercier mes proches pour leur 
soutien inconditionnel au cours de ces années. Merci pour votre compréhension et vos 
encouragements. 
 
 
Pour conclure et cela n’est pas de moindre importance, merci à vous tous pour avoir cru en 

moi bien souvent plus que moi-même. 
 
           Sophie 

 

 



Introduction générale 

 Page 1 

 

 

SOMMAIRE GENERAL 

 
 

INTRODUCTION GENERALE                                                                                       P 1 

 

CONTEXTE BIBLIOGRAPHIQUE                                                                                   P 7 

 

MATERIEL ET METHODES                                                                                         P 112 

 

SYNTHESE                                                                                                                        P 144 

 

CONCLUSIONS ET PERSPECTIVES                                                                          P 193 

 

BIBLIOGRAPHIE                                                                                                            P 198 

 

PUBLICATIONS                                                                                                               P 232 

 

ANNEXES                                                                                                                          P 434

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction générale 

 Page 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INTRODUCTION  GENERALE 
 

 

 

 

 

 

 

 

 

 

 

  



 

 

La prise de conscience des enjeux environnementaux a fortement progressé, en France et dans 

le monde, ces dernières années. Au centre des préoccupations

changement climatique, l'érosion de la biodiversité ou les li

humaine ou environnementale. Pour preuves, 

Kyoto (1992) à l'échelle mondiale

Cadre sur l'eau à l'échelle européenne 

Santé-environnement, la loi sur l'eau et les milieux aquatiques promulguée le 30 décembre 2006 à 

l'échelle nationale.  

 Nos sociétés de consommation ont imposé à

conséquence, nous sommes exposés dès la vie utérine à plusieurs milliers de substances chimiques qui 

ont le potentiel d'engendrer des effets délétères. Depuis la publication de 

Carson (1962), une inquiétude croissante quant aux capacités des composés chimiques de 

l'environnement à exercer des effets profonds et délétères sur les populations sauvages et la santé 

humaine est née. Depuis les 40 dernièr

scientifique et d'autre part du grand public via le relais des organisations "

propos des effets délétères, que peuvent avoir certains composés, notamment quant aux systèmes 

endocriniens.  

 

Contexte Sociétal 

Les Français et les préoccupations environnementales

Dans un sondage IFOP pour le Monde du 18/07/2008

être extrêmement préoccupés par la pollution des eaux

environnementales (Figure 1). 

Figure 1 : Les principales préoccupations

 

La prise de conscience des enjeux environnementaux a fortement progressé, en France et dans 

le monde, ces dernières années. Au centre des préoccupations se trouvent des thèmes comme le 

changement climatique, l'érosion de la biodiversité ou les liens entre pollutions et santé qu'elle soit 

humaine ou environnementale. Pour preuves, les projets ambitieux qui ont été initiés, 

Kyoto (1992) à l'échelle mondiale, le projet REACH, la Directive Loi Cadre sur l'air, 

r l'eau à l'échelle européenne (avec leurs adoptions par l'ensemble des pays membres

environnement, la loi sur l'eau et les milieux aquatiques promulguée le 30 décembre 2006 à 

Nos sociétés de consommation ont imposé à l'industrie chimique une innovation constante. En 

conséquence, nous sommes exposés dès la vie utérine à plusieurs milliers de substances chimiques qui 

ont le potentiel d'engendrer des effets délétères. Depuis la publication de Silent Spring

Carson (1962), une inquiétude croissante quant aux capacités des composés chimiques de 

l'environnement à exercer des effets profonds et délétères sur les populations sauvages et la santé 

humaine est née. Depuis les 40 dernières années, un fort intérêt a émergé d'une part de la population 

scientifique et d'autre part du grand public via le relais des organisations "environnementalistes

propos des effets délétères, que peuvent avoir certains composés, notamment quant aux systèmes 

Les Français et les préoccupations environnementales 

Dans un sondage IFOP pour le Monde du 18/07/2008, 36% des français sondés révélaient 

être extrêmement préoccupés par la pollution des eaux, en 2ème position de 

préoccupations environnementales des français. Résultats d’un sondage 

IFOP, Le Monde (18/07/2008). 
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La prise de conscience des enjeux environnementaux a fortement progressé, en France et dans 

des thèmes comme le 

ens entre pollutions et santé qu'elle soit 

qui ont été initiés, le Protocole de 

irective Loi Cadre sur l'air, la Directive Loi 

avec leurs adoptions par l'ensemble des pays membres), le plan 

environnement, la loi sur l'eau et les milieux aquatiques promulguée le 30 décembre 2006 à 

l'industrie chimique une innovation constante. En 

conséquence, nous sommes exposés dès la vie utérine à plusieurs milliers de substances chimiques qui 

Silent Spring par Rachel 

Carson (1962), une inquiétude croissante quant aux capacités des composés chimiques de 

l'environnement à exercer des effets profonds et délétères sur les populations sauvages et la santé 

d'une part de la population 

environnementalistes" à 

propos des effets délétères, que peuvent avoir certains composés, notamment quant aux systèmes 

36% des français sondés révélaient 

 leurs préoccupations 

 

environnementales des français. Résultats d’un sondage 
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Petite de revue de presse 

Afin de mieux cerner le contexte général dans lequel ce sujet d’étude se positionne, une 

revue de presse (non-exhaustive) a été réalisée afin de présenter le traitement journalistique des deux-

trois dernières années. Parmi les titres qui ont fait la une, il peut être cité : 

� «Des poissons qui changent de sexe, des humains qui deviennent résistants aux antibiotiques… Et si 

c’était la faute d’une nouvelle forme de pollution de l’eau causée par une consommation excessive de 

médicaments» Revue Prescrire cité par Alexandra Etchkenasi pour Le Parisien (02/07/07) ; 

� «Environnement : les eaux polluées par les médicaments» par Martine Perez pour Le Figaro 

(14/10/2007) ; 
� «A la recherche des nouveaux polluants dans les eaux usées. L’infiniment petit est-il infiniment 

polluant?» par Marielle Court pour Le Figaro (15/10/2007) ; 

� «Trop de médicaments dans les fleuves français» LCI, 02/07/2007 ; 

� «L'usage des stupéfiants analysé dans les égouts» par Nicolas Granet pour Le Figaro (15/10/2007) ; 

� «Médicaments : gare à la pollution» par Anne Jeanblanc pour Le Point (04/06/2007) ; 

� «Ces médicaments qui polluent les rivières» par Marielle Court pour Le Figaro (18/04/2008) ; 

� «Les médicaments rendent les rivières malades» par Florence Pitard pour Ouest France 

(21/09/2008). 

Tout ceci suggère que la problématique de la caractérisation de la contamination des milieux par les 

polluants émergents est au cœur des préoccupations des français et qu’une recherche est plus que 

jamais nécessaire afin d’apporter des éléments de réponse quant aux risques liés à la présence de ces 

molécules dans l’environnement.  

Contexte de recherche 

Parce que les milieux aquatiques ont toujours été intimement liés à l'essor économique : 

croissance démographique, essor industriel, agriculture intensive, tourisme de masse; ils sont devenus 

l’ultime déversoir des déchets liés à nos modes de vie. Il n'est donc pas surprenant de constater des 

troubles liés à des perturbations des systèmes endocriniens chez les organismes vivant dans des 

systèmes aquatiques fortement impactés par les activités anthropiques. Deux exemples emblématiques 

des phénomènes de perturbation endocrinienne en milieu aquatique sont la découverte de gardons 

présentant d’importantes malformations des testicules dans certaines rivières britanniques impactées 

par des rejets de station d’épuration (Jobling et al., 1998) et celle de gastéropodes marins masculinisés 

après une exposition chronique à un biocide, le tributylétain (revue par Sumpter, 2003). 

 

D’importants efforts de recherche ont été portés, en Europe (programme POSEIDON, 

programme BEEP, programme COMPRENDO) et en France (PNETOX, PNSE) (Figure 2), afin 

d’identifier et de caractériser les sources de pressions et les molécules, dites émergentes, susceptibles 

d’engendrer ces effets toxiques.  



 

 

 

 

Figure 2 : Principaux programmes de recherche en Europe et en France sur la période 1998
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: Principaux programmes de recherche en Europe et en France sur la période 1998-2008. 
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NATIONAUX 



Introduction générale 

 Page 6 

 

Dès 2002, l’Agence Américaine de protection de l’environnement (EPA) avait entrepris des 

études visant à caractériser les pressions de contamination sur l’ensemble de son territoire. Cette 

investigation a récemment été reconduite et les résultats ont été publiés en 2008 par Foccazzio et al.; 

ils mettent en évidence que les molécules présentant un problème majeur, dans les eaux de surface et 

les eaux souterraine, sont les molécules dites émergentes (de part leur nombre de détection et les 

concentrations mesurées) : PCPP (Produits de soins corporels et pharmaceutiques, vert), pesticides et 

agents industriels (plastifiants et détergents, rose) (Figure 3). 

 

 

Figure 3 : Fréquence de détection de différentes classes de contaminants organiques dans les eaux de 

surface et souterraines aux Etats-Unis (Foccazio et al., 2008). 

 

Ainsi, une substance émergente est généralement définie comme une substance dont la 

présence dans l’environnement est avérée mais qui n’est pas encore réglementée. Sous ce terme 

générique, un nombre important de molécules sont regroupées : les hormones, les substances 

pharmaceutiques, les produits de soins corporels, les nouveaux pesticides et les perturbateurs 

endocriniens. En Europe, la prise de conscience des risques environnementaux s’est traduite par la 

mise en place d’un cadre réglementaire visant à réduire les rejets de substances dangereuses dans les 

milieux naturels et l’étude de leur devenir dans les milieux naturels. Les nombreux efforts conduits, 

notamment à l’échelle européenne, vont dans le sens d’une connaissance de la qualité 

environnementale (chimique) des différentes ressources en eau disponibles et de leurs évolutions. En 

France, contrairement à d’autres pays européens : Allemagne, Suisse, Royaume-Uni, Espagne, Italie, 
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Pays Nord-européens, les données de présence de ces substances sont parcellaires et ne permettent pas 

de conduire une réelle évaluation des risques induits par leur présence.  

Dans ce contexte, les objectifs de ces travaux ont été l’étude de 3 classes de polluants 

organiques d’intérêt: les alkylphénol-polyéthoxylés, le bisphénol A et les substances pharmaceutiques 

dans les systèmes aquatiques ; d’une part par le développement et l’optimisation de méthodologies 

analytiques permettant leur identification et quantification dans l’environnement et d’autre part par 

l’étude de leur devenir et de leur présence dans les sources et dans les systèmes récepteurs. 

 

Dans une première partie ce manuscrit présente un état de l’art des connaissances organisé 

tout d’abord autour des agents industriels: alkylphénol-polyéthoxylés et bisphénol A, ensuite autour 

des substances pharmaceutiques (nature des composés, études des sources, étude du devenir et 

données de présence dans les systèmes aquatiques, effets toxiques et risques écotoxicologiques liés à 

leur présence dans les écosystèmes aquatiques). Enfin, dans un troisième chapitre, une présentation 

des méthodologies analytiques, de l’échantillonnage à la validation des données, pour les 3 classes de 

molécules organiques considérées dans cette étude est donnée. 

Dans une deuxième partie, les méthodologies analytiques développées et employées pour 

l’étude de ces molécules dans les systèmes aquatiques sont exposées. Les systèmes étudiés sont 

également présentés dans un contexte socioéconomique. 

Dans une troisième partie, une synthèse des résultats obtenus dans le cadre de ces travaux 

de thèse sera présentée et discutés : méthodologies analytiques développées et validées pour l’étude 

des alkylphénol-polyéthoxylés dans les matrices environnementales ;  les principaux résultats obtenus 

suite aux développements et à l’application de nouvelles méthodologies d’échantillonnages pour 

l’étude des écosystèmes aquatiques ; la présence et le devenir des alkylphénol-polyéthoxylés et des 

substances pharmaceutiques dans les stations d’épuration françaises ; les données acquises par les 5 

années de suivi des alkylphénol-polyéthoxylés en estuaire de Seine ; les données de présence et de 

devenir des alkylphénol-polyéthoxylés et des substances pharmaceutiques dans les systèmes littoraux 

français. Ce travail sera complété par la quatrième partie qui présente les 10 publications réalisées 

dans le cadre de ce travail de thèse.  
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I   Généralités sur les alkylphénol-polyéthoxylés 

I.1  Voies de synthèse et production des alkylphénol-polyéthoxylés 

Les alkylphénol-polyéthoxylés (APEO) sont des composés chimiques d’origine anthropique, 

uniquement. Ils font partie de la vaste classe des surfactants non-ioniques et présentent une 

caractéristique essentielle : ce sont des molécules amphiphiles. L’élément de base de la molécule est 

un noyau phénolique sur lequel est substitué un radical alkyle. La molécule comprend un nombre 

variable de groupes éthoxylés (-CH2-CH2-O-) (Figure 1). 

 

    Figure 1: Molécule d’alkylphénol-polyéthoxylé. 

 

I.1.1 Voies de synthèse des alkylphénols 

Les alkylphénols d’importance commerciale sont fabriqués quasi exclusivement par réaction 

catalytique entre une oléfine et un phénol, un crésol ou un xylénol (Reed, 1978). Les oléfines résultent 

des opérations de pétrochimie. Le nonylphénol (NP) est produit industriellement par réaction entre un 

phénol et un mélange d’isomères du nonène, en présence d’un acide catalytique. La production 

européenne de nonylphénols était de 73 500 tonnes en 1997 (INERIS, 2005). L’octylphénol (OP) est 

issu de l’alkylation d’un phénol et du diisobutylène suivie par une distillation sous vide. Les solutions 

d’alkylphénols sont des mélanges d’isomères (chaînes alkyles ramifiées). Le nonylphénol technique 

est une solution qui contient 22 isomères du NP (Maguire, 1999). 90 % des alkylphénols présentent 

leur radical alkyle en position para, moins de 10 % en position ortho (Maguire, 1999). 

 

I.1.2 Voies de synthèse des alkylphénol-polyéthoxylés 

Les alkylphénols sont principalement utiles pour synthétiser des surfactants non-ioniques (un 

surfactant ou tensioactif est une molécule amphiphile de faible poids moléculaire, <1000 g.mol-1, qui 

présente une partie hydrophobe (chaîne de 6 à 20 carbones en moyenne) et une partie hydrophile 

(COO-, (-CH2-CH2-O-)) de type alkylphénol-polyéthoxylés par une réaction d’éthérification. Les 

alkylphénols les plus utilisés sont les nonylphénol-polyéthoxylés (NPEO), et les octylphénol-

polyéthoxylés (OPEO) (80% et 20% respectivement) (Figure 3). La production mondiale d’APEO a 

été estimée à environ 500 000 tonnes pour l’année 1998, (d’après l’ASPA, Syndicat National des 

m
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fabricants d'Agents de surface et de Produits Auxiliaires industriels), le prix des nonylphénol-

polyéthoxylés (NPEO) est de 1,2€.kg-1 mais varie avec la pureté du produit (INERIS, 2005). 

 

I.2  Les propriétés physiques et chimiques des APEO 

Les propriétés physico-chimiques des APEO sont déterminées d'une part par la longueur de 

leur chaîne éthoxylée et d'autre part par la nature de leur radical alkyle (longueur et isomérie). La 

solubilité augmente avec la longueur de la chaîne éthoxylée, avec l’arborescence du radical alkyle 

(Talmage, 1994), avec la température (2°C et 25°C) (Ahel, 1993); elle diminue lorsque la longueur du 

radical alkyle augmente (Tableau 1). La lipophilie (ou hydrophobicité) des APEO augmente lorsque la 

longueur de la chaîne éthoxylée diminue (Ahel and Giger, 1993). Les valeurs de Koc (ou constante 

organique des sols qui définit la distribution d’un composé entre les phases liquides et solides des sols) 

obtenues pour différents AP et APEO tendent à mettre en évidence que ces composés ont une bonne 

affinité pour la composante particulaire (sols, sédiments) et que cette affinité est d’autant plus élevée 

que la longueur de leur chaîne éthoxylée diminue (Tableau 1). 

L'ensemble des propriétés physico-chimiques résumées dans le Tableau 1 semble montrer 

que les APEO et leurs métabolites possèdent de bonnes capacités de dispersion dans l'environnement 

et spécifiquement dans les systèmes aquatiques (bonne solubilité, valeur de log Kow laissant supposer 

une bonne affinité pour les phases solides, valeurs de Koc laissant supposer une bonne affinité pour les 

composantes organiques, valeur de pression de vapeur mettant en évidence de faibles propriétés de 

volatilisation). 

Tableau 1 : Les principales propriétés physiques et chimiques des APEO et des AP. 
(a) Ahel, 1993 (b) Ahel and Giger, 1993 (c) Ferguson et al., 2001 

Nom de la molécule 
Numéro de 

CAS 
Formule 
chimique 

Masse 
moléculaire 

(g.mol-1) 

Solubilité aqueuse 
(mg.l-1à 20,5°C) 

Log 
Kow 

Koc 
(l.kg-1) 

Nonylphénol technique 
4-NP 

84852-15-3 C15H24O 220,3 5,43 (a) 4,5 (b) 245 (c) 

Nonylphénol- 
monoéthoxylé 

4-NP1EO 
- C17H26O2 281,4 3,02 (a) 4,1 (b) 288 (c) 

Nonylphénol-diéthoxylé 
4-NP2EO 

- C19H32O3 308,5 3,38 (a) 4,2 (b) 151 (c) 

Nonylphénol-
tetraéthoxylé 

4-NP4EO 
- C23H40O6 396,6 7,65 (a) 4,3 (b) - 

Nonylphénol-
nonaéthoxylé 

4-NP9EO 
- C33H60O10 616,8 Soluble dans l’eau (a) 4,1 (b) - 

Octylphénol 4-OP 140-66-9 C14H22O 206,3 12,6 (a) 4,1 (b) 151 (c) 



Contexte bibliographique 

 Page 16 
 

I.3  Domaines d’usages et applications 

Les APEO sont employés dans des domaines d’application très larges en tant que détergents, 

émulsifiants, agents de mouillage et agents dispersants (Figure 2). 

Les principaux secteurs d’utilisation des APEO sont les suivants (INERIS, 2005) :  

- Production et formulation de produits destinés au secteur industriel (ils sont présents dans des 

produits détergents, dispersants, désinfectants, des floculants pour le traitement des eaux usées),          

- Polymères en émulsion et peintures,                   

- Produits phytosanitaires, engrais ("Alex Pack", "Agral 90"),                           

- Industrie électronique et électrique,                                                                                                     

- Nettoyage industriel, institutionnel, domestique,                                                                                                                     

- Tanneries, industrie textile,                              

- Production de pâtes à papier,                               

- Additifs pour lubrifiants et carburants. 

Depuis leur première synthèse dans les années 40, leur production et leurs usages n’ont cessé 

de croître de manière exponentielle. Dans une récente revue, Soares et al. (2008) rapportent des 

productions annuelles de nonylphénol de l’ordre de 154 200 tonnes aux Etats Unis, 73 500 tonnes en 

Europe, 16 500 tonnes au Japon et près de 16 000 tonnes en Chine. En France, les volumes de vente de 

nonylphénols et autres alkylphénols ne sont pas connus (INERIS, 2005). 

 

Figure 2 : Principaux usages des APEO (d’après Renner, 1997). 

 

Les APEO sont utilisés en mélange (différentes longueurs de chaînes éthoxylées, différentes 

isoméries) et également en tant que composants de nombreux produits manufacturés (produits 

15%

54%

30%

1%

Produits d'entretien d'usages 
domestiques
Usages industriels

Usages produits d'entretien 
institutionnels et industriels
Usages miscellaires



Contexte bibliographique 

 Page 17 
 

cosmétiques, peintures, produits détergents), ce qui engendre une grande complexité quant à la 

maîtrise de leur devenir environnemental (multiplication des sources). 

 

Renner (1997) estime que près de 60 % des APEO produits sont rejetés dans les écosystèmes 

aquatiques. Afin de comprendre leur devenir dans cet environnement, il est important d’identifier et de 

quantifier leurs sources, de comprendre les mécanismes conditionnant leur devenir dans les 

écosystèmes aquatiques (dégradation, stockage). Il est également nécessaire de connaître leur impact 

sur les organismes du milieu (toxicité, modes d’action). 

 

 

Figure 3 : Cycle biogéochimique des APEO dans l'environnement. 

 

II   Les sources  

Les APEO et leurs dérivés entrent dans l’environnement par 3 voies majoritaires :  

- les eaux de ruissellement 

Cette source apparaît minoritaire, essentiellement liée aux usages agricoles (APEO en 

association aux pesticides, APEO liés aux épandages). En effet certaines études ont pu mettre en 

évidence une dégradation (minéralisation) rapide des NP associés aux boues lors d’épisodes 

d’épandage (revue par Soares et al., 2008). 
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- les rejets industriels  

Un certain nombre d’études se sont attachées à identifier les sources d’entrée des APEO dans 

les écosystèmes aquatiques, les rejets industriels en font bien évidemment partie dans des proportions 

qui peuvent être très importantes. En France, la DRIRE de Champagne-Ardenne (INERIS, 2005) a 

réalisé une étude sur les rejets des grandes industries de la région. Elle annonce des rejets de l’ordre de 

133 g.j-1 de nonylphénol (4-NP uniquement) par les industries textiles, près de 10 g.j-1 pour les 

industries agro-alimentaires. L’hypothèse que ces rejets contiennent également un grand nombre de 

dérivés d’APEO (non mesurés) de longueur variable du fait de la nature des produits industriels, autant 

de sources de NP potentielles par dégradation, peut-être avancée. Ces premières tendances ont été 

confirmées par les données du RSDE publiées en 2008 (INERIS). 

- les rejets de stations d’épuration (urbaines et industrielles)  

Les stations d’épuration (mixtes, industrielles, urbaines) apparaissent comme étant la source 

principale d’APEO dans l’environnement. Les processus de traitement des eaux usées sont présentés 

dans l’Annexe II afin de faciliter la lecture du document. 

 

II.1  Le devenir des alkylphénol-polyéthoxylés dans les stations d’épuration 

II.1.1  Les phénomènes de biodégradation 

Les phénomènes de dégradation et de transformation biologiques (Figure 4 ; Ahel, 1994) 

sont importants dans le cas des APEO. Le mécanisme de biodégradation s’articule selon deux étapes :  

a) La biodégradation primaire  

C’est un procédé selon lequel la molécule d’APEO est oxydée et altérée suffisamment pour 

qu’elle perde ses propriétés de tensioactif. La voie majoritaire de biodégradation est la perte 

successive de groupements «éthoxy» (White R, 1994). En conditions anaérobies, les produits de 

dégradation sont majoritairement des AP1EO et AP2EO. En conditions aérobies, les produits de 

dégradation sont des acides alkylphénoxypolyéthoxyacétiques (APEC), plus particulièrement AP1EC 

et AP2EC (Ahel, 1994) (Figure 4) des acides carboxyalkylphénoxypolyéthoxyacétiques CAPEC (Di 

Corcia et al., 1998; Lu et al., 2008a; Soares et al., 2008). L’alkylphénol est quant à lui le produit de 

biodégradation primaire ultime, en condition aérobie et anaérobie (Ahel, 1994) (Figure 4). Des études 

menées en laboratoire ont également montré que la vitesse de biodégradation est d’une part 

dépendante de l’agitation des eaux (le phénomène est d’autant plus rapide que l’agitation de l’eau est 

élevée) et d’autre part de la température (lorsque la température du milieu augmente la vitesse du 

phénomène augmente) (Ahel, 1994). La biodégradation primaire se déroule principalement au sein 

même des stations d’épuration (STEP), elle est favorisée par la présence de micro-organismes (Ahel, 

1994 ; Corvini et al., 2006).  
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b) La biodégradation ultime 

Ce procédé conduit à la conversion complète des molécules en CO2, H2O et sels minéraux 

(Ahel, 1994). La biodégradation du NP par les bactéries semble être ubiquiste (Corvini et al., 2006). 

La plupart des micro-organismes capables de dégrader le NP sont du genre Sphingomonas, Bacillus. 

Ce phénomène est sous le contrôle d’un certain nombre de paramètres : position et longueur de la 

chaîne alkyle, structure de la chaîne alkyle, concentration initiale en NP, pH, concentration en oxygène 

(aération) (Corvini et al., 2006). 

 

Figure 4 : Schéma de la biodégradation des APEO.  

 

II.1.2 Efficacité des processus mis en œuvre dans les STEP 

L’étude du devenir des APEO dans les stations d’épuration ainsi que l’évaluation des 

processus mis en œuvre est complexe (Figure 5) mais néanmoins indispensable pour conduire des 

évaluations des risques dans les systèmes naturels ; les principaux éléments ont récemment été 

résumés par Teske et Arnold (2008). 

Les traitements préliminaires et primaires sont peu efficaces pour l'élimination des APEO, en 

particulier le NP (Keller et al., 2003). Les traitements secondaires, biologiques, sont le siège d’une 

activité intense qui, dans le cas des APEO, conduit à un abattement significatif dans les phases 

aqueuses comme le met en évidence le Tableau 2. Dès 1994, Ahel et al. concluaient que le NP était 

aussi sensible aux mécanismes d’abattements secondaires que les autres contaminants organiques 

majeurs. 
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Figure 5 : Complexité du devenir des APEO et de leurs métabolites de biodégradation. 

Exemple des changements de concentrations en métabolites durant la période de biodégradation au 

cours de processus de boues activées dénitrifiantes (d’après Lu et al., 2008b). 

 

Tableau 2 : Efficacité des traitements de STEP quant à l’abattement des APEO (Bruchet , 2006). 
Type de traitements secondaires Observations 

Boues activées en aération prolongée 

�93 % NP 
�90 % NP1EO 
�91 % NP2EO 
�76 % OP 

Boues activées moyennes charges 

�72 % NP 
� 94 % NP1EO 
�92 % NP2EO 
�70 % OP 

Biofiltres 

�93 % NP 
�97 % NP1EO 
�84 % NP2EO 
�60 % OP 

Lits bactériens 

�66 % NP 
�71 % NP1EO 
�27 % NP2EO 
�30 % OP 

Lagunage 

�98 % NP 
�99 % NP1EO 
�99 % NP2EO 
�98 % OP 

  
Le devenir des APEO dans les stations d'épuration est bien renseigné (Giger et al., 1987 ; 

Nasu et al., 2001 ; Lu et al., 2008b ; Zhang et al., 2008a ; Soares et al., 2008 ; Corvini et al., 2006). 
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Les boues activées sont le siège d'une biodégradation intense, en condition anaérobie (Chang et al., 

2005 ; Lu et al., 2008a) et aérobie (Ahel, 1994 ; Tanghe et al., 1998), conduisant à la formation de NP, 

NP1EO, NP2EO, NP1EC, NPEC et CAPEC (Loyo-Rosales et al., 2007 ; Teske et Arnold, 2008) 

(Figure 6). Comme récemment affirmé par Hernandez-Raquet et al. (2007), les processus de digestion 

en conditions anaérobies sont plus performants pour l’élimination des NP, NP1EO et NP2EO que les 

traitements de digestion anaérobie. 

 

Figure 6 : Distribution en homologues d’APEO et de leurs métabolites de biodégradation dans des 

effluents de STEP a) dans un effluent anaérobie ; b) dans un effluent aérobie (Zhang et al., 2008a). 

 

Des paramètres tels que le temps de résidence hydraulique, la concentration initiale en 

composés d’intérêt (concentration en NPEO, concentration en NP), la nature du substrat organique 

sont autant de paramètres qui peuvent affecter l’élimination des APEO et AP dans les stations 

d’épuration (Zhang et al., 2008a ; Lu et al., 2008a ; Soares et al., 2008). Les processus de 

biodégradation anaérobie dans les boues sont pH-dépendants et thermo-dépendants (Lu et al., 2008a ; 

Zhang et al., 2008a). Selon la source de l’inoculum, des résultats très différents ont été mis en 

évidence, preuve que les aspects biologiques sont un des points centraux pour expliquer le devenir des 

APEO dans les processus mis en œuvre dans les STEP. Teske et Arnold (2008) concluent que 

l’élimination des NP1EO, NP2EO et NP au cours des traitements conventionnels est 

vraisemblablement sensible aux paramètres opérationnels des usines de traitements.  

Dès 1994, Ahel et al. avaient montré que plus de 90 % des NP étaient rejetés via les boues. 

La principale voie d’élimination des NP est la filière boues en raison de sa grande affinité pour les 

phases solides (log Kow et log Koc élévés) (Soares et al., 2008). Ainsi la contribution du NP au 

caractère œstrogénique des effluents finaux apparait comme mineure au regard de celle des 

œstrogènes naturels et synthétiques, cependant son accumulation dans les boues représente un risque 

critique pour l’environnement spécialement s’il est considéré que près de 60% sont épandues en 

France (Teske et Arnold, 2008). Dans de récents travaux, Das et Xia (2008) ont évalué le devenir des 

NP dans les filières de compostage. Ces filières sont les voies les plus fréquemment utilisées pour le 

traitement des boues avant valorisation. Ils ont pu mettre en évidence que les phénomènes de 

biodégradation étaient isomères-spécifiques ; certains isomères (α-méthyle-α-propyle) apparaissant 

Présence des formes acides APEC dans les rejets issus de processus de traitements aérobies
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comme réfractaires à la dégradation. Ce qui pose une fois de plus le problème de la valorisation des 

déchets.  

Dès 1987, Giger et al. ont constaté que les traitements dits tertiaires concouraient 

significativement à l'abattement des APEO : AP, AP1EO, AP2EO. Gultekin et Ince (2007) ont résumé 

l’efficacité des processus d’oxydation avancés (photolyse indirecte, oxydation photocatalytique, 

ozonation et sonolyse) quant à l’élimination du NP dans les STEP (expériences conduites en 

laboratoire). Ils concluent que les réactions de photocatalyse avec du dioxyde de titane (TiO2) sont les 

plus efficaces pour atteindre une minéralisation des substances d’intérêt. Cependant, bien que moins 

efficaces, il apparaît que les traitements par ozonation et photolyse sont les plus proches des conditions 

existantes dans les systèmes «naturels». Petrovic et al. (2003a, 2003b) ont mis en évidence la présence 

de formes chlorées et bromées de NP, NP1EC dans les effluents de station d'épuration qui présentent 

des étapes de désinfection (chloration, bromation).  

Ainsi, une considération prudente doit être conduite quant aux réels coûts / bénéfices de ces 

procédés tertiaires pour l’abattement des contaminants traces. Au regard, d’une part, des surcoûts (prix 

de l’eau) qu’ils peuvent engendrer et d’autre part du potentiel toxique des molécules formées lors de 

ces processus. En effet, les métabolites générés au cours des processus tertiaires nécessiteront une 

investigation d’un point de vue écotoxicologique (renseignement du cycle biogéochimique, données 

de toxicité pour les organismes vivants dans les milieux…) et toxicologique (données sanitaires). 

 

II.2 Présence dans les effluents de STEP 

Le Tableau 3 présente les gammes de concentrations mesurées dans les effluents de station 

d'épuration, de par le monde, pour les principaux métabolites de biodégradation des APEO. La 

présence du NP et des métabolites de biodégradation NP1EO et NP2EO est bien documentée dans les 

effluents de stations d’épuration. Au contraire, les données concernant la présence des APEC sont 

fragmentaires mais cependant nécessaires à la réalisation de bilans d’abattements. Les données de 

présence de CAPEC sont rares, ceci peut s’expliquer par le fait qu’il n’existe, pour l’heure, aucun 

étalon analytique commercial de ces molécules. 
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Tableau 3 : Données de présence des APEO dans les effluents de STEP.  
(Concentrations exprimées en µg.l-1, phase dissoute) 

 

II.3 Présence dans les boues  

La Figure 7 et le Tableau 4 présentent des données de présence de NP et divers métabolites 

de biodégradation des NPEO dans les boues de station d’épuration, au cours du temps (période de 

1984 à 2007). De nombreux travaux ont porté sur l’évaluation des processus de traitements des boues 

(Tableau 4) et leur capacité à contrôler la présence de NP en leur sein. Il peut-être constaté que les 

concentrations en NP dans les boues finales sont extrêmement variables (quelques dizaines à plusieurs 

milliers de mg.kg-1) et fortement dépendantes des processus mis en œuvre dans les usines de 

traitement (précédemment discuté). 

La problématique de leur présence dans les boues est intimement liée à celle de leurs usages. 

En effet, le problème de leur utilisation en tant que produits valorisés pour l’agriculture commence 

juste à être évalué (Sjostrom et al., 2008). En France, l’Institut National de la Recherche Agronomique 

(INRA) a lancé des travaux de recherche (programme AGREDE Agriculture et épandage de déchets 

urbains à usages agro-industriels) qui ont pour but d’évaluer la biodisponibilité et les transferts sol-

plante de ces contaminants notamment le NP. Les résultats obtenus montrent qu’une part des NP 

présents dans les boues épandues est biodisponible pour les plantes et les micro-organismes des sols. Il 

apparaît qu’aux doses où il est présent, en France, le NP n’engendre pas d’effets chez les végétaux, 

même si certains effets ont pu être observés sur la reproduction des champignons. Ces travaux se 

poursuivent encore au travers de divers programmes : ERESFOR (Epandages de produits résiduaires 

sur parcelles boisées). 

[NP] [NP1EO] [NP2EO] [NP1EC] [OP] [NPEO] Références 

5,11 30-65 47-77 na na na Ahel and Giger, 1985 

0,7-4 na na na na na Di Corcia et al., 1994 

<0,2-5,4 na na na na na Blackburn et Waldock, 1995 

0,8-15,1 na na na 0,12-1,7 na Lee et al., 1997 

3-343 na na na na na Solé et al., 2000 

0,08-1,24 0,21-2,96 na na 0,02-0,48 na Isobe et al., 2001 

0,171-37 na na na <lod-0,673 na Snyder et al., 2001b 

<lod-0,77 na na na <lod-0,073 na Kuch et Ballschmiter, 2001 

0,140-

0,242 

0,072-

0,175 
0,090-0,210 0,800-

1,120 
lod-0,019 na Jahnke et al 2004 

<lod-5,0 <lod-156 <lod-4,7 <lod-16 <lod-13 2,8-6,6 Gonzalez et al., 2004 

0,05-1,3 na na na na na Johnson et al., 2005 

0,5-1,1 na na na na na Nakada et al., 2006 

0,26-0,73 0,19-1,3 0,05-1 0,23-4,5 0,011-0,014 na Loos et al., 2007 

0,180-

1,600 

0,069-

1,800 
0,042-0,830 na 0,029-0,300 na Clara et al. ,2007 

<lod-0,011 na na na <lod-0,333 na Quednow et Puttmann, 2008 

0,33-2,07 3,63-4,98 na 0,13-0,33 31,3-80,4 Cespedes et al., 2008 

<lod-1,267 <lod- <lod- na <lod-0,586 na Baugros et al., 2008 
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Figure 7 : Evolution des concentrations en nonylphénols (NP+NP1EO+NP2EO) dans les boues de 

stations d'épuration danoises (d'après thèse Jensen J., 2001). 

 

Tableau 4 : Données de présence du NP dans les boues de STEP. 

 

III   Devenir dans l’environnement, cas des écosystèmes aquatiques 

 

Le premier phénomène à se dérouler après l’introduction des APEO dans le milieu aquatique 

est un phénomène de dilution (de la source vers le milieu récepteur, puis du milieu récepteur vers un 

milieu marin ouvert), plus ou moins important selon le débit, ce dernier étant fonction des saisons 

(crues, étiages). Les APEO et leurs dérivés sont faiblement volatilisables (Ahel et Giger, 1993) de telle 

sorte que les pertes par ce mécanisme apparaissent mineures. Deux phénomènes vont contrôler le 

devenir des APEO et de leurs métabolites : les phénomènes de dégradation et les phénomènes de 

sorption. 
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Pays 
(nombre d’échantillons) 

Type de boues 
[NP] 

(mg.kg-1, poids sec) 
Références 

Suisse / Allemagne (30) 
Boues anaérobies stabilisées 
Boues aérobies stabilisées 

450-2 350 
80-500 

Giger et al., 1984 

Finlande/Suisse (29) 
Boues anaérobies stabilisées 
Boues aérobies stabilisées 

640-2 200 
120-650 

Brunner et al., 1988 

Suisse (19) Boues finales 540-1000 Ahel, 1994 

USA (1) 

Boues anaérobies stabilisées 
Boues traitées à haute T° 

Boues chaulées 
Boues compostées 

754 
496 
470 
64 

La Guardia et al., 2001 

Italie (2) 
Boues avant digestion anaérobie 

Boues anaérobies stabilisées 
242 
308 

Bruno et al., 2002 

France (3) 
Boues après séchage 
Boues après chaulage 

Boues après compostage 

17,3 
199,9 

62,5 -130,0 
Ghanem et al., 2007 

Espagne (5) Boues finales 20-194 Cespedes et al., 2008 
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III.1  Les phénomènes de dégradation en milieu naturel 

III.1.1  Les phénomènes de photodégradation 

La photolyse est la décomposition d’un composé chimique par l’action d’une énergie 

radiante. Des études menées en mésocosmes ont mis en évidence que pour que la photolyse du 

nonylphénol se déroule une intensité lumineuse de 0,05 à 0,09 m2.kW-1.h-1 (énergie équivalente à celle 

du soleil à midi en été) était nécessaire (Ahel et al., 1994). De plus, il a été montré que la photolyse 

était plus lente pour les composés éthoxylés que pour les alkylphénols (AP) et qu’elle ne pouvait avoir 

une incidence que dans la couche superficielle des colonnes d’eau, sur quelques centimètres (Ahel et 

al., 1994). Dans les eaux naturelles, en conditions aérobies, le NP est dégradé rapidement en raison 

d’une photosensibilisation liée à la présence de matière organique dissoute (Ahel et al., 1994). Neamtu 

et Frimmel (2006b) ont mis en évidence que la photodégradation du nonylphénol était dépendante d'un 

grand nombre de paramètres physico-chimiques : la présence de Fe3+ et d'espèces réactives de 

l'oxygène augmentent les cinétiques de photodégradation, au contraire la présence de matières 

organiques dissoutes semble ralentir les cinétiques de photodégradation. Les produits intermédiaires 

issus de cette photodégradation (1,4-hydroxybenzène et 1,4-benzoquinone) ne semblent pas présenter 

de pouvoir œstrogénique. 

 

III.1.2 Les phénomènes de biodégradation 

Les molécules entrent dans l’environnement à différents stades de dégradation, les 

mécanismes de biodégradation initiés dans les STEP vont se poursuivre dans les milieux naturels, avec 

des cinétiques plus lentes (Ahel et al., 1994 ; Gross et al., 2004 ; Naylor et al., 2006). Même si ce sont 

les phénomènes de dégradation primaire (diminution de la chaîne éthoxylée) qui se déroulent dans la 

phase aqueuse (Ejlertsson et al., 1999) ; Naylor et al. (2006) ont mis en évidence que des phénomènes 

de minéralisation des alkylphénols étaient susceptibles de se dérouler : ouverture de l’anneau 

phénolique, métabolisation et minéralisation. Les nombreuses études de biodégradation conduites 

(Staples et al., 1999 ; Staples et al., 2001 ; Kvestak et Ahel, 1995) ont permis d’estimer un temps de ½ 

vie du nonylphénol entre 2,5 et 40 jours, entre 18,6 et 70,8 jours pour les NPEO et les NPEC. 

Ahel et al. (1994) ont observé, d’une part, des fluctuations journalières des concentrations en 

NPEO attribuables aux dynamiques de fonctionnement des STEP et, d’autre part des fluctuations 

saisonnières (liées à la température, à l’intensité lumineuse, etc.…) influençant la distribution 

spécifique et la variation des concentrations en APEO (Li et al., 2005 ; Li et al., 2008a ; Wang et al., 

2006 ; Peng et al., 2007 ; Ribeiro et al., 2008 ; Peng et al., 2008). Les concentrations en NP ainsi qu’en 

NP1EO et NP2EO diminuent lorsque la température augmente. Manzano et al. (1999) ont mis en 

évidence que la biodégradation des APEO dans les eaux de rivière est profondément affectée par la 

température. En effet elle conditionne l’acclimatation des micro-organismes ainsi que les taux 

d’élimination des APEO. Les pourcentages de dégradation primaire varient de 68% (à 7°C) à 96% (à 
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25°C) ; les pourcentages de minéralisation, à 30 jours, passent de 30% (à 7°C) à 70% (à 25°C). 

D’autres auteurs (Li et al., 2008 ; Fu et al., 2007) ont également conclu à des tendances saisonnières. 

Cependant la justesse de leurs conclusions doit être considérée avec précautions puisque la plupart de 

ces études se sont cantonnées à deux campagnes d’échantillonnages ponctuels et ne prennent donc pas 

en compte les variations intrinsèques aux systèmes (variations des apports, dynamiques intrinsèques 

au système étudié). 

 

III.2  Les phénomènes de sorption dans les milieux naturels 

L’association entre APEO et particules joue un rôle important dans le devenir de ces 

composés dans les écosystèmes dulçaquicoles, estuariens et marins. En effet ces molécules possèdent 

des valeurs de Koc qui laissent supposer que des phénomènes d’adsorption puissent se dérouler dans 

les milieux aquatiques, jusqu’à l’équilibre entre la phase dissoute, la phase aqueuse et la phase 

colloïdale. Il semblerait que les phénomènes de sorption soient déterminés par ,d’une part, la teneur en 

carbone organique des matériels en suspension et, d’autre part, par l’effet mélange (la présence d’ 

APEO conduirait à la formation de micelles qui favoriseraient les phénomènes de sorption) (Hou et 

al.,2006). Li et al. (2004) rapportent des concentrations en NP comprises entre 8 et 190 ng.l-1 dans les 

eaux de la rivière Han (Corée). Ils montrent également d’importantes variations des concentrations 

avec la saison, le pourcentage de nonylphénol dans la phase particulaire atteint 60% en août, il décroît 

avec la température pour atteindre 28% en décembre ; ces tendances ont également été observées par 

Cailleaud et al. (2007) en estuaire de Seine. Peu de données sont actuellement disponibles pour 

renseigner de la présence d’APEO dans les phases en suspension. 

Les APEO à courte chaîne éthoxylée et les AP ont des valeurs de Koc élevées mettant en 

évidence leur affinité pour la phase organique des sédiments de telle sorte que les sédiments sont des 

puits pour ces composés. La composition spécifique est différente de celle retrouvée dans la colonne 

d’eau avec le NP nettement majoritaire devant les NP1EO et NP2EO. Un certain nombre d’étude ont 

pu mettre une corrélation positive entre les teneurs en NP mesurées dans les sédiments et leur teneur 

en carbone organique (Chen et al., 2005 ; Li et al., 2007b). 

Les concentrations mesurées dans l’environnement (Tableau 5) laissent penser que ces 

contaminants s’accumulent dans les sédiments et suggèrent que les phénomènes de biodégradation y 

sont très lents. Il apparait que les phénomènes de biodégradation anaérobies prévalent sur les 

mécanismes aérobies (Li et al., 2008). De nombreuses études (Heinis, 1999 ; Staples et al., 1999 ; 

Staples et al., 2001) se sont attachées à déterminer le temps de ½ vie de certains APEO dans les 

sédiments : entre 20 et 66 jours pour le NP, 20 jours pour le NP1EO, entre 2,5 et 69 jours pour le 

NP9EO (Shang et al., 1999a ; Shang et al., 1999b). Jin et al. (2008) rapportent un taux de séquestration 

du NP dans les sédiments de la Baie de Bohai de 0,94% par an. Peng et al (2007) ont étudié la 
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distribution verticale des NPEO dans des sédiments marins, ils ont pu mettre en évidence des 

variations des concentrations en NP liées aux usages de ces composés ainsi qu’à la mise en place des 

structures d’assainissement (corrélation avec l’évolution des activités économiques et industrielles) et 

concluent à une certaine stabilité du NP dans les sédiments (peu de phénomènes de biodégradation, 

pas de changement dans la distribution isomérique du NP). Ces composés apparaissent donc comme 

persistants dans les sédiments naturels avec un temps de demi-vie pouvant atteindre 60 années (Shang 

et al., 1999a ; Shang et al., 1999b). 

 

III.3  Effets des APEO sur le cycle biogéochimique d’autres contaminants organiques présents 

dans les systèmes aquatiques 

Il est également intéressant de signaler que les APEO, de par leurs propriétés de surfactants, 

pourraient affecter le cycle biogéochimique d’autres contaminants organiques. A titre d’exemple, 

Wang et al. (2008) ont ainsi pu mettre en évidence que la présence de NP pouvait à faible 

concentration inhiber la sorption du phénanthrène (en agissant sur le film d’eau) et qu’à concentration 

élevée elle en favorisait l’adsorption. Les auteurs suggèrent un effet cocontaminant sur les autres 

composés organiques présents dans le milieu. De même, Hari et al. (2005) ont mis en évidence qu’en 

présence de Tergitol (mélange commercial de NPEO), l’adsorption de la carbamazépine et du 

paracétamol était significativement favorisée. 

 

III.4  Données de présence dans les phases aqueuses 

Les nombreuses études conduites depuis plus de 20 ans ont permis de documenter la 

présence d’APEO dans les eaux de surface (Tableau 5), les eaux souterraines (revue par Soares et al., 

2008), les eaux de boisson (revue par Soares et al., 2008) de par le monde. Beaucoup d’études se sont 

focalisées sur la présence du NP (seul) et concluent que la présence de ce composé dans les 

écosystèmes naturels est concomitante d’activités anthropiques. La comparaison de ces données est 

délicate tant les différences en terme d’échantillonnage (conditions des prélèvements : saisons, débit, 

etc...), de techniques analytiques (eaux brutes/eaux filtrées, choix du seuil de filtration, etc…), de 

techniques de quantification sont hétérogènes (et peuvent conduire à la production de données non 

valides). Ces études permettent néanmoins de conclure au caractère ubiquiste de ces composés dans 

l’environnement. Il peut-être également précisé que l’analyse seule du NP (métabolite ultime de 

biodégradation, persistant et toxique) peut conduire à une sous estimation des risques associés à la 

présence des APEO et de leurs métabolites de biodégradation dans les systèmes aquatiques. 
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Tableau 5 : Données de présence des APEO et de leurs métabolites dans les milieux aquatiques (Concentrations exprimées en ng.l-1, phase dissoute). 

 Site [NP] [NP1EO] [NP2EO] [NPEO] [NP1EC] [NP2EC] [NP3EC] [OP] Références 

Eaux douces 

Grands lacs (Canada) <10-920 <20-7 800 <20- na na na na <5-470 Bennie et al., 1997 

Detroit (USA) <LOD- <LOD-332000 na na na <LOD-670 Snyder et al., 1999 

Pays Bas <LOD-140 <LOD na na na na na <LOD Voogt et al., 2000 

Tamagawa, Sumidagawa 50-1080 40-810 na na na na na 10-180 Isobe et al., 2001 

Back (Canada) 140-200 <9-67 na na na na na <9 Loyo-Rosales et al., 2003 

Cuyahoga (USA) 130-1000 na na na na Rice et al., 2003 

Elbe (Allemagne) 13-87 <0,5-120 na na na <0,5-5 Stachel et al., 2003 

Santa Ana (USA) 0-6 200 na na na na na na na Gross et al., 2004 

Tokyo <LOD-2870 <LOD- na na 470-2820 180-1770 na <LOD-118 Isobe et Takada, 2004 

Tevere (Italie) 130-580 60-480 40-420 na na na na na Patrolecco et al., 2006 

Rivière jaune (Chine) 50-170 50-140 50-450 700-1500 30-100 na na Wang et al., 2006 

Guadalquivir 
900-1100 na na na 

1000-

4000 
na na 800-9000 Cantero et al., 2006 

Guadiana (USA) 

Taiwan <10-2600 <10-500 na na <10-63600 na Cheng et al., 2006 

Rivière Ter (Espagne) <70 <509-2910 2070- na na na <60 Cespedes et al., 2008 

Région Hesse (Allemagne) <10-770 na na na na na na <10-420 
Quednow et Puttmann, 

2008 

Eaux estuariennes 

Lagon Venise (Italie) 300 800 900 na na na na na Marcomini et al., 1990 

Jamaica baie (USA) 201 157 320 na na na na 3 Ferguson et al., 2000 

Delta Pearl (Chine) <20-628 na na na na na na <2-68 Chen et al., 2005 

Eaux marines 

Catalogne et Andalousie 

(Espagne) 
<150-4100 na na 

<200-

11000 
na na na na Petrovic et al., 2002 

Catalogne (Espagne) <50-210 <50-9200 <50-160 na <100-220 na na <50-71 Gonzalez et al., 2004 

Rhin (Allemagne) 32-478 <15-32 <6-64 <30-225 60-322 <13-247 na na Jonkers et al., 2005a 

Sheldt (Allemagne, Pays Bas) 50-962 <15-443 6,8-234 <30-447 37-1030 <13-2339 na na Jonkers et al., 2005a 

Mer du Nord 0.09-1,4 0,017-1,66 na na na na na 0,013-0,3 Xie et al., 2006 

Baie de Jiaozhou 20,2-269 na na na na na na 1,2-16,1 Fu et al., 2007 

Baie de Masan 1229-1433 286-413 702-843 na na na na na Li et al., 2008a 
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III.5  Données de présence dans les sédiments 

Les APEO et leurs produits de dégradation sont également présents dans les sédiments à des 

concentrations supérieures aux eaux de surface correspondantes (Ferguson et al., 2001 ; Rice et al., 

2003 ; Gonzalez et al., 2004). La distribution spécifique des APEO, APEC et AP est différente de celle 

observée dans la phase aqueuse. Les AP et plus particulièrement le NP (composé le plus persistant) 

sont très largement majoritaires et peuvent être présents à des concentrations supérieures au mg.kg-1 

(poids sec) (Tableau 6). 

 

Tableau 6 : Données de contamination des sédiments par les APEO, les AP et les APEC  
 (µg.kg-1, poids sec). 

Localisation [NP1EO] [NP2EO] [NP] [NP1EC] [OP] Références 
Baie Jamaica USA 26-13300 16-3580 7-13700 - <lod-45 Ferguson et al., 2001 

Rivière Cuyahoga Ohio, USA 32-320 30-200 75-340 - - Rice et al., 2003 
Rivière Han, Corée - - 25-932 - - Li et al., 2004 
Barcelone Espagne 

Juillet 2002 
21-629 9-404 5-1 731 <lod-766 <lod-25 Gonzalez et al., 2004 

Barcelone Espagne 
Octobre 2002 

<lod-56 <lod-22 18-68 5-63 3-19 Gonzalez et al., 2004 

Grands Lacs (Canada) <lod -1250 
<lod -
690 

<lod -1750 <lod -30 <lod -52 Mayer et al., 2007 

Ushikubiri (Japon) <lod-76,4 
<lod-
134,3 

25,5-
1988,4 

0,09-1,84  Li et al., 2008 

    

III.6  Devenir dans les organismes vivants 

Il est admis que la diminution de la longueur de la chaîne éthoxylée entraîne une 

augmentation de la valeur du Kow (Ahel et Giger, 1993). De même la ramification des chaînes alkyles 

affecte également les propriétés physico-chimiques de ces molécules telles que la solubilité aqueuse et 

la valeur de Kow, l’ensemble de ces propriétés dictant leur biodisponibilité et leur toxicité. 

 

III.6.1  Les propriétés de bioconcentration et bioaccumulation 

Il a été observé que les capacités de bioaccumulation et de bioconcentration augmentaient 

quand la chaîne éthoxylée diminuait, mettant en évidence que les AP et les APEO possédaient des 

capacités de bioaccumulation et de bioconcentration faibles à modérées (Servos, 1999). 

a) La bioconcentration 

Les valeurs de BCF calculées pour le NP varient de 1 à 740 pour les poissons (selon les 

espèces), de 1740 à 4184 chez la moule bleue (organisme entier) (Tableau 7). Ce phénomène est 

d’autant plus important pour les organismes du bas de la chaîne trophique. Des facteurs de 

bioconcentration supérieurs à 10000, pour certaines algues, ont pu être mesurés. Dans une étude 

récente (Cheng et al., 2006), les facteurs de bioconcentration du nonylphénol et de l’octylphénol par 2 

espèces marines (huître et escargot) ont été mesurés, les valeurs sont comprises entre 2000 et 2900 

pour le NP et entre 2500 et 4100 pour l’OP selon les saisons. Il semblerait que le facteur de 
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bioconcentration présente une saisonnalité intimement liée aux rythmes de vie des organismes 

considérés, les auteurs mettent en avant le rôle crucial des périodes de pontes. 

 

b) La bioaccumulation 

Le facteur de bioaccumulation est le rapport entre la concentration en composé dans 

l’organisme considéré sur la concentration dans la nourriture. Très peu de données permettent de se 

positionner quant aux capacités de bioaccumulation des APEC. En se basant sur leurs structures, les 

NPEO et OPEO semblent présenter des capacités de bioconcentration et de bioaccumulation faibles 

(Servos, 1999). Hu et al. (2005) lors d'une étude menée sur un réseau trophique de la baie de Bohay, 

ont mis en évidence outre la présence de nonylphénol dans l'ensemble des tissus des organismes de la 

chaîne trophique, l'absence de dilution trophique (Figure 8, Tableau 7) et par conséquent qu'au sein de 

réseau trophique il n'y avait pas ou peu de biomagnification. Bien que les données soient éparses, il 

apparaît que les faibles teneurs en AP dans les organismes supérieurs pourraient être liées aux activités 

métaboliques et d’élimination.  

 

Figure 8 : Bioaccumulation du NP dans le réseau trophique de baie de Bohay (Hu et al., 2005). 

 

Tableau 7 : Valeurs de BCF pour certains alkylphénols (d'après Staples et al., 2004). 
  BCF NP BCF OP BCF NP1EO BCF NP2EO 

Facteurs de BCF déterminés via des études en milieu naturel 
Rivière Glatt 

(Suisse) 
Poissons 
Végétaux 

6-15 
32-487 

 1-19 
2-10 

0,8-37 
3-23 Lac Biwa 

(Japon) 
Poisson 21 297 - - 

Facteurs de BCF déterminés via des études en milieu contrôlé 

 Poissons 75-741 113-469 - - 
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III.6.2  La Biotransformation 

Le degré auquel une substance est bioaccumulée dans un organisme dépend du taux 

d’assimilation, du taux de biotransformation ainsi que du taux d’élimination de cette substance. 

 

a) Voies d’entrée dans l’organisme 

Un certain nombre d’études ont mis en évidence que la principale voie d’exposition aux 

alkylphénols chez les poissons était la voie des branchies (Arukwe et al., 2000 ; Ferreira-Leach et Hill, 

2001 ; Pickford et al., 2003 ; Smith et Hill, 2004). Bien que la voie trophique existe, elle ne semble pas 

être une voie d’exposition significative. Néanmoins il est important de garder à l’esprit que ces 

données sont obtenues pour des expositions in vivo à moyen terme, la voie majoritaire d’exposition à 

court terme est la voie branchiale. Cependant dès lors que l’intérêt se porte sur une exposition 

naturelle (sur un cycle de vie) la voie trophique peut devenir la voie majoritaire. 

 

b) Devenir dans les organismes aquatiques  

Ce devenir est conditionné par le mode d’exposition aux molécules. Arukwe et al. (2000) ont 

mis en évidence, au cours d’une exposition du saumon atlantique au NP-3H par la voie des branchies, 

que le NP-3H était initialement localisé au niveau de l'arc branchial. Après dépuration, le NP-3H était 

localisé au niveau des reins puis au niveau de la vésicule biliaire ainsi que dans la partie du tractus 

intestinal (incluant la portion proximale de l’intestin auquel est associé l’intestin) qui reçoit la bile. Ces 

observations tendent à montrer une clairance en 2 étapes : en premier lieu la voie biliaire et ensuite la 

voie urinaire. Lorsque l’exposition est réalisée par la voie trophique, le NP-3H est localisé au niveau de 

la vésicule biliaire, intestin proximal et cæcum intestinal associé, de même que dans le lumen 

intestinal. Ces conclusions sont en accord avec les résultats apportés précédemment par Thibaut et al. 

(1999), Snyder et al. (2001a), Smith et Hill (2004). Une fois que l’équilibre est atteint, les 

concentrations les plus élevées en composés alkylphénoliques se trouvent au niveau de la vésicule 

biliaire, de la bile, du cæcum pylore, de l’intestin et des fèces. Les concentrations intermédiaires se 

situent au niveau du foie, des reins, des tissus lipidiques. Les concentrations les plus faibles se 

rencontrent au niveau des branchies, du cœur, des gonades, du muscle, du sang, des yeux et du cerveau 

(Servos, 1999). 

 

c) La biotransformation 

La biotransformation est la somme des réactions métaboliques qui visent à rendre une 

molécule exogène hydrosoluble donc plus facilement excretable. Elle aboutit à la formation de 

métabolites qui peuvent être plus ou moins toxiques que la molécule mère. 
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Figure 9 : Proposition de chemin de biotransformation du 4-NP chez la truite et dans les hépatocytes 

isolés (d’après Vazquez-Duhalt et al., 2006). 

 

Lewis et Lech (1996) ont mis en évidence que des truites arc-en-ciel (Oncorhynchus mykiss), 

exposées au NP marqué au 14C, incorporaient rapidement le NP14C avec un temps de demi-vie 

d’environ 19 à 20 heures indiquant l’existence de phénomènes de métabolisation. Thibaut et al. (1999) 

ont montré que, chez Oncorhynchus mykiss (truite arc-en-ciel), les métabolites du NP (acide 9-(4-

hydroxyphényle)-nonanoïque (ω-oxydation), acide 4-hydroxybenzoïque, acide 3-(4-hydroxyphényle) 

propionique et acide 3-(4-hydroxyphényle)-2-propénoïque (β-oxydation)) sont libérés par hydrolyse 

par une β–glucuronidase, suggérant leur existence sous forme de composés glucuronidés. Ceci a été 

confirmé par Arukwe et al. (2000) qui ont montré, grâce à une exposition du saumon atlantique (Salmo 

salar) à une dose de 25 µg.l-1 de NP-3H, que le NP était conjugué à l’acide glucuronique. Le 

nonylphénol-glucuronide est le métabolite prédominant dans la bile et l’urine (Figure 9). Les formes 

hydroxylées et oxydées libres sont très minoritaires. Ils ont également pu calculer un temps de demi-

vie pour le NP de l’ordre de 24 à 48 heures. Ferreira-Leach et Hill (2001) ont étudié la 

bioconcentration et la distribution de l’OP ([4-tert-OP] = 4 µg.l-1) chez le juvénile de truite arc-en-ciel, 

ils ont pu observer que la concentration dans l’organisme était maximale dès le 4ème jour d’exposition. 
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De plus ils ont mis en évidence l’existence d’un phénomène de métabolisation à l’origine de 2 

métabolites : l’octylphénol-glucuronide et l’octylcatéchole. Une récente étude de Smith et Hill (2004) 

laisse apparaître que l’arsenal enzymatique disponible pour la métabolisation des xénobiotiques est 

fonction de l’espèce considérée, conférant donc des capacités d’épuration et d’élimination différentes 

selon les espèces. 

 

IV  La toxicité  

 

IV.1  La toxicité aigüe 

La toxicité des APEO diminue lorsque la longueur de la chaîne éthoxylée augmente (Servos, 

1999). Les valeurs de LC50 pour Oryzias latipes (poisson tueur) varient de 1400 µg.l-1 pour le NP à 

110 000 µg.l-1 pour le NP16EO (Servos, 1999) (Tableau 8). Les APEO à longue chaîne éthoxylée sont 

considérés comme n’étant pas toxiques. Le NP est 200 fois plus toxique que le NP9EO. 

 

Tableau 8 : Evolution de la toxicité aigüe (LC50) en fonction de la longueur de la chaîne éthoxylée des 

APEO, chez Oryzias latipes. (Servos, 1999) 

Composé LC 50 (µg.l-1) 

NP 1 400 

NP1EO 3 600 

NP6.4EO 5 400 

NP9EO 12 000 

NP16EO 110 000 

 

Le nonylphénol (NP) et l’octylphénol (OP) ont des valeurs de toxicité aigüe similaires : 17-

3000 µg.l-1 chez les poissons, 20-3000 µg.l-1 chez les invertébrés, 27-2500 µg.l-1 pour les algues 

(Servos, 1999). A chaîne équivalente, les composés carboxylés APEC sont moins toxiques que les 

composés éthoxylés, ils ont des valeurs de toxicité aigüe égales à celles des APEO possédant 6 à 9 

groupements «éthoxy» (Servos, 1999). Récemment, la toxicité du NP, NP1E0, NP2EO seuls et en 

mélange (binaire ou ternaire) sur Ceriodaphnia dubia et Pimephales promelas a été évaluée, les 

résultats mettent en évidence que les mixtures binaires et ternaires diminuent les valeurs de 

concentrations létales (LC50) en conséquence d’effets additifs et synergiques (TenEyck et Markee, 

2007). 

 

IV.2  La toxicité chronique 

Les valeurs de toxicité chronique pour l’octylphénol et le nonylphénol sont aussi faibles que 

6 µg.l-1 chez les poissons, Oncorhynchus mykiss truite arc-en-ciel (NOEC (No Observable Effect 

Concentration) sur la taille, à 91 jours) et de l’ordre de 3,9 µg.l-1 chez les invertébrés (NOEL (No 

Observable Effect Level) sur la taille, à 28 jours) (Servos, 1999). Se basant sur les données de toxicité 
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du 4-NP, il est couramment admis qu’un bruit de fond environnemental de 5 µg.l-1 suffirait à 

soumettre à des risques une part importante des communautés aquatiques.  

Les valeurs de toxicité chronique obtenues au cours des tests de toxicité ont permis de 

déterminer des PNEC (Predicted No Effect Concentration) dans l’eau pour certains composés 

alkylphénoliques. Le PNECeau du nonylphénol est de 0,33 µg.l-1 (INERIS, Fiches substances : 

Nonylphénols), le PNECeau de l’octylphénol est de 0,061 µg.l-1 (INERIS, Fiches substances : 

Octylphénols). Si ces valeurs sont comparées avec celles mesurées dans les eaux naturelles (Tableau 

2), des rapports PEC/PNEC supérieurs à 1 sont obtenus, indiquant la possibilité que des effets toxiques 

en milieu naturel se déroulent. Le PNECeau du NP a permis de calculer une valeur de PNEC pour les 

sédiments, le PNECsédiment du nonylphénol est de 3,9 µg.kg-1 (poids humide) (INERIS, Fiches 

substances : Nonylphénols). Si cette valeur est comparée avec celles mesurées dans les sédiments 

naturels (Tableau 6) des rapports PEC/PNEC supérieurs à 1 sont obtenus, indiquant la possibilité que 

des effets toxiques en milieu naturel se déroulent.  

 

IV.3  Les APEO en tant que perturbateurs endocriniens 

    � Effets in vitro 

C’est Soto et al. (1991) qui ont par hasard mis en évidence les propriétés œstrogéniques de 

ces molécules. En effet, lors d’une étude des cellules humaines MCF-7, ils ont trouvé que l’utilisation 

de nouveaux tubes en polystyrène entraînait une prolifération cellulaire. Après extraction et analyse, 

ils ont mis en évidence la présence de nonylphénol. De plus amples tests montrèrent que le 

nonylphénol pouvait induire les récepteurs à progestérone ainsi qu’une activité mitotique de 

l’endomètre chez le rat.  

 

Figure 10 : Schéma de la fixation de la 17-β-œstradiol et du 4-NP au niveau du récepteur ER (d’après 

Vazquez-Duhalt et al., 2006). 

      

White (1994) a étudié la capacité de certains métabolites à stimuler la synthèse de 

vitellogénine chez les hépatocytes de truite arc-en-ciel (Oncorhynchus mykiss), ils ont pu mettre en 

évidence que les OP, NP, NP2EO, NP1EC étaient capables d’induire une synthèse de la vitellogénine 
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(Tableau 9) et agissaient comme des œstrogéno-mimétiques ayant une action agoniste de l’hormone 

naturelle (Figure 10). 

 

Tableau 9 : Pouvoir de compétition des APEO, AP et APEC vis-à-vis de l’hormone naturelle. 
 (Jobling et Sumpter, 1993 (a) ; Hill et Smith, 2006(b) ) 

Composé  Test YES 
17-β-œstradiol 1(a) 7,8*10-11 (b) 

NP 9*10-6 (a) 1,4*10-7(b) 

NPBr NA 1,4*10-6 (b) 

NPBr2 NA NA 

OP 3,7*10-6 (a) NA 

NP2EO 6,00*10-6 (a) NA 

NP1EC 6,30*10-6 (a) NA 
Test YES : tests de détection in vitro de l’activité œstrogénique des xénobiotiques sur des souches de levures 

recombinantes. 
 

Les AP agissent comme des agonistes du récepteur à œstrogène dans le foie (Figure 10). Il a 

été mis en évidence que l'efficacité du nonylphénol à se fixer sur les récepteurs à œstrogènes était 

intimement liée à sa structure (Routledge et Sumpter, 1996 ; Chikae et al., 2003 ; Preuss et Ratte, 

2007) ; la position para- semblant être un pré requis indispensable. De même, il a été mis en évidence 

que la bromation ou la chloration du nonylphénol (qui se déroule lors du traitement tertiaire au sein de 

certaines STEP) engendrait une diminution du pouvoir œstrogénique des NP (Safe, 2000 ; Hu et al., 

2002 ; Hill et Smith, 2006). Des études ont mis en évidence qu’en plus de son effet œstrogèno-

mimétique, le NP présente des capacités anti-androgéniques (Sohoni et al., 2001a ; Hill et Smith, 

2006). 

  � Effets in vivo   

Jobling (1996) a pu mettre en évidence une inhibition du développement gonadique ainsi que 

l’induction de la synthèse de vitellogénine chez des poissons mâles exposés avec un ordre d’efficacité 

OP>NP>NP2EO>NP1EC, à partir d'une concentration seuil de 20 µg.l-1 pour le NP. L'induction de la 

vitellogénine a également été mise en évidence chez Cyprinodon variegatus (Rondeau mouton) à une 

concentration seuil de 3 µg.l-1 (Hemmer et al., 2001) mais également chez des carpes mâles adultes 

exposées (Chikae et al., 2003). Certains travaux récents conduits en laboratoire ont montré que, moins 

d’une semaine après l’arrêt de l’exposition au NP, les niveaux de vitellogénine reprenaient une valeur 

normale ; preuve que son usage, seul, comme biomarqueur d’exposition serait insuffisant.). Un certain 

nombre d'études (Gray et al., 1997 ; Tanaka et Nakanishi, 2001) semblent conclure qu’une exposition 

au NP dans des stades précoces du développement pourrait conduire à des altérations des processus 

clés du développement, pouvant aboutir à des effets délétères chez les populations. Les principaux 

effets observés chez des poissons exposés au nonylphénol et à l'octylphénol sont exposés dans le 

Tableau 10.  
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Bien que la majorité des études se soient focalisées sur l’induction de la synthèse de la 

vitellogénine chez des organismes exposés aux AP et APEO, il a été également démontré qu’une 

exposition à ces molécules pouvait induire une perturbation du développement testiculaire (Jobling, 

1996 ; Jobling et Nolan, 1998) une perturbation du développement ovarien ainsi que du succès 

reproductif (Servos, 1999).  

Le NP peut également induire une suppression de l’activité EROD et du Cytochrome P450 

1A chez Salmo salar, saumon atlantique (Arukwe et al., 1997) ainsi que Oncorhynchus mykiss (Navas 

et Segner, 2001).  

 

Tableau 10 : Les principaux effets d'une exposition aux APEO en milieu contrôlé sur les poissons 
(d’après Mills et Chichester, 2005). 

 
IV.4  Autres effets toxiques des alkylphénol-polyéthoxylés 

Outre les effets de dérégulation endocrinienne, les AP ont démontré d’autres effets toxiques. 

Pour l’heure, les informations concernant la génotoxicité des APEO, notamment NP et OP, sont assez 

contradictoires : 

- embryotoxicité (diminution des divisions mitotiques) lors de l’exposition larvaire d’oursin de mer 

(Arslan et Parlak, 2007), 

- pas de génotoxicité avérée chez la Tilapia du Nil (Rivero et al., 2008), 

- induction d’effets génotoxiques réparables (Tayama et al., 2008), 

- capacité du NP seul ou en mélange (β-napthoflavone) à induire des anomalies nucléaires 

érythrocytaires chez le bar juvénile (Teles et al., 2004). De même, Isidori et al. (2007a) mettent en 

évidence une forte corrélation entre présence d’AP et génotoxicité dans les stations d’épuration. 

Effets observés Molécules ciblées Espèce Nombre de références 

Réduction de la production d'œufs Nonylphénol Pimephales promelas 1 

Sexe ratio Nonylphénol Medaka 1 

Réduction de l'indice gonado somatique (♂) 
Nonylphénol Oncorhynchus mykiss 1 

Octylphénol Oncorhynchus mykiss 1 

Diminution du comportement sexuel Octylphénol 
Medaka 1 

Guppies 1 

Intersexe gonadique Octylphénol Medaka 1 

Diminution de la fertilité des œufs Octylphénol Medaka 1 

Diminution des caractères sexuels (♂) Nonylphénol Pimephales promelas 1 

Diminution de la ponte et de la viabilité des 
œufs 

Nonylphénol Oncorhynchus mykiss 1 

Difformités physiques Octylphénol Medaka 1 

Altérations des concentrations 
plasmatiques en stéroïdes 

Nonylphénol Oncorhynchus mykiss 1 
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Il est couramment admis qu’une exposition au NP, dans les stades précoces et adultes, aurait 

le potentiel d’engendrer des effets délétères sur le système immunitaire. A titre d’exemple, on pourra 

citer l’induction de variations de la réponse fonctionnelle des hémocytes chez la coque exposée à des 

concentrations sublétales de NP (Matozzo et al., 2008). Canesi et al. (2007b) ont quant à eux mis en 

évidence que le NP développait des effets équivalents à ceux des œstrogènes naturels sur les 

hémocytes de moules. De plus une étude menée sur les effets en mélanges d’estrogènes et 

xénoœstrogènes laissent penser que les effets sur les hémocytes pourraient être plus importants que 

ceux attendus lors d’expositions individuelles. 

Des expositions au NP peuvent également induire des troubles du métabolisme protéique, du 

métabolisme lipidique, du métabolisme calcique (Christiansen et al., 1998 ; Meier et al., 2007 ; 

Schoenfuss et al., 2008 ; Matozzo et al., 2008 ; Li, 2008 ; Yang et al., 2008). 

 

V Quelques aspects législatifs et réglementaires 

Les premiers constats quant à la toxicité et la persistance de ces composés ont conduit à leur 

élimination volontaire de plusieurs usages en Europe. En 1996, les conventions d’Oslo et Paris 

(OSPAR) pour la prévention des pollutions marines ont noté qu’un rapport préliminaire d’évaluation 

des risques environnementaux révélait un PEC/PNEC (Predicted Effect Concentration/Predicted No 

Effect Concentration) voisin de 1 dans les eaux de rivière et les eaux côtières, indiquant la possibilité 

que des effets toxiques en milieu naturel se déroulent. Le nonylphénol et les nonylphénol-

polyéthoxylés sont entrés dans la liste «OSPAR» des substances prioritaires en 1998, l’octylphénol en 

2000. Ces composés font également partie de la liste des 33 substances prioritaires établie par la 

Directive européenne Loi Cadre–Eau. En conséquence, des normes de qualité environnementale ont 

été établies par la commission européenne (Directive fille, 2008) ; elles fixent des valeurs moyennes 

annuelles dans les eaux de surface (eaux douces et marines) (NQE) pour les NP et OP égales à 0,33 

µg.l-1 et 0,1 µg.l-1, respectivement (COM (2006) 397 final). A la suite de leur inscription comme 

substances dangereuses, les nonylphénols et les nonylphénol-polyéthoxylés ont fait l’objet d’une 

restriction d’emploi et de mise sur le marché. Ainsi la Directive 2003/53/CE du 18 juin 2003 spécifie 

que les NP et NPEO ne peuvent être placés sur le marché ou employés comme substances ou 

constituants de préparations dans des concentrations égales ou supérieures à 0,1% de la masse pour les 

applications et usages suivants : 

- le nettoyage industriel et institutionnel (sauf si les liquides sont recyclés ou incinérés), 

- les produits de nettoyage domestique, 

- le traitement des textiles et cuirs, 

- l’usinage de métaux, 

- les produits de traitement des trayons (traitement vétérinaire), 

- la fabrication de papier et pâtes à papier, 
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- les produits cosmétiques et d’hygiène corporelle (sauf spermicides), 

- coformulant dans les pesticides et biocides. 

Ces dispositions de mise sur le marché et d’usages sont applicables, dans les pays membres 

de la communauté européenne, à compter du 17 janvier 2005 (INERIS, 2005). Il est intéressant de 

noter que seuls l’Europe, le Canada et le Japon ont engagé des processus de substitution et de 

limitations des usages de ces composés. Des pays tels que la Chine, l’Inde ainsi que certains pays sud 

américains continuent à produire et utiliser les AP et APEO dans des proportions importantes, sans 

envisager, pour l’heure, d’en limiter les usages et la production. Les Etats-Unis, au travers de leur 

agence de protection de l’environnement EPA, reconnaissent les risques liés à la production et aux 

usages des nonylphénols et ont élaboré une norme pour la qualité des eaux qui spécifie que la 

concentration en NP dans les eaux douces doit être inférieure à 6,6 µg.l-1 (norme 20 fois supérieure à 

la norme européenne) et 1,7 µg.l-1 pour les eaux marines. 
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I  Généralités sur le Bisphénol A 

I.1 Voies de synthèse et production du Bisphénol A 

Le bisphénol A (BPA) est le nom d’usage du 2,2-(4,4-dihydroxyphényle) propane (Figure 

11). C’est un composé d’origine anthropique obtenu à partir de la réaction de 2 moles de phénol avec 

une mole d’acétone. 

 

Figure 11 : Molécule de bisphénol A. 

 

I.2 Principales propriétés caractéristiques du bisphénol A 

Le Tableau 11 présente les principales propriétés physicochimiques du BPA. Ce composé 

semble modérément lipophile, peu volatile (Tableau 11). L'ensemble des propriétés physico-chimiques 

résumées dans le Tableau 11 semble montrer que le BPA possède de bonne capacité de dispersion 

dans l'environnement et spécifiquement dans les systèmes aquatiques (bonne solubilité, valeur de log 

Kow laissant supposer une bonne affinité pour les phases solides, valeur de pression de vapeur mettant 

en évidence de faibles propriétés de volatilisation). 

 

Tableau 11 : Principales propriétés physico-chimiques du BPA (d’après rapport UE, 2003). 
 

 
 
 
 
 
 
 
 
 
 

I.3 Domaines d’usages et applications 

Plus de 99,9% du BPA produit est utilisé comme intermédiaire dans la production des 

polycarbonates et des résines époxy, retardateurs de flammes et autres produits spécifiques. Les 

produits finaux incluent les adhésifs, les agents couvrants, les peintures en poudre, les matériaux de 

construction, les disques compacts, les papiers thermiques, les papiers couvrants, etc…. La production 

moyenne, à l’échelle européenne, était de l’ordre de plus de 684 500 tonnes pour les années 1997-1999 

(Tableau 12). Il est à noter que cette consommation, notamment pour la production de polycarbonates, 

est en constante augmentation (Figure 12). 

Paramètres Valeurs 
Numéro CAS 80-05-7 

Masse moléculaire 228 g.mol-1 

pKa 11,3 

Pression de vapeur 5.3*10-9 KPa 

Solubilité aqueuse 300 mg.l-1, à 25°C 

Log Kow 3,4 

Log Koc 715 l.kg-1 
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Tableau 12 : Usages du BPA à l'échelle européenne (d’après rapport UE, 2003). 

Domaine d'usage Tonnes 
/an 

Principales applications % consommation à 
l'échelle européenne 

Production de polycarbonates 486 880 

CD, Contenants pour 
l'alimentation, applications 

médicales, industrie électrique et 
électronique 

71,1 

Production de résines époxy 171 095 

Agents de protection, applications 
électriques, adhésifs, composés 

de construction, plastifiants 
électriques 

25,0 

Résines phénoplastes 8 800 - 1,3 

Production de résines polyester 
insaturées 

3 000 - 0,4 

Fabrication protection de boîtes 2 460 - 0,4 

Utilisation dans les processus de 
production du PVC 

2 250 - 0,3 

Production de BPA alkylé 2 020 - 0,3 

Production de papier thermique 1 400 - 0,2 

Production de polyols/ polyuréthanes 950 - 0,1 

Production polyamides modifiés 150 - <0,1 

Production pneus 110 - <0,1 

Fluides de frein 45 - <0,1 

Autres usages 5 990 - 0,9 

Consommation européenne 684 650 -  

 

 

Figure 12 : Evolution de la production de BPA de 1993 à 2005 (d’après rapport UE, 2003). 

 

 

 

Production annuelle (Kt) 



Contexte bibliographique 

 Page 42 
 

 

Figure 13 : Cycle biogéochimique du BPA dans l'environnement. 

 

II  Les sources de bisphénol A dans l'environnement 
 

L'Union Européenne, dans son rapport d'évaluation des risques (2003), rapportait un scénario 

d'émission continental (Figure 14) dans lequel près de 80 % du BPA serait rejeté via les stations 

d'épuration (industrielles majoritairement) et près de 10 % via les rejets des décharges urbaines. En 

conséquence, il est raisonnable de conclure que les systèmes aquatiques seront les milieux récepteurs 

ultimes du BPA. Ces constations auxquelles s'ajoutent les priorités physico-chimiques intrinsèques de 

la molécule permettent de conclure à l'ubiquité du BPA dans l'environnement. 

 

Figure 14 : Les principales sources de BPA dans l'environnement (d’après rapport UE, 2003). 
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II.1 Le devenir du bisphénol A dans les décharges  

Constituant de base d'un très grand nombre d'objets liés à nos modes de vie, le BPA est 

éliminé via les mises en décharges. Yamamoto et al. (2001) ont estimé que 11 % du BPA était rejeté 

dans l'eau après 2 semaines en décharges. Ils ont également mesuré les concentrations en BPA dans les 

lixiviats, les valeurs étaient comprises entre quelques centaines de ng.l-1 jusqu'à plus de 17 200 µg.l-1 

concluant que les décharges peuvent représenter d'importantes sources de BPA dans l'environnement. 

De même, Urase et Miyashita (2003), rapportaient des valeurs de 3400 µg.l-1 dans les décharges 

d’ordures ménagères et 15 à 3000 µg.l-1 dans les décharges industrielles.  

 

II.2 Le devenir du bisphénol A dans les stations d'épuration 

Les relargages de BPA via les stations d'épuration sont essentiellement liés aux processus 

industriels (recyclage des papiers thermiques). Comme le montre le Tableau 13, ce composé est très 

facilement dégradé dans les stations d'épuration : à la fois par les traitements physico-chimiques et par 

les traitements biologiques, avec des taux d'abattement supérieurs à 90%. Il est remarquable que dans 

la plupart des études menées (données non fournies), les taux d'abattement n'ont pas pu être calculés 

du fait des trop faibles sensibilités des protocoles analytiques mis en œuvre. Les taux d'abattement 

importants ont été reliés à l'affinité de ce composé pour les boues (Lee et Peart, 2000). Zhao et al. 

(2008a, 2008b) ont mis en évidence, dans une expérimentation en laboratoire, que ce phénomène était 

extrêmement rapide. Dans une étude récente, Clara et al. (2004b) ont mis en évidence que les 

phénomènes d'adsorption du BPA sur les boues étaient pH-dépendants et concentration-dépendants. 

Des phénomènes de relargages vers la phase dissoute peuvent avoir lieu si le pH est proche de la 

valeur de pKa. De plus, la biodégradation apparait d’autant plus importante que la température et la 

concentration des boues (matériel en suspension) sont élevées (Zhao et al., 2008b). 

 

Tableau 13 : Efficacité des différents types de traitements mis en œuvre dans les STEP pour 
l’abattement du BPA (D’après rapport UE, 2003). 

 
Tan et al. (2007) rapportent des taux d’abattement extrêmement variables, compris entre 38 

et 99 %, dans les stations d’épuration australiennes. Même s’il est globalement bien abattu dans les 

STEP, il n’en demeure pas moins que la part non dégradée de BPA représente malgré tout un risque 

écotoxicologique pour les milieux récepteurs. Un intérêt récent s’est porté sur l’efficacité des 

 Mesure / étude Résultats 

Traitements 
biologiques 

Biodégradation primaire Abattement > 99.8% 

Abattement BPA 
72 % COD abattu en 24heures 
57 % BOD abattu en 24 heures 

Biodégradation primaire 92-96 % abattement 
Biodégradation primaire Abattement >99 % si bactéries acclimatées pendant 14 jours 

Traitements 
abiotiques 

Abattement BPA 
Filière : neutralisation pH, filtration, Adsorption sur résines 

XAD 
Abattement> 85 % BPA 
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traitements tertiaires à éliminer les traces de BPA présentes dans les effluents. Comme pour beaucoup 

d’autres perturbateurs endocriniens, il s’est avéré que les procédés oxydants avancés (de type UV, 

H2O2, photocatalyse) étaient non seulement capables d’abattre la molécule mais également d’abattre 

son pouvoir œstrogénique (d’après revue par Esplugas et al., 2007). 

 

II.3 Le bisphénol A dans les effluents de STEP : données de présence 

Le Tableau 14 présente les concentrations en BPA mesurées dans les effluents de station 

d'épuration en Europe et aux Etats-Unis. Il peut être observé une large gamme de présence selon les 

pays considérés avec des concentrations comprises entre quelques ng.l-1 jusqu’à plusieurs dizaines de 

µg.l-1. De nombreux auteurs rapportent des variations importantes de concentrations mesurées quelle 

que soit l’échelle de temps considérée. 

 

Tableau 14 : Données de présence du bisphénol A dans les effluents de STEP (phase dissoute). 
 

 
III   Le devenir du bisphénol A dans l’environnement, cas des écosystèmes aquatiques 

 

Plusieurs processus abiotiques et biotiques régissent le devenir du BPA dans les écosystèmes 

aquatiques. De par ses propriétés physico-chimiques, ce composé apparaît peu volatilisable et 

hydrolysable dans les eaux naturelles. Les phénomènes majeurs qui vont concourir à son devenir dans 

les systèmes aquatiques sont les phénomènes de dégradation et de sorption. 

 

III.1  Les phénomènes de dégradation en milieux naturels 

III.1.1  Les phénomènes de photolyse 

Un certain nombre d'études récentes ont porté sur l'étude de la photolyse (directe et/ou 

indirecte) du BPA. Elles concluent que le BPA est une espèce très sensible à ce type de réaction de 

dégradation et que, par conséquent, ces réactions de dégradation peuvent jouer un rôle primordial dans 

le devenir de ce composé dans les écosystèmes. La photolyse a été démontrée comme étant très 

fortement dépendante des conditions du milieu, comme par exemple de la présence de matière 

organique dissoute. Chin et al. (2004) ont mis en évidence que la photolyse indirecte du BPA était 

favorisée par les photo-oxydants générés par l'irradiation de la matière organique dissoute. La présence 

d'espèces réactives de l'oxygène (Neamtu et Frimmel, 2006a ; Chen et al., 2006), la présence de 

Localisation [BPA] µg.l-1 Sources 
Espagne 0,14-0,98  Gomez et al., 2006 

Espagne <lod Ballesteros et al., 2006 

Belgique <lod-0,006 
Loos et al., 2007 

Italie <lod-0,005 

France 0,056-208,543 Baugros et al., 2008  

Allemagne <lod-14,444 Hohne et Puttmann, 2008 
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catalyseurs tels que NaCl, Fe3+ (Sajiki et Yonekubo, 2002 ; Sajiki et Yonekubo, 2004), la présence 

d'acides humiques et d'algues (Peng et al., 2006b ; Zeng et al., 2003 ; Zhan et al., 2007) sont également 

des paramètres qui peuvent affecter l’efficacité des phénomènes. 

 

III.1.2  Les phénomènes de biodégradation 

Différentes expériences ont été menées en laboratoire et ont mis en évidence une 

biodégradation rapide du BPA dans les systèmes aquatiques et dans les stations d’épuration en 

présence de populations bactériennes non-acclimatées et acclimatées. Ces études ont été résumées par 

Staples et al. (1998). Plus récemment Kang et Kondo (2005) ont comparé les mécanismes de 

biodégradation du BPA dans les rivières où ce mécanisme se déroule dans des conditions aérobies 

uniquement (Kang et Kondo, 2002) sous dépendance de la température (la biodégradation augmente 

lorsque la température du milieu augmente, (Kang and Kondo, 2002) et de la richesse du milieu en 

bactéries (Staples et al., 1998)) et les mécanismes de biodégradation du BPA en milieu marin où ils 

semblent suivre des cinétiques plus lentes en conséquence d'un temps d'acclimatation très long des 

bactéries (estimé à 50 jours par Ying et Kookana, 2003). Ils concluent que, dans les milieux d'eaux 

douces telles que les rivières, les mécanismes de biodégradation sont prévalents dans le devenir du 

BPA, au contraire dans les milieux marins les mécanismes de photodégradation sembleraient être 

majoritaires. Lobos et Spivak (cités par Staples et al., 2000) ont étudié les voies de la dégradation du 

BPA, ils ont pu mettre en évidence 2 voies de dégradation. La voie majoritaire conduit à la formation 

de 2 métabolites : l’acide 4-hydroxybenzoïque et le 4-hydroxy-acétophénone, qui sont rapidement 

dégradés en CO2 et incorporés aux cellules bactériennes (Figure 15).  

 

Figure 15 : Une approche des voies de dégradation du BPA (d'après Staples et al., 2000). 
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III.2  Les phénomènes de sorption en milieux naturels 

Les valeurs de Koc pour le BPA mettent en évidence une faible affinité de ce composé pour 

les particules en suspension, les sédiments et les sols. Certaines études ont pu mettre en évidence 

l’effet de la présence d’autres contaminants inorganiques et organiques sur les phénomènes de 

sorption/désorption du BPA (Li et al., 2007a ; Xu et al., 2008). Li et al. (2008b) ont mis en évidence 

que la présence de métaux lourds et de surfactants cationiques favorisait les phénomènes de sorption 

du BPA sur les particules du sol et qu’au contraire la présence de certains types de surfactants 

favorisait les phénomènes de désorption. De même, certains travaux ont également montré que la 

dynamique de sorption/désorption était dictée par la nature des substances humiques (Sun et al., 2006) 

et par la physicochimie. Comme pour les APEO, la présence de BPA dans des phases solides en 

suspension est peu documentée (Patrolecco et al., 2006 ; Xu et al., 2008). 

 

III.3  Les données de présence du Bisphénol A dans les systèmes aquatiques 

Le BPA a fait l'objet d'un certain nombre d'études qui ont documenté sa présence dans les 

eaux de surface, les eaux souterraines et dans les sédiments. Une synthèse est présentée dans le 

Tableau 15. Comme suggéré précédemment, les eaux de ruissellement issues des décharges 

apparaissent comme une des sources majoritaires pour ce composé dans l’environnement avec des 

concentrations de l’ordre de plusieurs de µg.l-1. Les eaux courantes présentent un niveau moindre de 

contamination avec des concentrations de l’ordre de la centaine de ng.l-1 pour les plus contaminées.  

Tableau 15 : Données de présence du BPA dans différents systèmes aquatiques de par le monde. 

 Localisation Milieu [BPA] ng.l-1 (phase 
dissoute) Références 

Eaux de 
surface 

Portugal Estuaire <80-10700 Ribeiro et al., 2008 

Japon 
Eaux marines et 
eaux courantes 

<lod-80 Kawahata et al., 2004 

Chine 
Eaux marines et 
eaux courantes 

6-881 Peng et al., 2008 

France 
Eaux de surface et 
eaux souterraines 

40-175 Baugros et al., 2008 

Rivières (exutoires rejets 
manufactures) 

Eaux courantes <1000 Staples et al., 2000 

Baden Würtetemberg 
(Allemagne) 

Eaux courantes <50-272 Bolz et al., 2001 

Allemagne Eaux de boisson 2 Kuch et Ballschmiter, 2001 
Pays bas Estuaire 330 Belfroid et al., 2002 
Pays bas Eaux courantes 14-320 Belfroid et al., 2002 

Allemagne Eaux de surface 5-410 Fromme et al., 2002 
Italie Lagon 30 Pojana et al., 2004 

Rivière Tama, Tokyo Eaux courantes 0,6-700 Kawaguchi et al., 2006a 
Datianshan Guangzhoo Décharges 17 000-2 923 000 Li et al., 2006 

Ouse (Sussex) Eaux courantes <0,1-12 Zhang et al., 2006 

Sédiments 

Localisation Milieu [BPA] µg.g-1 (poids 
sec) 

Références 

Berlin Eaux de surface <0,005-150 Fromme et al., 2002 
Corée Eaux marines <0,001-0,19 Koh et al., 2006 

Japon 
Aires urbaines <120-22000 

Kitada et al., 2008 
Aires rurales <lod-6800 
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III.4  Les propriétés de bioconcentration et bioaccumulation 

Miti et al. (1977) furent les premiers à étudier la bioaccumulation du BPA chez un poisson 

Cyprinus carpio. Avec une valeur de facteur de bioconcentration comprise entre 20-68, ils conclurent 

que le BPA était faiblement bioaccumulable. Plus récemment, un facteur de bioconcentration égal à 

196 a été estimé à partir de la valeur de Kow (Howard, 1989). Le BPA présente donc des capacités de 

bioconcentration faibles à modérées (cité dans EDC, 1999).  

 

III.5  Les propriétés de biotransformation 

Très peu d'études se sont intéressées aux voies et processus d'exposition des organismes 

aquatiques au BPA. Lindholst et al. (2001) ont exposé des truites arc-en-ciel (Oncorhynchus mykiss) 

par la voie directe (100 µg.l-1), ils ont pu observer un état d'équilibre après 6 à 12 heures d'exposition. 

Ils mettent en évidence la présence de métabolites notamment de Bisphénol A glucuronidé. Certains 

travaux ont par ailleurs mis en évidence que les capacités de biotransformation existent dès les 

premières semaines du développement embryonnaire (Bjerregaard et al., 2008). Le BPA peut 

également être hydroxylé et oxydé en une orthoquinone. Ce composé ayant la capacité de se fixer à 

l'ADN, il semblerait que ceci soit à relier au caractère mutagène "indirect" du BPA (Atkinson et al., 

2002). Daidoji et al. (2006) ont mis en évidence que chez la carpe les phénomènes de métabolisation 

et d'excrétion du BPA étaient dépendants de la température de l'eau. Ils concluent que durant la 

période de pré-reproduction une exposition à ce xénobiotique augmente ses effets défavorables sur les 

organes cibles tels que les gonades et le cerveau. En outre, Nakajima et al. (2007) ont pu mettre en 

évidence les capacités de biotransformation développées par des microalgues d’eau douce vis-à-vis du 

BPA : activité de glycosilation. Parce que ces métabolites peuvent être bioaccumulés chez les algues et 

les plantes et par la suite peuvent être digérés en BPA par des β-glycosidases (après ingestion) dans les 

intestins d’organismes supérieurs. Les auteurs concluent que la prise en compte des métabolites de 

BPA pour conduire des études de risques est nécessaire. 

 

IV   La toxicité 

Comme exposé précédemment, le BPA est rapidement dégradé dans l’environnement et 

possède un faible potentiel de bioaccumulation. Les organismes aquatiques qui vivent à proximité des 

sources de BPA sont les plus exposés aux effets nocifs de ce composé. 

 

IV.1  La toxicité aigüe et chronique  

Les valeurs concernant la toxicité aigüe et la toxicité chronique du BPA sont résumées dans 

le  

Tableau 16. Il est important de considérer les 2 valeurs qui ont permis de définir les 

PNECaqua pour ce composé, à savoir la valeur de NOEC (No Observable Effect Concentration) pour 
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l'éclosion des œufs chez Pimephales promelas qui est égale à 16 µg.l-1 et la valeur de LOEC (Lowest 

Observable Effect Concentration) pour un effet sur les cellules spermatiques chez la même espèce qui 

est égale à 1 µg.l-1 (D’après rapport UE, 2004). 

La valeur de PNEC chronique eaux douces (calculée avec la méthode du facteur 

d'extrapolation) est égale à 1,6 µg.l-1. Pour tenir compte de l'effet sur le développement des cellules 

spermatiques une valeur de PNEC conservatrice égale à 0,1 µg.l-1 a été déterminée. En se basant sur la 

méthode des coefficients de partage, une valeur de PNEC chronique pour les sédiments a été établie et 

est égale à 26 µg.kg-1 (poids humide). 

 
Tableau 16 : Données de toxicité du BPA (INERIS). 

 Toxicité aigüe Toxicité chronique 
Matrice Unités (mg.l-1) Eau douce Eau marine Unités (mg.l-1) Eau douce Eau marine 

Eau 

CL/EC50 algues 2,5 1 NOEC/CE10 algues 1,36 0,69 

CL/EC50 invertébrés 
- 
 

1,1 NOEC/CE10 invertébrés >3,146 
- 
 

CL/EC50 poissons 4,6 7,5 NOEC/CE10 poissons 0,016 
- 
 

Matrice Unités (mg.kg-1) Eau douce Eau marine Unités (mg.kg-1) Eau douce Eau marine 

Sédiments CL/EC50 org. benthiques - - 
NOEC/CE10 

org. benthiques 
36 - 

 
Des études menées chez le rat laissent supposer que le BPA peut avoir une action mutagène 

et tératogène (Nagel et al., 1997). Ces effets ont également été démontrés chez les poissons (Honkanen 

et al., 2004 ; Pastva et al., 2001 ; cités dans EDC, 1999) mais à des concentrations (> mg.l-1) irréalistes 

d’un point de vue environnemental. 

Le potentiel du BPA à former des adduits à l'ADN a été étudié. Le BPA est chimiquement et 

enzymatiquement oxydé en un catéchole et en suivant en l'orthoquinone correspondante, qui donne 

lieu à un certain nombre d'adduits à l'ADN (Atkinson et al, 1995 ; cité dans EDC, 1999). 

 

IV.2  Le bisphénol A et la perturbation endocrinienne 

C’est Krishnan et al. (1993) qui ont montré que le BPA a une capacité à engendrer une 

perturbation endocrinienne. Le BPA est un composé œstrogénique par sa capacité à se fixer sur le 

récepteur à œstrogène ER avec une affinité de l’ordre 1:2000 par rapport à celle de l’hormone 

naturelle : la 17-β-œstradiol. Le caractère œstrogénique du BPA a été mis en évidence au travers de 

tests in vivo et in vitro. 

 

IV.2.1  Effets in vitro 

Le BPA est capable d’induire la prolifération cellulaire des cellules MCF7 (Krishnan et al., 

1993), de stimuler le relargage de la prolactine par les cellules GH3 de l’hypophyse (Steinmetz et al. 

1997), d’induire l’activation transcriptionnelle du récepteur ER (Gaido et al., 1997 ;), d'induire la 

synthèse de vitellogénine (cité dans EDC, 1999). De plus, le BPA est capable d’induire l’ARNm 

codant pour la vitellogénine des hépatocytes primaires chez le xénope mâle (Xenopus laevis). Le BPA 
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est capable de se fixer à la fois sur les récepteurs à œstrogènes de type ERα et Erβ (Kuipper et al., 

1998, cité dans EDC 1999) agissant comme un agoniste de l'hormone naturelle, il s'avère cependant 

qu'il possède une plus grande affinité pour les récepteurs ERβ que pour les récepteurs ERα (Matthews 

et al., 2001 cité dans EDC 1999). De plus, il a été mis en évidence que les formes métabolisées du 

BPA (BPA-glucuronidé) n'étaient pas capables d'activité œstrogénique in vitro. Il semblerait que la 

capacité du BPA à induire des effets néfastes sur un organisme (notamment les réponses utérines) soit 

clairement dépendante des conditions d'exposition (voie trophique ou voie directe) (Matthews et al., 

2001) (cités dans EDC, 1999). 

 

IV.2.2  Effets in vivo 

Tableau 17 : Les principaux effets d'une exposition au BPA en milieu contrôlé sur les poissons  
(Mills and Chichester, 2005). 

Effets observés Espèce Nombre de références 

Réduction de la production d’œufs 

Medaka 1 

Pimephales promelas 1 

Danio rerio 1 

Réduction de l'indice gonado-somatique (♂) Pimephales promelas 1 

Diminution du comportement sexuel Danio rerio 1 

Intersexe gonadique Medaka 1 

Diminution de la fertilité des œufs Danio rerio 1 

Délai dans la maturation sexuelle Danio rerio 1 

Altérations dans la structure des gonades 
Medaka 1 

Danio rerio 1 

Diminution de la ponte et de la viabilité des œufs 
Pimephales promelas 1 

Medaka 1 

Réduction de l'indice gonado-somatique (♀) Pimephales promelas 1 

 

Lors d'exposition en laboratoire, sur différentes espèces de poissons, il a été montré que le 

BPA était capable d'induire des phénomènes d'ovotestis et des changements morphologiques dans les 

testicules de Medaka exposés (Metcalfe et al., 2001), de réduire la production d'œufs (Shioda and 

Wakabayashi, 2000), d'altérer les gonades, de réduire la production d'œufs et d'engendrer des troubles 

de la fertilité (Segner et al., 2003) ainsi que de réduire l'indice gonado-somatique (GSI) et la 

production d'œufs (poissons-tête-de-boules femelles exposés) (Sohoni et al., 2001b). Des expositions 

au BPA ont également mis en évidence sa capacité à induire la synthèse de vitellogénine (Sohoni et 

al., 2001b ; Lindholst et al., 2001 ; Christiansen et al., 1998). Les principaux effets observés suite à des 

expositions au BPA sont résumés dans le Tableau 17 et la Figure 16.  

Les effets du BPA ne se cantonnent pas à de la reprotoxicité, cette molécule est également 

susceptible d’induire :  
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- une «down regulation» de l’axe somatotropique chez des poissons exposés (daurade) en agissant sur 

le niveau d’expression et la transduction du récepteur à l’hormone de croissance (GRH) et par 

conséquent d’affecter le développement et la croissance de poissons exposés,  

- une activité immunotoxique (poisson rouge exposé) en conséquence de changements fonctionnels, 

concentrations dépendants, des lymphocytes et des macrophages.  

 

 

Figure 16 : Figure récapitulative des concentrations en BPA aqueux ayant entraîné : A) des changements 

gonadiques et B) des synthèses de vitellogénine chez différentes espèces de poissons et mollusques (d’après 

Crain et al., 2007). 

 

V Quelques aspects législatifs et réglementaires 

 La Directive Européenne 90/128/EEC sur les matières plastiques de la Commission 

européenne et la Directive 67/548/EEC concernant les matières constitutives des empaquetages fixent 

une limite spécifique de migration égale à 3 mg.kg-1 de nourriture pour la protection du 

consommateur. A la suite d’un avis de l’autorité européenne de sécurité des aliments (EFSA) publié en 

2002, la LMS (Limite de Migration Spécifique) a été abaissée à 0,6 mg.kg-1 (Directive 2004/19/CE, 

premier amendement de la Directive n°2002/72/CE). Le BPA et certains de ses produits dérivés 

(Tetrabromobisphénol A) sont à l’heure actuelle en cours d’évaluation comme substances dangereuses 

prioritaires par la commission européenne pour une éventuelle entrée lors de la prochaine révision de 

la liste des 33 substances prioritaires (Annexe 10) de la Directive Loi Cadre sur l’Eau (texte adopté par 

le parlement le 22 mai 2007, document A6-0125/2007). 

 

1ng.l -1 1µg.l -1 1mg .l-1 500mg .l -1

1ng.l -1 1µg.l -1 1mg .l -1 500mg .l -1

Tête-de-boule 

Medaka

Poisson zébré

Truite arc-en-ciel

Medaka

Truite arc-en-ciel

Morue atlantique

Moule bleue Medaka

Truite arc-en-ciel

↓ Densité + mobilité 
sperme Truite brune

↓ Spermatique 
poisson tête-de-
boule

↓ Spermatique 
guppies

↑production 
embryon escargots

Changement gonadique

Induction vitellogénine
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CHAPITRE B 

LES SUBSTANCES PHARMACEUTIQUES 
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I  Les produits de soins corporels et médicamenteux PCPPs (Personal Care Products and 

Pharmaceuticals) 

 

Les PCPPs sont un vaste groupe de composés chimiques comprenant (PCPP, Daughton, 

2001) :  

- les médicaments (prescrits et non prescrits), 

- les agents de diagnostiques (agents de contrastes rayons X), 

- les "alicaments" (bioactifs, huperzine A), 

- d’autres classes de composés tels que les fragrances (muscs), les agents de protection solaire, les 

agents "anti-âge" (rétinoïdes). 

L'émergence de certains pays, les progrès médicaux, l'augmentation de l'espérance de vie 

sont autant de facteurs qui laissent à penser que leur consommation suivra une croissance 

exponentielle et par voie de conséquence qu'ils joueront un rôle de plus en plus important dans la 

contamination de l'environnement en général et des systèmes aquatiques en particulier. 

 

I.1 PCPP : le cas des substances pharmaceutiques 

L'Union Européenne (UE, 2004) définit un produit médicinal comme étant : 

- toute substance ou combinaison de substances présentées comme ayant des propriétés pour traiter ou 

prévenir les maladies de l'homme ; 

- toute substance ou groupe de substances qui peuvent être utilisés ou administrés à l'homme soit pour 

restaurer, corriger ou modifier les fonctions physiologiques de l'individu par une action 

pharmacologique, immunologique ou métabolique soit pour le diagnostic médical.  

 

- 

Figure 17 : Principales classes de molécules quantifiées dans l’environnement (d‘après D-1-1 

KNAPPE). 
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En Europe, près de 3000 substances pharmaceutiques sont référencées. Parmi ces substances, 

les efforts de recherche (identification et quantification des sources, devenir et présence de la source à 

l’environnement) se sont principalement portés sur les antibiotiques suivis par les anti-inflammatoires 

non stéroïdiens, pour l’instant (Figure 17). 

 

I.1.1  Les grandes classes thérapeutiques de substances pharmaceutiques à usages 

humains 

Une liste non exhaustive des principales classes médicamenteuses sera énoncée ci-dessous ; 

les principaux modes d’actions et molécules pharmaceutiques représentatives de chacune des classes 

seront spécifiés.  

 

a) Les antibiotiques  

Il existe un nombre très important de substances à action antibiotique. Les familles 

thérapeutiques sont déterminées en fonction de leur mode d’action (Figure 18) : 

 

Figure 18 : Principaux modes d’action des antibiotiques. 

 

� Les antibiotiques inhibant la synthèse de la paroi bactérienne (D-cyclosérine, fosfomycine, 

bacitracine, β-lactamines, glycopeptides, …), 

� Les antibiotiques agissant au niveau de la membrane cytoplasmique (polymyxines, thyrothrycine), 

� Les antibiotiques inhibiteurs de la synthèse protéique (macrolides, tétracyclines), 

�Les antibiotiques inhibiteurs du métabolisme des acides nucléiques (quinolones, fluoroquinolones, 

sulfamides), 

� Les antibiotiques agissant par inhibition compétitive (sulfamides).  

 

b) Les analgésiques et antalgiques 

Ces molécules, très nombreuses, sont aussi très utilisées aussi bien sans ordonnance pour les 

composés les plus courants, comme l’ibuprofène, que sur prescription, pour les composés les plus 

actifs (diclofénac, naproxène, dextropropoxyphène,…). Il peut-être distingué : 
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- Les antalgiques de niveau 1 également appelés antalgiques périphériques, sont indiqués dans les 

douleurs légères à modérées. Leur action se fait principalement au niveau des nocicepteurs (récepteurs 

de la douleur) périphériques. Ce sont essentiellement les anti-inflammatoires non stéroïdiens (AINS), 

l’aspirine, le paracétamol. Ils agissent en inhibant de manière réversible ou irréversible une ou les 

deux isoformes de la cyclo-oxygénase (COX 1 et 2), qui catalysent la synthèse de différentes 

prostaglandines à partir de l’acide arachidonique. 

- Les antalgiques de niveau 2 indiqués en cas de douleurs modérées à intenses. Les antalgiques de 

niveau 2 sont essentiellement représentés par des associations d'antalgiques de niveau 1 avec des 

dérivés opioïdes mineurs comme la codéine et le dextropropoxyphène. L'association permet ainsi de 

potentialiser l'effet analgésique de chacun des constituants. Le paracétamol est l'antalgique 

périphérique de choix pour ces associations. 

- Les antalgiques de niveau 3 indiqués en cas de douleurs sévères et dans les douleurs d'origine 

cancéreuse : morphine, fentanyl. 

 

c) Les psychotropes 

Le terme de médicaments psychotropes désigne les médicaments qui améliorent l'activité 

mentale quand elle est perturbée. Il s'agit globalement des médicaments utilisés en psychiatrie pour 

traiter des troubles mentaux banals ou graves. 

� Les antidépresseurs  

La classe pharmacologique des antidépresseurs reste très hétérogène tant au niveau des 

mécanismes d’action qu’au niveau des effets indésirables, la différenciation entre les produits d’une 

même famille reste toujours difficile. Peuvent être considérés : 

- Les antidépresseurs tricycliques (TCA) avec l’amitriptyline et l’imipramine. Les TCA interviennent 

en : évitant la recapture synaptique des mono-amines (Noradrénaline (NA) et Sérotonine (5-HT)), par 
«Down regulation» des récepteurs bêta-adrénergiques et des récepteurs sérotoninergiques et par la 

désensibilisation de l’adénylate cyclase à la stimulation par la NA au niveau post-synaptique. 

- Les inhibiteurs de la monoamine oxydase (IMAO) avec la phénelzine, la toloxatone. Les IMAO 

agissent par inhibition des enzymes de dégradation des mono-amines (la mono-amine oxydase (MAO) 

et la catéchol-O-méthyltransférase (COMT)) ou par «Down regulation » des récepteurs bêta-

adrénergiques et des récepteurs sérotoninergiques et par la désensibilisation de l’adénylate cyclase à la 

stimulation par la NA au niveau post-synaptique. 

- Les inhibiteurs spécifiques de la recapture de la noradrénaline ou de la sérotonine avec la fluoxétine. 

Ils interviennent en évitant la recapture synaptique des mono-amines.  

   � Les anticonvulsifiants 

Les anticonvulsifiants sont les médicaments indiqués principalement dans le traitement 

pharmacologique de l'épilepsie. Quatre mécanismes d'action principaux sous-tendent l'effet 
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pharmacologique bénéfique des anticonvulsifiants ; plus particulièrement le blocage des canaux 

sodiques voltage-dépendants par la carbamazépine. 

  � Les anxiolytiques 

 Parmi ces molécules, peuvent-être citées les benzodiazépines qui sont des agonistes qui 

favorisent l'ouverture du canal Cl- par le GABA (Acide Gamma-Amino Butyrique) et ont donc un 

effet inhibiteur. Elles agissent en augmentant la fréquence d'ouverture du canal avec le diazépam, 

l’alprazolam. 

 

d) Les β- bloquants  

Les ß-bloquants ou ß-bloqueurs sont des médicaments qui inhibent les récepteurs 

adrénergiques ß. Ils sont utilisés pour le traitement des troubles cardiaques (hypertension artérielle, 

infarctus du myocarde), le traitement du glaucome, des actions diurétiques. Les ß-bloquants s'opposent 

aux effets bêta-adrénergiques des catécholamines par antagonisme compétitif au sein des récepteurs 

avec la propanolol, l’aténolol. 

 

e) Les hypolipémiants 

Deux grandes classes thérapeutiques sont prédominantes : les fibrates (diminuent les 

glycérides et le cholestérol) et les statines (diminuent le cholestérol). Les fibrates agissent par 

inhibition de l’enzyme HMG-CoA (3-hydroxyméthylglutaril coenzyme A réductase) qui contrôle la 

synthèse du cholestérol avec le gemfibrozil. Les statines agissent en inhibant l’action de l’enzyme 

HMG-CoA intervenant dans la synthèse du cholestérol avec l’atorvastatine, la pravastatine.  

 

f)  Les antiasthmatiques 

Parmi les antiasthmatiques, la classe des agonistes bêta2-adrénergiques peut-être citée. Ces 

molécules agissent par liaison et stimulation des récepteurs ß2 qui provoquent la stimulation 

d'AMPcyclique (Adénosine MonoPhosphate cyclique). L'augmentation d'AMPc va induire l'activation 

de protéines kinases qui vont déclencher une cascade de réactions de phosphorylation des protéines 

régulatrices du tonus musculaire lisse avec le salbutamol, la terbutaline. 

 

g) Les médicaments de l’endocrinologie et du métabolisme 

� Les contraceptifs 

La contraception est définie comme l'utilisation de procédés temporaires et réversibles 

destinés à empêcher la conception. Le nombre d’utilisatrices est estimé à environ 100 millions dans le 

monde, dont un peu plus de 3 millions de Françaises, soit 36 % des femmes de 15 à 49 ans. Sous le 

terme de contraception, peuvent se distinguer : 

- La contraception œstro-progestative : c'est la méthode la plus utilisée (41 % des femmes de vingt à 

quarante-quatre ans). Elle associe un estrogène de synthèse (l'éthynylœstradiol) à un progestatif de 
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synthèse dérivé des 19-norstéroïdes, à titre d’exemple association de drospirénone et 

d’éthynylœstradiol. 

- La contraception progestative : les progestatifs exercent leur effet antigonadotrope en utilisant le 

phénomène de rétrocontrôle négatif de l'axe hypothalamo-hypophyso-ovarien, qui se trouve ainsi mis 

au repos, sans ovulation possible. Elle est basée sur de faibles doses de lévonorgestrel ou de 

médroxyprogestérone.  

- La contraception d'urgence ou abortive : La contraception d'urgence se définit comme tout moyen, 

physique ou par l'intermédiaire de molécules biologiquement actives, utilisé pour prévenir une 

grossesse avec le lévonorgestrel et le RU-486 qui sont des analogues structuraux de la progestérone 

capables de se fixer sur le récepteur de la progestérone et ont une action progestative (lévonorgestrel) 

ou anti-progestative (mifépristone)  

� Les traitements hormonaux substitutifs (THS) 

- Les traitements de la ménopause qui reposent sur la correction de la carence œstrogénique induite 

lors de la ménopause, à titre d’exemple l’association de l’estradiol à la noréthistérone, l’estradiol, la 

tibolone. 

- Les traitements de l'andropause qui reposent sur la correction de la carence en testostérone induite 

par l’âge, avec la prise de testostérone. 

� Les médicaments de l’obésité 

La problématique des traitements de l’obésité est récente. Diverses approches 

médicamenteuses ont été initiées : les anorexigènes avec l’amfépramone, les inhibiteurs de la lipase 

intestinale avec l’orlistat, les inhibiteurs de la recapture des mono-amines (noradrénaline et sérotonine) 

avec la sibutramine. 

� Les médicaments de la thyroïde:  

Sur le plan hormonal, le traitement consiste soit à corriger une déficience, hypothyroïdie, par 

l'apport d'hormones thyroïdiennes avec la lévothyroxine, la liothyronine L-T3, soit à réduire un excès 

de sécrétion, hyperthyroïdie, par la prise d’antithyroïdiens de synthèse avec la carbimazole. 

 

h) Les antitumoraux et antinéoplasiques 

Ces composés cytostatiques ont été synthétisés pour interagir contre la prolifération 

cellulaire. Là encore, il existe un grand nombre de molécules qui différent selon leurs modes d’action, 

les principales sont résumées dans le Tableau 18. 
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Tableau 18 : Principaux modes d’action des agents anticancéreux et antitumoraux. 

Classes Type d'action Molécules actives 

Anticancéreux anti métaboliques Inhibition de la synthèse des 
bases puriques et pyrimidiques 

5-fluorouracile, méthotrexate 

Agents alkylants Altération ADN 
Les Nitroso-urées 

(carmustine), les moutardes 
azotées (méchlorethamine) 

Agents intercalants 
Agents antibiotiques 

s'intercalant dans la double 
hélice ADN 

Les anthracyclines 
(amsacrine) 

Agents altérant le fuseau mitotique Cytosquelette Mitotique Alcaloïdes de la pervenche 

Cytokines Synthèse protéique (ARN m) Interféron alpha 

Hormones et anti-hormones Inhibition modulation des 
récepteurs œstrogéniques 

Tamoxifène, clomifène 

 

i) Les produits de contraste 

Les produits de contraste sont utilisés pour majorer le contraste naturel des compartiments 

dans lesquels ces produits sont distribués ou éliminés. Se distinguent : les agents de contraste Rayons 

X et principalement les produits de contraste iodés (PCI) qui majorent l’atténuation des rayons X par 

effets photo-électriques (iopromide, iopamidol,...) et les agents de contraste IRM qui agissent de 

manière indirecte en accélérant la vitesse de relaxation des noyaux d'hydrogène les environnant 

(nanoparticules superparamagnétiques, association de ion gadolinium Gd3++ chélates). 

 

ii)  Les drogues illicites et les traitements substitutifs 

Les drogues augmentent la quantité de dopamine disponible dans une zone du cerveau, le 

circuit de la récompense. Il est désormais établi que tous les produits qui déclenchent la dépendance 

chez l'homme augmentent la libération d'un neuromédiateur, la dopamine, dans une zone précise du 

cerveau, le noyau accumbens. Il peut-être distingué : 

- Les amphétamines et leurs dérivés, comme l’ecstasy, provoquent des augmentations immédiates et 

importantes de sérotonine synaptique et de dopamine, suivies d’un épuisement des stocks de ces 

neuromédiateurs.  

- Le cannabis entraîne une faible libération de dopamine selon un mécanisme encore étudié et discuté. 

Les récepteurs cannabinoïdes sont présents en forte densité dans le système limbique. 

- La cocaïne agit en empêchant la recapture de la dopamine au niveau des synapses. Ce faisant, elle 

augmente la présence et donc l’effet de la dopamine dans les synapses au niveau du cerveau des 

émotions (système limbique).  

- L’héroïne est transformée dans le cerveau en morphine. Celle-ci se lie aux récepteurs opioïdes 

naturels (récepteurs des endorphines). Elle stimule également le système de la dopamine, mais par un 
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mécanisme indirect (en diminuant le contrôle des neurones GABA (Acide Gamma-Amino Butyrique) 

sur les neurones à dopamine).  

I.1.2 Les données de consommation en France 

a) Les substances pharmaceutiques à usages humains 

Il est très difficile d'avoir accès aux données concernant l'utilisation de substances 

pharmaceutiques, en France. Seule l'AFSSAPS (Agence Française de Sécurité Sanitaire des Produits 

de Santé) publie chaque année la liste des 50 substances les plus vendues en officines et en officines 

hospitalières (Tableau 19). Dans leur travail de priorisation des substances pharmaceutiques 

préoccupantes pour l’environnement en France, Besse et Garric (2008) ont publié les premières 

données quantitatives d’usage de substances pharmaceutiques en France. La Figure 19 présente les 

quantités annuelles (kg) de substances pharmaceutiques d’usages courants (hors hormones et 

anticancéreux) : plus de 3300 tonnes de paracétamol (la molécule active la plus utilisée en France), 33 

tonnes de carbamazépine et près 4 tonnes de fluoxétine vendues chaque année. 

De plus, étant donnée la cyclicité des phénomènes épidémiques, les usages de substances 

pharmaceutiques sont par conséquent extrêmement variables. A titre d’exemple, Castiglioni et al. 

(2006) ont mis en évidence que les apports hivernaux en composés d’usages courants (anti-

inflammatoires, antibiotiques) étaient plus importants que les apports estivaux. 
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Figure 19 : Consommation annuelle (quantité, en kg) d’une liste non exhaustive de substances pharmaceutiques en France (d’après Besse et Garric, 2008). 
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Tableau 19 : Les médicaments les plus vendus en officines (en quantité, nombre de boîtes) en France 

en 2006 (Source AFSSAPS). 

Rang Produit Classe thérapeutique Molécules actives 
1(1) DOLIPRANE® Antalgique antipyrétique non salicylé Paracétamol 

2 (2) EFFERALGAN® Antalgique antipyrétique non salicylé Paracétamol 

3 (3) DAFALGAN® Antalgique Paracétamol 

4 (4) LEVOTHYROX® Hormone thyroïdienne Lévothyroxine 

5 (5) KARDEGIC® Antiagrégant plaquettaire préventif Acétylsalicylate de lysine 

6 (6) SPASFON® Antispasmodique musculotrope Phloroglucinol, 

7 (11) TAHOR® Hypolipémiant de la famille des statines Atorvastatine 

8 (12) VOLTARENE® Anti-inflammatoire non stéroïdien Diclofénac 

9 (11) ELUDRIL® Antiseptique local Chlorhexidine 

10 (8) DI-ANTALVIC ® Antalgique opiacé en association Dextropropoxyphène, 

11 (8) DAFLON® Vasculoprotecteur, veinotonique Fraction flavonoïque purifiée 

13 (14) ADVIL ® 
Antalgique antipyrétique anti-inflammatoire non 

stéroïdien 
Ibuprofène 

16 (15) ASPEGIC® Antalgique antipyrétique Aspirine 
17 (29) METHADONE® Dépendance aux opiacés : substitution Méthadone 
18 (23) LAMALINE ® Antalgique opiacé en association Caféine, Paracétamol, Opium 

19 (21) ORELOX® 
Antibiotique de la famille des céphalosporines de 

III ème génération 
Cefpodoxime 

21 (43) IXPRIM® Antalgique opiacé en association Paracétamol, Tramadol 
22 (17) TEMESTA® Anxiolytique de la famille des benzodiazépines Lorazépam 
24 (28) SUBUTEX® Dépendance aux opiacés : substitution Buprénorphine 
26 (31) VASTAREL® Antiangoreux Trimétazidine 
27 (34) AMLOR® Antihypertenseur inhibiteur calcique Amlopidine 
29 (38) AERIUS® Antiallergique oral antihistaminique H1 Desloratadine 
30 (70) HELICIDINE® Antitussif Helicidine 

31 (7) PROPOFAN® Antalgique opiacé faible 
Caféine, Dextropropoxyphène, 

Paracétamol 
32 (57) PNEUMOREL® Antitussif Fenspiride 

33 (35) METEOSPASMYL® Antispasmodique musculotrope Siméthicone, Alvérine 

34 (18) GINKOR® Veinotonique Ginkgo biloba, Heptaminol, 

36 (51) SOLUPRED® Corticoïde général Acide benzoïque, Prednisolone 

37 (33) TOPLEXIL® Antitussif antihistaminique Guaïfénésine, Oxomémazine 

38 THIOVALONE® ORL Tixocortol, Chlorhexidine 

40 (78) INEXIUM ® Antiulcéreux Esomeprazole 

41 (45) BETADINE® Antifongique gynécologique Povidone iodée 

42 (24) STILNOX® Hypnotique de la famille des imidazopyridines Zolpidem 

43 (45) VENTOLINE® Antiasthmatique bronchodilatateur bêta-2 Salbutamol 

44 (37) MEDIATOR® Hypolipémiants Benfluorex 

45 (49) PIVALONE® Corticoïde nasal, anti-inflammatoire et Tixocortol 

46 (55) PREVISCAN® Antithrombotique Fluindione 

47 (53) DIALGIREX ® Antalgique Dextropropoxyphène 

48 (41) EFFEXOR® Antidépresseur (IRSN) Venlafaxine 

49 (52) NUROFEN® Antalgique Ibuprofène 

50 (72) EMLAPATCH® Anesthésique local Lidocaïne, Prilocaïne 

() Classement de l’année 2005    
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b) Le cas des composés d'usages courants 

Des composés tels que la caféine et la théophylline, bien que très largement employés par la 

pharmacopée : association à des antalgiques, des antiasthéniques, des produits de régime, des 

bronchodilatateurs ont pour sources principales la consommation de boissons. En moyenne, une 

personne de 60 kg consomme chaque jour 239 mg de caféine (Tableau 20). 

 

Tableau 20 : Consommation de caféine dans les produits d'usages courants (www.peidruginfo.ca). 
Type de produit Caféine (mg. portion) 

Thé (1 tasse) Tous les types 10-110 

Café (1 tasse) Tous les types 40-180 

Boissons à base de Cola (33cl) Tous types 30-60 

Chocolat noir 50 g 40-50 

 
c) Le cas particulier des produits illicites et de substitution 

D’après l’Observatoire Français des Drogues et des Toxicomanies (OFDT), en 2005, un tiers 

des 15-64 ans (32,4 %) déclare avoir déjà consommé au moins une drogue illicite au cours de sa vie. 

Trois individus sur dix (30,6 %) signalent avoir déjà consommé du cannabis au cours de leur vie et 43 

% déclarent s’en être déjà vu proposer. C’est la drogue illicite la plus disponible et la plus 

expérimentée. En 2005, en France, on comptait 160000 héroïnomanes dont la moitié suit un traitement 

de substitution aux opiacés (TSO). Ces chiffres sont en constante évolution et augmentation (Figure 

20). 

 

Figure 20 : Consommation des principaux médicaments de substitution et kits d’usages en France en 

2005 (nombre de boîtes), évolution des consommations (par comparaison à l’année n-1). 
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I.1.3  Pharmacocinétique: Devenir des substances pharmaceutiques dans 

l’organisme 

La pharmacocinétique révèle une implication majeure dans le devenir des résidus de 

substances pharmaceutiques. Dans l’organisme, un composé actif va subir différentes opérations qui 

peuvent être schématiquement distinguées en 4 étapes :  

	 L’absorption  qui se définit par le transfert du principe actif du site d’administration vers la 

circulation générale.          

� La distribution  dans l'organisme qui se définit comme le transfert réversible des substances entre 

les différents organes de l’organisme. Elle s’effectue selon 4 facteurs : fixation protéique, propriétés 

physico-chimiques, irrigation des organes et affinité particulière des tissus. 

� La métabolisation ou biotransformation qui est l’ensemble des modifications chimiques que subit 

un médicament dans l’organisme et qui conduit à la formation de métabolites. Deux phases de 

métabolisme peuvent être distinguées selon les processus de transformation induits par ces enzymes : 

les réactions de phase I et celles de phase II. 

o Les Réactions de phase I qui comportent les biotransformations dont le mécanisme 

réactionnel implique une oxydation sans que celle-ci soit nécessairement apparente dans le produit 

final obtenu. Le composé est modifié dans sa structure de manière à l’inactiver et à le rendre plus 

polaire. Les réactions de phase I comportent des réactions d'hydroxylation, de N-, de S-oxydation pour 

lesquelles l'oxydation est évidente car il y a eu addition d'un atome d'oxygène, et des réactions de N- et 

O-déalkylation, où la fixation d'un atome d'oxygène n'a été qu'une étape intermédiaire et n'apparaît pas 

dans le produit final. La plupart des réactions d'oxydation sont catalysées par des enzymes de la 

famille du cytochrome P450. 

o Les Réactions de phase II qui consistent à greffer un groupement à la molécule parente ou à 

son métabolite de manière à le rendre hydrosoluble et à accélérer son élimination. Les réactions de la 

phase II sont des réactions de conjugaison et conduisent très majoritairement à la perte des propriétés 

pharmacologiques du composé. La phase II comporte les réactions de conjugaison, soit par l'acide 

glucuronique (glucuroconjugaison), la glycine (glycoconjugaison), le sulfate (sulfoconjugaison 

catalysée par des sulfotransférases) ou encore l'acétate (acétylation catalysée par des N-acétyl 

transférases) et le glutathion. 

� L’élimination de l'organisme  qui définit l’étape et la voie par laquelle les médicaments 

(substances actives) et leurs métabolites sont éliminés. Ils s’éliminent préférentiellement par voie 

urinaire et voie biliaire. L’ensemble de ces 4 points (absorption, distribution, métabolisation et 

élimination) conditionne la fraction excrétée de la substance et permet la détermination de la fraction 

de substance active excrétée par l’organisme. 
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I.1.4 La notion de fraction excrétée par l’organisme de la substance active 

(Fexcreta) 

La Fexcreta est un paramètre important qui correspond à la fraction excrétée d’une molécule 

pharmaceutique active. Il permet de prendre en compte le taux de métabolisation du composé 

(paramètre important dans la détermination des PEC (Concentration prédite dans l’environnement) 

selon la méthode EMEA (European Medicine Agency). Le Tableau 21 présente les valeurs de Fexcreta de 

certaines molécules appartenant à différentes classes thérapeutiques. Selon les molécules, cette valeur 

peut être comprise entre 1 % (l’alprazolam, le diazépam) et près de 100 % (l’aténolol). 

 

Tableau 21 : Valeurs de Fexcreta pour plusieurs substances actives de différentes classes thérapeutiques 
(Besse et Garric, 2008). 

Classe thérapeutique Substance active Fexcreta (%) 

Anxiolytiques 

Alprazolam 1 

Bromazépam 3 

Diazépam 1 

Anti-inflammatoires non 
stéroïdiens 

Diclofénac 15 

Ibuprofène 25 

Kétoprofène 85 

Hypolipémiants Gemfibrozil 72 

Antidépresseurs Fluoxétine 10 

Antibiotiques 

Amoxiciline 90 

Fluméquine 10 

Clarythromycine 40 

β-bloquants 
Atenolol 100 

Propanolol 24 

Agents de contraste Iopromide 100 

 
II  Les sources de produits pharmaceutiques dans l'environnement 

II.1 Les différentes sources de substances pharmaceutiques pour l’environnement (Kummerer, 

2004) 

Les sources de substances pharmaceutiques (à l'exception d'épisodes catastrophiques 

ponctuels : renversements lors du transport, etc. …) incluent théoriquement : 

- Les rejets des industries durant les processus de fabrication. Extrêmement contrôlés, ces rejets sont 

minoritaires. 

- Les apports via les filières de récupération des substances pharmaceutiques avant la vente. 

Extrêmement contrôlés, ces apports sont minoritaires. 

- Les destructions non conventionnelles par les usagers (poubelles, toilettes). Dans une étude récente, 

Kummerer (2004) relatait des données annonçant que près de 33% des médicaments vendus en 
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Allemagne, et près de 25% de ceux vendus en Autriche étaient jetés à la poubelle ou dans les eaux 

domestiques. En conséquence, il apparaît que ce mode de rejets est loin d’être négligeable et qu’une 

sensibilisation est nécessaire. 

- Les rejets via les stations d'épuration après absorption sont la porte d’entrée principale des 

substances pharmaceutiques dans l’environnement ; seul cet aspect sera ici développé. 

 

II.2 Les stations d'épuration : Principales sources des substances pharmaceutiques dans 

l’environnement 

Il a été établi que la présence d’un certain nombre de substances pharmaceutiques dans 

l’environnement était préoccupante. Leurs principales voies d’entrée vers les systèmes aquatiques sont 

les rejets des stations d’épuration. Ainsi, la maîtrise de leur présence dans l’environnement repose sur 

le contrôle de leurs rejets et par voie de conséquence sur l’amélioration des technologies mises en 

place au sein des usines de traitements des eaux usées. Afin de faciliter la lecture de cette partie 

consacrée aux stations d’épuration, les processus et traitements discutés dans ce paragraphe seront 

exposés et détaillés dans l’Annexe II qui leur est dédiée. 

 

II.2.1 Les technologies courantes  

Les traitements traditionnels consistent en un traitement en 3 étapes. Il est important de 

préciser que les taux d’abattement mesurés dans les STEP sont dépendants des paramètres 

d’exploitation propres à chaque unité de traitements (Tauxe-Wuersch et al., 2005). Dès lors 

l’évaluation de l’efficacité des différents processus mis en jeu au sein des STEP est très délicate. 

Certaines études (Clara et al., 2005b ; Vieno et al., 2005) mettent en évidence que les performances 

des STEP en terme de paramètres d’usines (Demande Biologique en Oxygène (DBO), Carbone 

Organique Dissout (COD), abattement de l’azote) peuvent être de bons indicateurs quant à leur 

capacité à éliminer des substances pharmaceutiques. 

 

a) Les traitements préliminaires 

Cette première étape est très faiblement performante au regard de l’élimination des matières 

organiques et des substances pharmaceutiques en particulier (Carballa et al., 2005). 

 

b) Les traitements primaires 

Durant cette étape, une partie significative de la charge en substances pharmaceutiques peut 

être abattue, essentiellement par des phénomènes de sorption. Des mesures montrent des taux 

d’abattement de l’ordre de 40-50 % pour le diazépam, 20-45 % pour le diclofénac, 10-25 % pour 

l’ibuprofène et 10-30 % pour le naproxène (Carballa et al., 2005). Ce taux étant d’autant plus élevé 

que la teneur en graisses (non caractérisées) dans l’échantillon est importante. 
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c) Les traitements secondaires 

Les systèmes de traitements secondaires peuvent être divisés en 2 classes (les cultures fixes 

et les cultures libres (Metcalfe et al., 2003)), qui différent essentiellement au regard des temps de 

rétention hydrauliques (HRT). En effet on considère généralement que les processus de lits fluidisés 

(boues activées, lagunage) ont des temps de séjour hydrauliques supérieurs à 12 heures au contraire 

des systèmes à cultures fixées (lits bactériens, biofiltres, disques biologiques) qui ont des temps de 

séjour hydrauliques inférieurs à quelques heures (1 à 5 heures). En conséquence, il apparaît que les 

processus de type boues activées ont plus de capacités à éliminer les pollutions organiques et plus 

particulièrement les substances pharmaceutiques. Ces traitements qui reposent sur la dégradation 

microbienne sont extrêmement sensibles aux variations saisonnières. Clara et al. (2005b) ont mis en 

évidence une diminution des taux de dégradation d’un facteur 2 pour une diminution de la température 

de 10°C. De même, Vieno et al. (2005) ont montré que la capacité des stations d’épuration 

finlandaises à éliminer les substances pharmaceutiques diminuait de 25 % en hiver. 

Les phénomènes qui régissent la distribution et l’abattement des molécules dans les STEP 

seront détaillés ci après. 

 

II.2.2 Les paramètres d’abattement des substances pharmaceutiques dans les 

stations d’épuration 

a) La volatilisation 

Comme les substances pharmaceutiques présentent en règle générale de faibles valeurs de 

constante de Henry, les phénomènes de volatilisation ne sont pas considérés comme significatifs. 

 

b) Les phénomènes de photolyse 

Bien qu’ils aient plus particulièrement été étudiés dans des systèmes naturels, les 

phénomènes de photolyse sont susceptibles de se dérouler dans les STEP présentant des configurations 

de type bassins d’aération ouverts et lagunages (Metcalfe et al., 2003). Ils pourraient conduire à des 

abattements qui resteraient négligeables. 

 

c) Les phénomènes de sorption 

Tolls (2001) a mis en évidence que pour les molécules dont les valeurs de Kow sont 

inférieures à 3, la prédiction des phénomènes de sorption ne peut être conduite uniquement sur la base 

de la valeur de Kow. Une meilleure prédiction est obtenue par l’utilisation du Kd coefficient de 

distribution. Une approche plus précise a été récemment mise en œuvre par Carballa et al. (2008). Les 

résultats mettent en évidence que contrairement aux muscs et aux œstrogènes, les valeurs de Kd 

obtenues pour les substances pharmaceutiques sont faibles, comprises entre 0,7-1,9 et semblent 

montrer que les phénomènes de sorption avec les boues digérées sont de faible importance. 
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Tableau 22 : Valeurs de Kd mesurées dans les boues au cours des processus de traitement. 

 
Log Kd (l.kg-1SS) 
(boue primaire) 

Log Kd (l.kg-1SS) 
(boue secondaire) 

Références 

Caféine - 2,6 Urase et Kikuta, 2005 

Carbamazépine - 
- 

0,09 
1.8 

Ternes et al., 2004a 
Urase and Kikuta, 2005 

Diazépam 1,6 1,3 Ternes et al., 2004a 

Diclofénac 2,7 
- 

1,2 
1.5 

Ternes et al., 2004a 
Urase and Kikuta, 2005 Ibuprofène - 

- 
0,85 
1.9 

Ternes et al., 2004a 
Urase and Kikuta, 2005 Naproxène - 

- 
1,4 
2.33 

Urase et Kikuta, 2005 
Jones et al., 2002  

Comme le Tableau 22 le suggère, les valeurs de Kd pour une même molécule diffèrent 

significativement selon la matrice considérée (boues entrées/boues sorties) au sein d’une même station 

mais également entre les stations. En effet, certains auteurs avancent que des paramètres tels que la 

teneur en graisses (non caractérisées) (Carballa et al., 2006), les concentrations en polysaccharides et 

protéines colloïdales (Kreuzinger et al., 2004) pourraient affecter les phénomènes de sorption.  

 

Figure 21 : Constante de sorption et part des composés piégés par sorption par les MES des eaux 
brutes, des boues primaires et boues secondaires (EAWAG, publications)  

(Kd : 1ère valeur pour les boues primaires et 2ème valeur pour les boues secondaires). 
 

Dans une publication interne, l’EAWAG rapporte l’étude des phénomènes de sorption pour 3 

molécules pharmaceutiques (la norfloxacine, le diclofénac et l’éthinylestradiol) au cours d’un 

traitement secondaire. Leurs observations mettent en évidence les différences de comportement durant 

les processus. La part de norfloxacine sorbée augmente au fur et à mesure de l’avancement dans le 

processus de traitement de l’eau : 33% dans les eaux brutes pour atteindre 72% dans les boues 

secondaires. La sorption de la norfloxacine est liée à des intéractions électrostatiques qui sont d’autant 

plus favorisées par la teneur en micro-organismes (dont la paroi est chargée négativement). Au 

contraire pour le diclofénac et l’éthinylestradiol, la composante sorbée diminue (10% à 0,5% pour le 

diclofénac) ou reste stable (8 à 3% pour l’éthinylestradiol) tout au long du processus de traitement. Les 
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relations mises en jeu sont des interactions hydrophobes qui sont favorisées par la teneur en fraction 

lipidique des eaux d’entrée (dont la concentration diminue au cours des processus de traitements).  

 

d) Les phénomènes d’hydrolyse 

Les composés pharmaceutiques qui sont excrétés sous forme glucuronide peuvent être 

reconvertis en molécules bioactives. Une très grande proportion des substances pharmaceutiques est 

excrétée sous forme conjuguée. Même si certains auteurs suggèrent que les mécanismes de clivages se 

déroulent en amont des stations d’épuration, il apparaît évident que ces processus s’accentuent dans 

les usines d’assainissement. En effet, elles concentrent d’importantes densités de micro-organismes 

(genre Escherichia coli) qui possèdent une activité glucuronidase et sulfatase qui peuvent cliver les 

molécules conjuguées. Ceci se traduit par la libération de formes libres ou de métabolites oxydés. Il est 

couramment admis qu’aucune forme conjuguée ne résiste aux processus mis en œuvre dans les STEP 

(Johnson et Sumpter, 2001). Ceci est confirmé par certains travaux (Ternes et al., 2001 ; Heberer, 

2002 ; Heberer et al., 2001 ; Beausse, 2004) qui montrent des concentrations en formes glucuronidées 

de molécules pharmaceutiques inférieures aux limites de détection dans les effluents alors qu’elles 

étaient quantifiables dans les intrants. Ces processus peuvent induire une augmentation des 

concentrations en certaines molécules au cours des processus de traitement des eaux. 

 

e) Les phénomènes de biodégradation 

La biodégradation qui conduit à la formation de molécules de plus petit poids moléculaire est, 

dans le cas des substances pharmaceutiques, très variable. La dégradation biologique suit une 

cinétique de premier ordre (Joss et al., 2006). Une minorité de molécules pharmaceutiques apparait 

biodégradable à plus de 90 % (l’ibuprofène, le paracétamol,…), la grande majorité des molécules subit 

une biodégradation partielle (le gemfibrozil, le diclofénac) enfin une part significative des molécules 

ne subit aucune biodégradation (le diazépam, la carbamazépine). Les phénomènes de biodégradation 

peuvent être influencés par un certain nombre de facteurs.  

 

II.2.3 Paramètres affectant l’abattement des substances pharmaceutiques au sein 

des stations d’épuration 

Etat donné que les phénomènes d’abattement des substances pharmaceutiques dans les stations 

d’épuration semblent être principalement la conséquence des phénomènes de biodégradation, ainsi la 

grande majorité des travaux se sont focalisées sur l’étude de ces phénomènes. La biodégradation peut 

être influencée par un certain nombre de facteurs : la diversité de la biomasse microbienne (Ternes et 

al., 2004b), la fraction de biomasse active associée aux matières en suspension (Joss et al., 2005). 
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 a) Les paramètres physico-chimiques 

Certains paramètres physico-chimiques tels que le pH peuvent avoir une incidence sur les 

taux d’abattement de certaines substances pharmaceutiques. Urase et al. (2005) ont montré que les 

taux d’abattement de certaines substances pharmaceutiques acides (l’ibuprofène, le kétoprofène, le 

gemfibrozil, etc…) étaient supérieurs à pH acide. 

 

b) L’âge des boues 

Clara et al. (2005a) ont mis en évidence un âge critique des boues égal à 10 jours, au dessous 

duquel pas ou peu de dégradation est observée, pour un certain nombre de molécules (les stéroïdes). 

Ce temps critique semble être spécifique à la substance considérée : 1 jour pour l’ibuprofène et 8 jours 

pour l’estrone (Ternes et al., 2004b). Cependant ce paramètre ne semble pas être suffisant pour 

expliquer les phénomènes d’abattement qui peuvent se dérouler au sein des STEP (Federle et al., 

2002). 

 c) Les saisons  

Un certain nombre de travaux ont mis en évidence que les taux d’abattement des substances 

pharmaceutiques étaient meilleurs en été qu’en hiver (Vieno et al., 2005 ; Castiglioni et al., 2006). Ces 

variations peuvent être reliées à plusieurs paramètres. Ils peuvent inclure : 

- La température : une plus faible température en hiver conduit à une faible biodégradation. 

- Les conditions hydriques : les plus fortes pluies qui se déroulent durant les périodes hivernales 

peuvent induire une diminution des temps de résidence hydrauliques (HRT) qui peut conduire à un 

plus faible abattement ainsi qu’à une plus faible production de boues (Kreuzinger et al., 2004). 

- Les phénomènes de photodégradation : ils sont a priori non inclus dans les processus de traitements 

des eaux dits classiques, la question demeure ouverte dans les systèmes de lagunage. Ainsi, 

Matamoros et al. (2008) rapportent des tendances saisonnières pour l’abattement de 2 substances : le 

diclofénac et le kétoprofène qui sont connus pour présenter un taux de photodégradation modéré.  

Ces tendances saisonnières ne sont pas observées pour l’ensemble des composés et ne 

semblent affecter que les composés sujets à biodégradation et non les composés soumis à des 

phénomènes de sorption (qui ne sont pas thermo-dépendants) (Castiglioni et al., 2006). 

 

II.2.4 Les traitements tertiaires 

Une alternative pour améliorer les taux d’abattement des substances pharmaceutiques est 

l’ajout de traitements dits tertiaires. Confrontés à des réglementations de plus en plus draconiennes, les 

épurateurs ont été contraints à développer de nouvelles techniques d'épuration qui prennent place à 

divers étapes du cycle de l'eau à usage domestique : en sortie de STEP dans les traitements dits 

tertiaires et dans les usines de captage (eaux souterraines et eaux courantes) des eaux de boisson. Ces 

techniques comme le traitement sur charbon actif, l’oxydation par chloration et ozonation, la filtration 

sur membranes (Zwiener et Frimmel, 2000 ; Sedlak et al., 2003 ; Ternes et al., 2003 ; Ternes et al., 
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2004b ; Boyd et al., 2005 ; Huber et al., 2005a ; Huber et al., 2005b ; Snyder et al., 2006 ; Canonica et 

al., 2008) commencent à peine à être évaluées (Kim et al., 2008). Bien qu’elles semblent pouvoir 

augmenter les taux d’abattement de manière significative (près de 95 % pour certaines molécules), 

leur efficacité demeure limitée pour les molécules les plus persistantes (la carbamazépine, le 

diazépam). Une considération prudente doit être conduite quant aux réels coûts / bénéfices de ces 

procédés pour l’abattement des contaminants traces. Au regard, d’une part, des surcoûts (prix de l’eau) 

qu’ils peuvent engendrer et d’autre part du potentiel toxique des molécules formées lors de ces 

processus. Ces produits de dégradation  nécessiteront une investigation d’un point de vue 

écotoxicologique (renseignement du cycle biogéochimique, données de toxicité pour les organismes 

vivants dans les milieux…) et toxicologique (données sanitaires) (Jones et al., 2007). 

 

Tableau 23 : Efficacité des processus quant à l’élimination des substances pharmaceutiques (d’après 

Rapport final Poseidon, 2004). 

 

Okuda et al. (2008), dans une étude portant sur 66 molécules, mettent en évidence que 

l’association d’un traitement par ozonation suivi d’un traitement biologique activé du carbone serait le 

plus efficace pour abattre le plus large spectre de molécules. 

 

II.3 Synthèse de données de présence des substances pharmaceutiques dans les stations 

d’épuration 

Le Tableau 24 présente une synthèse des taux d’abattement calculés (dans la bibliographie) 

pour différentes classes thérapeutiques. Pour chacune des classes thérapeutiques, les rendements 

d’abattement (méthodes de calcul des rendements d’abattement non spécifiées, seules les phases 

dissoutes sont considérées) de plusieurs molécules sont rapportées afin d’obtenir une meilleure 

représentativité. 

 

 

Traitement Iaire

Abattement 
COD 

(SRT<2 
jours)

Nitrification 
(10<SRT<5 

jours)

Bioréacteurs 
membranaires 

(SRT >25 jours)
Biolfiltres Ozonation

Filtration 
sur banc

Chlorination
Ultrafiltration 

/ PAC
Nanofiltration 

Ibuprofène
Diclofénac
Bézafibrate

Carbamazépine
Diazépam

Sulfaméthoxazole
17-a-Ethinyloestradiol

R<10% 50<R<90%
10<R<50% R>90%

Traitement IIaire Traiement IIIaire

Taux d'abattement
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Tableau 24 : Taux d’abattement de certaines substances pharmaceutiques dans les STEP  
(phases dissoutes uniquement). 

 Composés Abattement STEP (%) Référence 

β-bloquants 
Aténolol 10-55 Castiglioni et al., 2006 

Propranolol 
50 Sedlak et al., 2003 
95 Ternes, 2001 

Bronchodilatateurs Salbutamol 0 Castiglioni et al., 2006 

Anti inflammatoires 
non stéroïdiens 

Kétoprofène 
18 Lee et al., 2003 
78 Lindqvist et al., 2005 

Ibuprofène 

87 Lee et al., 2003 
99 Sedlak et al., 2003 
90 Ternes, 2001 

60-70 Carballa et al., 2004 
92 Lindqvist et al., 2005 

38-93 Castiglioni et al., 2006 
78 Han et al., 2006 

Naproxène 

70 Lee et al., 2003 
66 Ternes, 2001 

40-55 Carballa et al., 2004 
0 Hua et al., 2003 
80 Lindqvist et al., 2005 

Analgésiques 

Paracétamol 
98 Ternes, 2001 
8,7 Han et al., 2006 

75 - 100 Castiglioni et al., 2006 

Diclofénac 

69 Ternes, 2001 
17 Heberer, 2002 
21 Hua et al., 2003 
26 Lindqvist et al., 2005 
24 Han et al., 2006 

Normothymique Carbamazépine 

7 Ternes, 1998 
8 Heberer, 2002 

< 40 Heberer et Feldmann, 2005 
0 Heberer, 2002 
30 Castiglioni et al., 2006 
80 Han et al., 2006 

Antidépresseurs Diazépam 0 Lee et al., 2003 

Hypolipémiants Gemfibrozil 
5 Lee et al., 2003 
50 Sedlak et al., 2003 
69 Ternes, 2001 

Antibiotiques 
Ciprofloxacine 

88 Golet et al., 2002 
96 Lindberg et al., 2006 

60-63 Castiglioni et al., 2006 

Oflaxacine 43-57 Castiglioni et al., 2006 

Drogues Cocaïne + Benzoylecgonine >90 Fanelli et al., 2006 (EMCO) 

Taux d'abattement  
R < 25 % 50 < R < 75 % 

25 < R < 50 % 75 < R < 100 % 
 
 

II.3.1 Données de présence dans les phases dissoutes des effluents de stations 

d’épuration 

Le Tableau 25 présente une synthèse des données de présence de molécules représentatives 

des classes thérapeutiques d’intérêt dans les effluents des stations d’épuration, de par le monde, au 

cours des 10 dernières années. 



Contexte bibliographique 

 Page 72 
 

Tableau 25 : Concentrations maximales et moyennes (ng.l-1) en substances pharmaceutiques mesurées 

dans les phases dissoutes des eaux de sortie de stations d’épuration de par le monde. 

 Composé Lieu Cmax (ng.l-1) Cmoyenne (ng.l-1) Références 

β- bloquants Propanolol France 1 111 416 Miege et al., 2006 
Metoprolol France 1 774 509 Miege et al., 2006 

Stimulants Caféine 

Etats-Unis 23 13 Spongberg et al., 2008 
France 2213  Togola et al., 2007 

Etats-Unis 9 900  Batt et al., 2006 
Canada 2 263  Verenitch et al., 2006 
Espagne 4 520  Santos et al., 2005 
Suède 220  Bendz et al., 2005 

AINS 

Aspirine 
Allemagne 1 500 220 Ternes, 1998 

Brésil 3 100 50 Stumpf et al., 1999 
France 524  Togola et al., 2007 

Ibuprofène 

Brésil 3 000 600 Stumpf et al., 1999 
Allemagne 3 400 370 Ternes, 1998 

Canada 6 718  Verenitch et al., 2006 
Espagne 151 000  Gomez et al., 2006 

Royaume Uni 4 239  Roberts et Thomas, 2006 
Autriche 2 400  Clara et al., 2005b 
Espagne 8 800  Santos et al., 2005 
Finlande 3 900  Lindqvist et al., 2005 
Suède 150  Bendz et al., 2005 

Taïwan 30  Lin et al., 2005 
Espagne 2 100  Rodriguez et al., 2003 
Australie 220  Khan et Ongerth, 2004 
France 219  Togola et al. 2007 

Kétoprofène 

Allemagne 380 200 Ternes, 1998 
Canada 268  Verenitch et al., 2006 
Espagne 1 760  Santos et al., 2005 
Finlande 1 200  Lindqvist et al., 2005 
Suède 330  Bendz et al., 2005 

Australie 590  Khan et Ongerth, 2004 
France 1080  Togola et al., 2007 

Naproxène 

Allemagne 520 300 Ternes, 1998 
Etats-Unis 106  Boyd et al., 2003 

Canada 7 098  Verenitch et al., 2006 
Espagne 2 440  Santos et al., 2005 
Finlande 1 900  Lindqvist et al., 2005 
Suède 250  Bendz et al., 2005 

Taïwan 170  Lin et al., 2005 
Espagne 232  Macia et al., 2004 
France 289  Togola et al., 2007 

Paracétamol 
Allemagne 6 000  Ternes, 1998 
Australie 390  Khan et Ongerth, 2004 
France 11308  Togola et al., 2007 

Diclofénac 

Allemagne 2 100 810 Ternes, 1998 
USA 177 72 Spongberg et Witter, 2008 
Brésil 930 130 Stumpf et al., 1999 

Canada 448  Verenitch et al., 2006 
Espagne 1 900  Gomez et al., 2006 

Royaume Uni 598  Roberts et Thomas, 2006 
Autriche 1 680  Clara et al., 2005b 
Finlande 300  Lindqvist et al., 2005 
Suède 120  Bendz et al., 2005 
Suisse 570  Soulet et al., 2002 
France 487  Togola et al., 2007 

Normothymique Carbamazépine 
Allemagne 6 300 2100 Ternes, 1998 

USA 111 74 Spongberg et al., 2008 
Espagne 70  Gomez et al., 2006 
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Autriche 1 594  Clara et al., 2005b 
Suède 1 180  Bendz et al., 2005 

Taïwan 420  Lin et al., 2005 
France 293  Togola et al., 2007 

Antidépresseurs Diazépam Allemagne 40  Ternes, 1998 
Belgique 660  Van Der Ven et al., 2004 

Hypolipémiants 

Atorvastatine Canada 22  Miao et al., 2002 

Gemfibrozil 

Allemagne 1 500 400 Ternes, 1998 
Canada 403  Verenitch et al., 2006 
Suède 180  Bendz et al., 2005 
France 17  Togola et al., 2007 

Broncho 

dilatateurs 

Salbutamol Allemagne 170  Ternes, 1998 

Terbutaline Allemagne 120  Ternes, 1998 
France 4  Togola et al., 2007 

Antibiotiques Ciprofloxacine France 94  Algros, 2007 
Spiramycine France 4 000  Algros, 2007 

Drogues Cocaïne Italie 11  Castiglioni et al., 2005 
Méthadone Italie 36  Castiglioni et al., 2005 

Anticancéreux Tamoxifène Angleterre  199 Roberts et Thomas, 2006 

 

II.3.2 Données de présence dans les boues de stations d’épuration 

Les substances pharmaceutiques présentant les degrés de lipophilie les plus élevés sont 

susceptibles de se retrouver dans les boues primaires à des concentrations aussi élevées que dans les 

eaux brutes de stations d’épuration. Ces composés, selon leurs propriétés de biodégradation, 

présentent un potentiel certain à se concentrer dans les boues et seraient donc susceptibles de ne pas 

être dégradés au cours des processus de digestion ou autres processus de traitement des boues 

(Beausse, 2004). Selon les molécules, des concentrations comprises entre la dizaine de µg.g-1 et la 

dizaine de ng.g-1 ont été mesurées (Barron et al., 2008 ; Nieto et al., 2007 ; Beausse, 2004 ; Spongberg 

2008, Togola et al. 2008). Les classes thérapeutiques de tout premier intérêt apparaissant être les 

stéroïdes hormonaux, les antibiotiques, les analgésiques et les anti-inflammatoires non stéroïdiens 

(Beausse, 2004). Dans un document récent exposant les substances prioritaires à étudier dans les 

boues, Eriksson et al. (2008) présentent une réflexion quant aux risques liés à la présence de 192 

substances organiques dans les boues et concluent que la présence de pharmaceutiques dans les boues 

doit être évaluée au regard de potentiels impacts sur la percolation et la contamination d'eaux 

souterraines. 
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Figure 22 : Cycle biogéochimique des substances pharmaceutiques. 
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III   Le devenir des substances pharmaceutiques dans les systèmes aquatiques 

Le devenir des substances pharmaceutiques et de leurs métabolites dans l'environnement 

demeure encore mal renseigné. La faible volatilité des substances pharmaceutiques ainsi que leur 

polarité indiquent que la distribution dans l'environnement va se faire essentiellement par transport au 

sein de la voie aqueuse et également au travers des chaînes alimentaires (Figure 22). 

 

III.1  Les phénomènes de dégradation en milieux naturels 

III.1.1 La photodégradation 

Les études concernant la photodégradation des substances pharmaceutiques se sont 

largement généralisées (Boreen et al., 2003 ; le diclofénac par Buser et al.(1998) ; le naproxène, le 

diclofénac, l’acide clofibrique et l’ibuprofène par Packer et al. (2003), Poiger et al. (2001), Lin et 

Reinhard (2005)) et mettent en évidence des comportements très différents. Le carbone organique 

dissous semble jouer un rôle important dans l'efficacité de ces mécanismes : il peut agir comme un 

accélérateur, mais également comme un retardateur en agissant comme un photofiltre. 

 

� Cas de la Carbamazépine 

Lam et Mabury (2005) ont mis en évidence, dans une étude en microcosme (avec étude de 

photodégradation par exposition dans un simulateur) que ce composé est extrêmement résistant à la 

photodégradation ; ce composé pouvait être dégradé en 10-11-époxyde. Andreozzi et al. (2003) 

rapportent que la présence d'acides humiques dissous entraîne une augmentation du temps de demi-vie 

de la carbamazépine ; au contraire la présence de nitrates induit une diminution du temps de demi-vie. 

Dans une autre étude, Andreozzi et al. (2003) ont pu estimer un temps de demi-vie face à la 

photodégradation (hiver, 50° latitude nord) de l'ordre de 100 jours pour la carbamazépine (5 jours pour 

le diclofénac). Plus récemment, Chiron et al. (2006) ont mis en évidence la complexité des chemins de 

photodégradation de la carbamazépine en milieu contrôlé (Figure 23). 
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Figure 23 : Schéma de photodégradation de la carbamazépine sous différentes conditions de photolyse 

(d’après Chiron et al., 2006). 

 

III.1.2  La biodégradation 

Les phénomènes de biodégradation qui ont été initiés au sein des STEP vont se poursuivre 

dans le milieu naturel mais dans une moindre mesure. Ces mécanismes ne semblent pas prévalents (ou 

demeurent encore non élucidés) pour les substances pharmaceutiques à l'exception des œstrogènes. 

Lin et Reinhard (2005) ont mis en évidence que la biodégradation de l’estradiol en estrone (R > 80%) 

s'effectuait en 20 min et que ce processus était sous contrôle bactérien, ce taux atteint 100% en 2 jours. 

Carrara et al. (2008), au travers d’une étude sur les anti-inflammatoires non stéroïdiens (l’ibuprofène, 

le naproxène), outre la mise en évidence d’une contamination des eaux souterraines à des 

concentrations aussi élevées que pour les eaux usées, établissent une corrélation entre la persistance 

des molécules et les conditions redox du milieu, ils concluent que les conditions oxiques sont 

favorables à la dégradation des molécules. 

Les phénomènes de biodégradation peuvent également se dérouler dans les sédiments. Ainsi 

Bradley (2007) a étudié les capacités de biodégradation des populations bactériennes naturelles 
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présentes dans les sédiments de différentes rivières envers la caféine, la nicotine et la cotinine. Les 

résultats montrent qu’au sein des sédiments les populations bactériennes sont capables d’activité de 

biotransformation. De même, il est apparu que la capacité à convertir le diclofénac était largement 

répandue dans les sédiments (Allemagne), et ne nécessitait aucune acclimatation des organismes du 

milieu. De plus, aucune corrélation avec l’activité microbienne totale n’a été mise en évidence.  

 

III.2  Distribution dans la phase aqueuse 

La question de la distribution des substances pharmaceutiques entre les phases dissoutes et 

colloïdales a récemment été étudiée (Maskaoui et al., 2007). Les résultats mettent en évidence qu’une 

période courte de 5 min est suffisante pour que les interactions entre les substances pharmaceutiques et 

les colloïdes atteignent un plateau. Les valeurs de Kcoc (coefficient de partition normalisé par la 

teneur en carbone organique colloïdal) varient entre les 5,45*104 et 7,54*104 pour les substances 

pharmaceutiques étudiées (le propanolol, le sulfaméthoxazole, la mébervérine, la carbamazépine, 

l’indométhacine, le diclofénac et l’acide meclofénamique), plus élevées que celles des perturbateurs 

endocriniens (les estrogènes, le bisphénol A). Les interactions entre les substances pharmaceutiques et 

les colloïdes, sous contrôle du caractère hydrophobe des molécules, apparaissent comme 

prépondérantes pour la compréhension du devenir de ces molécules dans les systèmes aquatiques.  

 

III.3  Phénomènes de sorption 

De par leurs propriétés physico-chimiques (valeurs de Kow faibles, solubilité élevée), les 

études sur les substances pharmaceutiques se sont essentiellement cantonnées à des études en phase 

dissoute de telle sorte que très peu de données de présence dans les phases solides sont recensées. Ra 

et al. (2008) ont mis en évidence la faible affinité de l’ibuprofène et du gemfibrozil pour les matières 

en suspension, seul le diclofénac présente 11 % de sorption (expérience simulée). La présence de 

substances pharmaceutiques a été rapportée dans les sédiments, principalement celle des anti-

inflammatoires non stéroïdiens et du gemfibrozil (Bradley et al., 2007 ; Hernando et al., 2006). Un 

effort de recherche doit être porté sur ces compartiments de l’environnement qui peuvent participer à 

la dissipation des molécules dans l’environnement (vecteurs ou réservoirs). 

Un certain nombre de travaux se sont également attachés à l’étude des substances 

pharmaceutiques à usages vétérinaires notamment les antibiotiques, dans les sols : ils mettent en 

évidence des concentrations qui peuvent atteindre la dizaine µg.g-1 de sols (revue par Kemper, 2008). 

 

III.4  Données de présence dans l'environnement 

Les substances pharmaceutiques de par leurs sources, leurs propriétés physicochimiques sont 

largement distribuées dans les systèmes aquatiques, de telle sorte que l'on peut les qualifier 

d'ubiquistes. De nombreuses études ont documenté leur présence dans les eaux de surface (eaux 

courantes, eaux estuariennes et eaux marines, Figure 24) et dans les eaux souterraines (Scheytt et al., 
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1998; Heberer et al., 1998 ; Clara et al., 2004a ; Rabiet et al., 2006 ; Schulte-Oehlmann et al., 2007 ; 

Barnes et al., 2008). La présence de substances pharmaceutiques a également été mise en évidence 

dans les eaux de boisson (Zwiener, 2007) comme le souligne Kuehn (2008) dans le Journal de 

l’Association Américaine de Médecine «Traces of drugs found in drinking water: Health effects 

unknown, safer disposal urged». 

La présence de classes thérapeutiques (les anti-inflammatoires non stéroïdiens, les 

œstrogènes de synthèse, les stimulants, les antibiotiques) est très largement documentée. Les efforts de 

recherche se portent maintenant sur de nouvelles molécules : les drogues illicites qui ont, à titre 

d’exemple, été mesurées à des concentrations de l’ordre de 1 ng.l-1 dans les eaux de la Tamise et du Pô 

(Zuccato et al., 2008), plus de 100 ng.l-1 pour la benzoylecgonine en Ecosse (Kasprzyk-Hordern et al., 

2008b) ; les anticancéreux et les antinéoplasiques (Zuccato et al., 2005 ; Roberts et Bersuder, 2006) à 

titre d’exemple l’ifosfamide a été détecté et quantifié à une concentration maximale de 20 ng.l-1dans 

les eaux de surface (Ternes, 1998), le cyclophosphamide a été détecté et quantifié à une concentration 

maximale de 65 ng.l-1dans les eaux de surface (Moldovan, 2006). 

 

 

Figure 24 : Concentrations moyennes, exprimées en ng.l-1, en composés pharmaceutiques dans les 

eaux de surface (phases dissoutes uniquement) (d’après thèse Nora, 2006 ; Rabiet et al., 2006 ; 

Kasprzyk-Hordern et al., 2008a,b ; Togola et al., 2008 ).  

 

III.5  Transferts aux organismes aquatiques 

Pour l’heure le devenir des substances pharmaceutiques (bioconcentration, bioaccumulation 

et biotransformation) dans les organismes aquatiques est peu renseigné, exception faite du contexte 
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réglementaire lié à l’usage des antibiotiques en aquaculture. Ainsi un certain nombre d’études ont été 

réalisées dans ce contexte et ont pu mettre en évidence la persistance de certaines molécules 

antibiotiques après administration : plus de 76 jours pour l’azithromycine chez le juvénile 

d’Oncorhynchus tshawytscha (moins de 21 jours pour le composé parent : l’érythromycine) 

(Fairgrieve et al., 2006). 

Certaines études rapportent des mesures de fluoxétine, norfluoxétine, paroxétine supérieures 

au µg.g-1 dans les muscles de poissons exposés dans l’environnement (Chu et Metcalfe, 2007). Hoeger 

et al. (2007) ont étudié le devenir du diclofénac chez la truite. Ils ont observé que le diclofénac n’était 

pas complètement excrété et qu’une part significative entrait dans la circulation enterohépatique 

prolongeant ainsi la biodisponibilité du composé dans l’organisme et en favorisant l’accumulation. Les 

auteurs concluent que cette étude apporte des éléments d’explication quant au devenir de 

micropolluants dans l’environnement et leur bioaccumulation dans les organismes exposés en dépit de 

leurs propriétés physicochimiques.  

Les capacités de dépuration du crabe (Scylla serrata) exposé à une dose orale 

d’enrofloxacine ont été évaluées par Fang et al. (2008). Les résultats mettent en évidence que ces 

cinétiques de dépuration sont conditionnées par les conditions du milieu : efficacité d’élimination de la 

molécule supérieure lors d’exposition à une salinité de 4‰ par comparaison à une exposition à une 

salinité de 33‰. 

 

IV   La toxicité des substances pharmaceutiques au sein des systèmes aquatiques  

 

Bien que ces composés fassent l’objet de tests de toxicité pour leurs usages vétérinaires et 

humains, ils s’avèrent que ces données ne sont pas suffisantes pour juger de leur toxicité quant aux 

organismes des systèmes aquatiques (; Huschek et al., 2004 ; Bound et al., 2006). Les interactions de 

ces composés et de leurs métabolites avec les organismes du milieu sont encore mal renseignées 

(Sumpter et Johnson, 2005). 

 

IV.1  La toxicité aigüe 

Les substances pharmaceutiques à usage humain ne semblent pas présenter, en général, de 

toxicité aigüe (Figure 25). En effet, la très grande majorité de ces composés présente des valeurs de 

toxicité aigüe supérieures à 1 mg.l-1. Si ces valeurs sont comparées à des concentrations maximales 

mesurées dans l'environnement (dans les effluents de stations d'épuration aussi bien que des eaux 

naturelles), les valeurs de toxicité sont très largement supérieures. 
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Figure 25 : Distribution des plus faibles valeurs de toxicité aigüe pour 3 taxons (algues n=38, 

invertébrés n=67, poissons n=51) suite à des expositions à des substances pharmaceutiques (d'après 

Cunningham et al., 2006). 

 

IV.2  La toxicité chronique 

Les études de toxicité chronique confirment que les antidépresseurs de type inhibiteurs de la 

recapture de la sérotonine sont à surveiller plus particulièrement au regard de la toxicité exprimée sur 

les invertébrés et de l’implication du système sérotoninergique dans la locomotion. Ainsi, un intérêt 

tout particulier devrait être porté sur la fluoxétine, molécule qui présente une très forte toxicité chez 

les algues vertes (Besse et Garric, 2008). Les comparaisons des valeurs de toxicité chronique mettent 

également en évidence que les antibiotiques sont des molécules très préoccupantes. Les études menées 

par Isidori et al. (2005, 2006) montrent que leur toxicité est fonction de la molécule et de l’organisme 

considérés ; il apparaît que les cyanophytes sont les organismes les plus sensibles. Les fibrates 

apparaissent également comme une classe de molécule susceptible de présenter un risque (Tableau 

26).  

Canesi et al. (2007a) ont mis en évidence qu’exposées (in vivo et in vitro) à des 

concentrations environnementales de bézafibrate, des moules Mytilus spp présentaient des affections 

du système immunitaire et de la glycolyse, entre autres. 

Richards et al. (2008) rapportent qu’à des concentrations aussi faibles que 0,1 µg.l-1, la 

fluoxétine est susceptible d’affecter l’activité chitobiase (enzyme en charge de la dégradation de la 

chitine) chez la daphnie exposée pendant 24 à 72 heures.  

Quinn et al. (2008) ont mis en évidence, chez l’hydre, qu’à des concentrations susceptibles 

d’être rencontrées dans l’environnement : le gemfibrozil, l’ibuprofène, le naproxène et le bézafibrate 
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apparaissaient comme de potentiels tératogènes de même que la carbamazépine (dans une moins 

grande propension). 

Kostich et Lazorchak (2008) rapportent une réflexion quant aux risques liés à la présence de 

substances pharmaceutiques à usage humain pour les organismes aquatiques. Ils concluent qu’aux 

Etats-Unis certaines molécules sont mesurées à des concentrations suffisantes pour affecter les 

organismes qui présentent des capacités de dépuration insuffisantes. Certains phénomènes 

d’antibiorésistance ainsi que des effets toxiques sur certains vertébrés, procaryotes et eucaryotes 

seraient également susceptibles de se dérouler. 

 

IV.3  Effets des mélanges  

Au contraire de l’ensemble des autres classes de micropolluants, les phénomènes 

d’interactions médicamenteuses sont assez bien renseignés (chez les mammifères) puisqu’ils sont 

indispensables à l’obtention d’une autorisation de mise sur le marché de toute nouvelle molécule. A 

titre d’exemple, l’action activatrice de la caféine sur certains antalgiques peut-être citée (exemple du 

Propofan® qui associe le dextropropoxyphène, le paracétamol et la caféine) ; qu’en est-il dans les 

milieux aquatiques où ces molécules sont également concomitantes ?  

Les effets d’exposition à des mélanges de substances pharmaceutiques sur les organismes 

aquatiques sont encore mal connus et évalués (Cleuvers, 2003 ; Cleuvers, 2004 ; Brain et al., 2004 ; 

Fraysse et Garric, 2005 ; Pomati et al., 2006 ; Pomati et al., 2007 ; Borgmann et al., 2007) et ceux 

portant sur des interactions possibles entre les molécules pharmaceutiques et les autres polluants 

environnementaux sont peu renseignés. Thibaut et al. (2006) ont étudié, in vitro, les interactions des 

fibrates, des anti-inflammatoires non stéroïdiens et des antidépresseurs avec les voies du cytochrome 

et les activités de phase II impliquées dans le métabolisme des xénobiotiques et des molécules 

endogènes chez les poissons. Les résultats montrent une inhibition de l’activité de glucuronidation du 

naphtol et de la testostérone par les anti-inflammatoires non stéroïdiens et à un moindre degré par les 

fibrates, une inhibition (mineure) de l’activité de sulfatation de l'estradiol exercée par le clofibrate, le 

gemfibrozil et la fluoxétine. De façon générale, le gemfibrozil, le diclofénac et les antidépresseurs 

semblent être les molécules présentant les capacités à interférer avec les voies métaboliques les plus 

significatives de certains poissons. 

Pomati et al. (2007) suggèrent que des études complètes sur les effets des mélanges 

pourraient faire émerger une liste de molécules pharmaceutiques préoccupantes à des concentrations 

environnementales. Ils rapportent également que les scénarii environnementaux mis en œuvre lors des 

expositions (réactions antagonistes et/ou synergiques, concentrations dépendances des effets) 

pourraient considérablement affecter la prédiction des effets toxiques des mélanges et ainsi sous 

estimer les risques liés à la présence des substances pharmaceutiques dans les milieux naturels.  

 



Contexte bibliographique 

 Page 82 
 

IV.4  Toxicité des produits de dégradation et des métabolites 

Contrairement aux composés parents dont le potentiel toxique est pour une part bien 

renseigné, la toxicité des produits de dégradation, notamment des sous produits formés au cours de 

certains traitements du cycle de l’eau et dans l’environnement est mal connue. 

Isidori et al. (2007b) ont étudié le potentiel toxique, notamment génotoxique, de certains 

fibrates et de leurs produits de photodégradation. Ils mettent en évidence que les produits issus de la 

photodégradation du gemfibrozil présentent un caractère génotoxique et mutagène. Le caractère 

mutagène des photoproduits du furosémide a également été révélé au cours d’une étude similaire 

(Isidori et al., 2006). Li et al. (2008c) ont étudié la toxicité des produits issus du traitement par 

ozonation de l’oxytétracycline chez Vibrio fischeri (bactérie). Les résultats mettent en évidence que le 

premier intermédiaire d’ozonation présente un potentiel toxique plus important que la molécule 

parente.  

Force est de constater que la considération de ces produits de dégradation, pour une 

évaluation complète du risque associé à la présence de substances pharmaceutiques dans les systèmes 

aquatiques, est nécessaire. 
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Tableau 26 : Données de toxicité chronique pour certains taxons exposés à des substances pharmaceutiques (d'après Crane et al., 2006). 

 

 

 REGNE ANIMAL REGNE VEGETAL 

 Algues Invertébrés Poissons  

 Espèce 
NOEC 

(mg.l-1) 
Espèce 

NOEC       

(mg.l-1) 
Espèce 

NOEC   

(mg.l-1) 
Espèce 

NOEC 

(mg.l-1) 

Fluoxétine 
  Ceriodaphnia dubia 0,056   Lemna gibba >1,0 (EC10) 

  Ceriodaphnia dubia 0,089     

Carbamazépine 

Synechococcus leopolensis 17 Lin calyciflorus 0,377 Danio rerio 25 Lemna gibba >1,0 (EC10) 

Cyclotella meneghiniana 10 Ceriodaphnia dubia 0,025     

Desmodesmus subspitacus 74,0 (EC50)       

Diazépam   Hydra vulgaris <0,01     

Paracétamol   Hydra vulgaris >0,01   Lemna gibba >1,0 (EC10) 

Aspirine   Hydra vulgaris >0,01     

Diclofénac 

Cyclotella meneghiniana 10 Ceriodaphnia dubia 1 Danio rerio 4 Lemna minor 7,5 (EC50) 

Desmodesmus subspitacus 72,0 (EC50) Lin calyciflorus 12,5     

Ibuprofène Desmodesmus subspitacus 315,0 (EC50) Hydra vulgaris >0,01   Lemna gibba >1,0 (EC10) 

Naproxène Desmodesmus subspitacus 320,0 (EC50)     Lemna gibba 24,2 (EC50) 

Ethinylestradiol 

non spécifié 0,054 (EC10) Hyalella azteca 0,0001 Oryzias latipes 0,00001   

  Lymnea stagnalis <0,00000125 Oncorhynchus mykiss <0,0000001   

    Oncorhynchus mykiss <0,0000003   
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IV.5  Substances pharmaceutiques en tant que perturbateurs endocriniens 

Le cytochrome P-450 (P-450) est une enzyme impliquée dans les réactions de métabolisme 

des xénobiotiques de phase I. Le P-450 est également impliqué dans des réactions de synthèse et de 

dégradation de molécules endogènes comme les stéroïdes et les prostaglandines. Un nombre important 

de médicaments peut agir comme inducteur ou inhibiteur enzymatique, notamment au niveau des 

différentes isoformes du P-450. Théoriquement, une inhibition ou une induction du P-450 peut 

entraîner des perturbations dans l’homéostasie des organismes voire dans les fonctions de 

reproduction. Cependant à l’heure actuelle, aucun effet toxique sur un organisme aquatique n’a pu être 

clairement relié à une induction ou une inhibition du P-450. Le P-450 est par contre communément 

proposé comme marqueur d’exposition des organismes aquatiques et notamment des poissons à des 

polluants environnementaux. Il existe un nombre important de molécules pharmaceutiques douées de 

ces propriétés (Tableau 27) et donc susceptibles d’engendrer des effets de perturbation endocrinienne. 

Parce que les études sont encore trop peu nombreuses, il serait délicat d'affirmer que les 

substances pharmaceutiques exercent des activités de perturbation endocrinienne dans 

l’environnement, de plus amples travaux sont nécessaires. Dans une étude récente chez le rat, 

l'ibuprofène a montré une efficacité à bloquer les effets du tamoxifène (agent de traitement des cancers 

du sein hormono-dépendants qui agit en bloquant l'action de la 17-β-estradiol), en conséquence ce 

composé peut être classé comme un potentiel perturbateur endocrinien. De plus, il a été montré que 

l'ibuprofène était capable d'engendrer un retard dans la ponte (ou une diminution de la fréquence des 

pontes) chez des Medaka adultes exposés, ce qui peut avoir des effets délétères pour les populations 

naturelles (Flippin et al., 2007). Van der Ven et al. (2006) ont récemment mis en évidence que la 

miansérine (un antidépresseur tricyclique) était capable d'induire la synthèse de vitellogénine 1 et la 

synthèse de protéines de la zona pellucida chez des poissons (Danio rerio) exposés (14 jours, C°=250 

µg.l-1). De même, au cours d'une exposition de Carassius auratus (Poisson rouge), à des 

concentrations de 1,5 mg.l-1 et 10 mg.l-1 de gemfibrozil (hypolipémiant), Mimeault et al. (2005) ont 

constaté une diminution de 50 % du taux de testostérone plasmatique. 

 

 

 

 

 



Contexte bibliographique 

 Page 85 
 

Tableau 27 : Revue des substances pharmaceutiques inductrices et inhibitrices des isoformes du 

cytochrome P450 (d’après Besse et Garric, 2008). 

Isoformes du 

Cytochrome P-

450 

Inducteurs Inhibiteurs 

CYP 3A4 

Carbamazépine, Phénobarbital, 

Oxcarbamazépine, Primidone, Phénytoïne, 

Fosphénytoïne, Topiramate, Rifampicine, 

Rifabutine, Griseofulvine, Efavirenz, 

Nevirapine, Bosentan, Méprobramate, 

Déxaméthasone, Ethosuximide, Glitazones, 

Modafinil … 

Acide valproïque, Amiodarone, Fluoxétine, 

Fluvoxamine, Acide fusidique, Doxycycline, Isoniazide, 

Synergistines, Vérapamil, Macrolides, Fluconazole, 

Antiprotéases, Ciclosporine, Cimétidine, Cisapride, 

Danazol, Dihydralazine, Diltiazem, Erlotinib, 

Felodipine, Imatinib , Nicardipine, Olanzapine, 

Proguanil, Quinidine, Silymarine, Telithromycine 

CYP 2D6 

Déxaméthasone, Ritonavir, Efavirenz, 

Nevirapine, Rifampicine 

 

 

Ritonavir, Efavirenz, Nelfinavir, Delavirdine, 

Amiodarone, Flécaïdine, Propafénone, Quinidine, 

Doxorubicine, Imatinib , Citalopram, Clomipramine, 

Fluoxétine, Fluvoxamine, Moclobémide, Paroxétine, 

Bupropion, Célécoxib, Chloroquine, Cimétidine, 

Dextropropoxyphène, Diphenhydramine, 

Halofantrine, Halopéridol, Phénothiazines, 

Luméfantrine, Méfantine, Métoclopramide, 

Rispéridone, Telithromycine, Terbinafine 

CYP 2C9 et 

CYP 2C19 

Carbamazépine, Phénobarbital, 

Phénytoïne, Primidone, Bosentan, 

Efavirenz, Ritonavir , Rifabutine, 

Rifampicine, Lumefantrine 

Acide valproïque, Amiodarone, Fluconazole, 

Voriconazole 

CYP 1A2 

Phénobarbital, Carbamazépine, Phénytoïne, 

Fosphénytoïne, Ritonavir, Oméprazole, 

Lansoprazole 

Clarithromycine, Erythromycine,  Fluoroquinolones, 

Fluvoxamine, Paroxétine, Itraconazole, Kétoconazole, 

Amiodarone, Cimétidine, Peginterféron, Ticlopidine 

CYP 2A6 Phénobarbital Dithiocarbe, Methoxypsoralène 

CYP 2B6 Phénytoïne 
Mémantine, Nelfinavir , Orphénadrine, Ritonavir , 

Sorafénib, Thiotepa 

CYP 2C8 Phénobarbital 
Amiodarone, Cimétidine, Erlotinib, Imatinib, 

Kétoconazole, Paclitaxel, Sorafénib 

CYP 2E1  Dithiocarb, Disulfirame 

En gras, composés présentant un risque majeur d’interactions avec d’autres molécules pharmaceutiques 

 

IV.6  Evaluation des risques liés à la présence de substances pharmaceutiques dans les milieux 

aquatiques 

IV.6.1  Présentation du modèle d’évaluation des risques proposé par l’Agence 

Européenne du Médicament (EMEA) 

L’Agence Européenne du Médicament (EMEA) a publié en 2006 une procédure révisée pour 

l’évaluation du risque des composés pharmaceutiques. L’approche se décompose en plusieurs phases 
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(Figure 26). Au premier niveau de l’évaluation du risque, la principale variable concerne la quantité de 

médicaments consommés sur une année : un premier calcul de concentration prédite dans 

l’environnement (PEC) est réalisé selon un mode hyperconservatif (selon un scénario de pire cas). Ce 

calcul est destiné à effectuer un premier criblage des molécules en fonction des concentrations 

estimées dans l’environnement. La première étape du processus repose donc sur la comparaison avec 

une limite maximale considérée admissible dans le milieu. Les molécules pour lesquelles les PEC 

calculés sont inférieures à ce seuil sont considérées comme ne représentant pas un risque significatif 

pour l’environnement et sont exclues de la démarche d’évaluation du risque proprement dite. Pour les 

autres, un raffinement des valeurs de concentration prédite dans l’environnement (PEC) est proposé à 

partir de l’équation 2 (PEC de phase 2) qui tient compte de la métabolisation des médicaments dans 

l’organisme, de la dégradation dans les stations d’épuration (STEP) et de l’adsorption sur les matières 

en suspension (MES). Des concentrations prédites sans effets (PNEC) et des quotients de risque (de 

type PEC/PNEC) sont finalement calculés. Dans un premier temps (phase 2A de la procédure EMEA), 

la PEC est calculée en tenant compte uniquement du facteur de pénétration sur le marché (Fpen). Dans 

une deuxième étape (phase 2B de la procédure), les autres paramètres : la fraction excrétée de la 

substance active (Fexcreta), la fraction du composé rejetée par les STEP dans le milieu naturel (Fstep), le 

facteur d’adsorption à la matière en suspension (Factor) et le facteur de dilution sont utilisés pour 

déterminer des valeurs de concentrations prédites dans l’environnement (PEC) plus précises. Des 

valeurs de PNECaquatique sont ensuite dérivées à partir des données écotoxicologiques chroniques 

disponibles. Ces données sont assorties d’un facteur de sécurité tenant compte des incertitudes existant 

dans l’extrapolation de données de laboratoire à la réalité environnementale. Ce facteur est fixé à 10 et 

s’applique à la plus faible valeur de NOEC (concentration sans effet observé) relevée. L’évaluation du 

risque repose sur l’établissement du rapport PEC/PNEC. Si ce rapport est supérieur à 1, la substance 

évaluée est considérée comme présentant un risque pour le milieu considéré (Tableau 28).  
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Figure 26: Schéma d’évaluation des risques selon la méthodologie EMEA (Besse et Garric, 2008). 

 

IV.6.2  Valeurs de PNEC pour certaines molécules pharmaceutiques 

Le Tableau 28 présente des valeurs de PNEC établies pour un certain nombre de molécules 

pharmaceutiques. On remarquera la grande hétérogénéité des valeurs (10 ng.l-1 pour la tétracycline et 

plus de 1 mg.l-1 pour l’acébutolol). Comme exposé par Besse et Garric (2008), lorsque ces valeurs sont 

comparées à des valeurs de PEC ou à des valeurs mesurées dans l’environnement (lorsque cela est 

possible, l’insuffisance de données limitant dramatiquement ces calculs). Les rapports PEC/PNEC 

sont dans une grande majorité des cas inférieurs à 1 ; ce qui laisse supposer que les risques pour 

l’environnement sont faibles. Seuls les antibiotiques (l’amoxicilline, la clarithromycine) et certains β-

bloquants (le propanolol) présentent des rapports supérieurs à 1.  

Cependant, ces résultats ne signifient pas que la présence des substances pharmaceutiques 

dans l’environnement est sans risque. En effet cette approche est limitée par : 

- le nombre de données écotoxicologiques fiables, 

- la non prise en compte des métabolites des substances considérées, 

- la non prise en compte des effets des interactions entre ces molécules mais également entre ces 

molécules et les autres composantes du milieu. 

Composé à évaluer

STOP

Modélisation de l’exposition

Dérivation d’une PEC hyperconservative (basée sur la dose maximale 
journalière)
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�Données chroniques
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Tableau 28 : Valeurs de PNEC établies selon la méthode EMEA pour certaines molécules pharmaceutiques (d’après Besse et Garric, 2008). 

 

NOEC repro : NOEC reproduction 

Classe Thérapeutique Composé 
Espèce la plus 

sensible 
Donnée retenue 

Valeur de 

toxicité (µg.l-1) 
Référence 

Facteur de 

sureté 

Valeur de PNEC 

finale (µg.l-1) 

IRS 
Paroxétine Cladocera dubia NOEC repro 30 Garric et al., 2005 50 0,6 

Sertraline Cladocera dubia NOEC repro 9 Henry et al., 2003 100 0,09 

Benzodiazépine Diazépam Daphnia magna CL50 survie 4 300 Lilius et al., 1994 1 000 4,3 

Antipyrétique Paracétamol Hydra vulgaris CL50 survie 1 000 Pascoe et al., 2003 1 000 1 

AINS 

Naproxène Daphnia magna CL50 survie 140 000 Rodriguez et al., 1992 1 000 140 

Aspirine Daphnia magna NOEC repro 1 000 Marques et al., 2004 100 10 

Ibuprofène Daphnia magna NOEC repro 20 000 Han et al., 2006 100 200 

Cycline Tétracycline Synechocystis sp. NOEC croissance 1 Pomati et al., 2004 100 0,01 

Macrolide Clarithromycine Daphnia magna NOEC repro 3,1 Yamashita et al., 2006 50 0,062 

Fibrate Fénofibrate Daphnia magna NOEC repro 7 Garric et al., 2005 50 0,14 

β- bloquants 

Métoprolol Daphnia subspicatus CE 50 croissance 7 300 Cleuvers et al. 2003 1 000 7,3 

Acébutolol Cladocera dubia NOEC repro 62 500 Garric et al., 2005 50 1 250 
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IV.1 .Contexte réglementaire  

Exception faite des Etats-Unis qui ont fixé un contexte réglementaire aux industriels dès 

1998 ; il n’existe, pour l’instant, aucune norme en Europe concernant les rejets de substances 

pharmaceutiques à usage humain. Néanmoins les études entreprises mettent en évidence l’ubiquité de 

ces molécules dans les systèmes aquatiques à des concentrations susceptibles d’engendrer des effets 

toxiques, une prise en considération de la nécessité d’établir un contexte réglementaire est requise. 

Ainsi, par la décision du parlement européen (texte adopté le 22 mai 2007, document A6-0125/2007) 

visant à la réévaluation de la liste des substances dangereuses prioritaires pour une éventuelle entrée 

lors de la prochaine révision de la liste des 33 (Annexe 10) de la directive loi cadre sur l’eau, le 

diclofénac et la carbamazépine font l’objet d’une évaluation pour une entrée dans la directive fille 

DCE. 

De même une liste de 19 substances pharmaceutiques et de 7 hormones sont entrées dans la  liste 

OSPAR des substances préoccupantes (Tableau 29) et sont en cours d’évaluation. 

 

Tableau 29 : Liste des substances pharmaceutiques et hormones de la liste OSPAR. 

Liste des substances pharmaceutiques et hormones 
Chlorpromazine Estradiol 

Chloroquine bis(phosphate) Estrone 

Chloroquine Diéthylstilbéstrol 

Prochlorpérazine 17-éthynylestradiol 

Fluphénazine Mestranol 

Fluphénazine dihydrochloride Diosgénine 

Thioridazine Hydroxyprogestérone 

Triflupéridol  

Phénothiazine  

Acridan  

Acide Niflumique  

Dimétacrine  

Noclofolan  

Miconazole nitrate  

Clotrimazole  

Timipérone  

Closantel  

Midazolam  

Diammonium N-éthylheptadécafluoro-N-[2-

(phosphonatooxy)éthyl]octanesulphonamidate 
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CHAPITRE C 

 METHODOLOGIES ANALYTIQUES 
 

 Cette partie se propose de présenter, de manière générale, les méthodologies analytiques 

employées pour l’étude des APEO, Bisphénol A et des substances pharmaceutiques dans les matrices 

environnementales. Elle ne se veut en aucun cas exhaustive mais essaie de mettre en avant la 

complexité et les limites posées par l’étude de ces analytes dans les matrices environnementales 

complexes. 
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I   Description conceptuelle d’une méthode analytique 

I.1 Introduction  

Une analyse chimique repose sur un nombre d’étapes qui peuvent être divisées en 4 groupes. 

Elle repose sur la connaissance et la maîtrise du devenir des substances à chacune des étapes. En effet, 

il est important de prendre en considération qu’une erreur réalisée à l’une des étapes pourra avoir des 

conséquences sur l‘ensemble du protocole. Le Tableau 30 présente chacune des étapes et leurs limites. 

 

Tableau 30 : Description conceptuelle des étapes clés d’une méthode analytique. 

 

I.2 Les nouvelles approches liées à la mise en œuvre de la Directive Cadre-Eau (DCE) 

 

 

Figure 27 : Approche DCE pour atteindre le bon état écologique et chimique des milieux. 
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Les fondements de la DCE reposent sur la mise en œuvre de programmes conventionnels de 

surveillance de paramètres qualitatifs et quantitatifs. L’évaluation, sans ambiguïté, de la qualité 

chimique des eaux repose sur la capacité à assurer la comparabilité des données (comparabilité des 

données générées au sein d’un même laboratoire, comparabilité des données générées par les 

différents laboratoires mandatés dans les pays membres de l’Union Européenne, comparabilité des 

données générées dans le temps). Ainsi, l’efficacité des programmes de surveillance dépendra de la 

capacité des laboratoires à mesurer l’état chimique des masses d’eau et leur évolution. Les données 

analytiques vont donc constituer les fondements du système européen d’évaluation (Figure 27). 

 

II  Les techniques d’échantillonnages pour la mesure de la qualité chimique. Cas des 

matrices aqueuses 

II.1 Les techniques d'échantillonnages in situ. Echantillonnages ponctuels 

Les techniques d'échantillonnages ponctuels pour les composés organiques sont pour l'instant 

les techniques d’échantillonnages conventionnelles pour les analyses environnementales. Les 

exigences sont celles communes aux composés organiques en général : contenant ayant subi un 

processus de nettoyage poussé (calcination si le contenant est en verre, rinçage aux solvants, rinçage 

avec la matrice à échantillonner). Ils sont limités en termes de représentativité et ne donnent un état 

des lieux du site échantillonné que sur une courte échelle de temps (durée du prélèvement).  

Sur certains sites contrôlés (stations d'épuration, usine d'assainissement), des 

échantillonneurs automatiques peuvent être installés, couplés à des débitmètres ou des chronomètres. 

Ils permettent d'obtenir des échantillons moyennés (1 échantillon par heure, 1 échantillon par jour). 

Cette approche est intéressante mais limitée à une courte période de temps dès lors que l'on s'intéresse 

à des composés organiques dégradables tels que les alkylphénol-polyéthoxylés (respect de l'intégrité 

de l'échantillon). 

 

II.2 Les techniques de biomonitoring 

L’intérêt des "organismes sentinelles" ou "indicateurs" pour la surveillance des contaminants 

dans le milieu marin est reconnu au niveau international. Le phénomène de bioaccumulation 

fonctionnant à l’échelle de quelques mois permet de s’affranchir des fluctuations rapides des masses 

d’eaux et facilite l’analyse des teneurs plus élevées rencontrées dans les organismes. Les espèces 

d'huîtres comme de moules sont considérées comme d'efficaces bioaccumulateurs d'éléments traces et 

de différents micropolluants, avec une capacité limitée de régulation pour limiter l'accumulation de 

contaminants dans leurs tissus. Ceci justifie leur utilisation dans les réseaux nationaux de 

biosurveillance ("Mussel Watch" aux Etats-Unis, Réseau National d’Observation (RNO), Réseau 

INtégrateurs BIOlogiques (RINBIO), le projet Mytilos (réseau interrégional de surveillance de la qualité 

des eaux côtières par des bio-intégrateurs (moules) pour la protection durable de la Méditerranée 

Occidentale) en France ; Figure 28). En milieu côtier, l’utilisation de la moule, essentiellement du genre 
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Mytilus, pour l’étude des niveaux et des tendances de la contamination chimique a été proposée au 

début des années soixante-dix. En milieu d'eau douce, l'espèce la plus utilisée est la Dreissène 

(Dreissena polymorpha). Le biomonitoring utilisant la moule repose sur l’hypothèse que le contenu en 

contaminant chez cet animal reflète la concentration en contaminants biodisponibles dans l’eau sous 

forme particulaire et/ou dissoute, selon un processus de bioaccumulation. Les stratégies développées 

sont de deux types : celles qui utilisent les populations indigènes de moules sauvages ou cultivées 

(biomonitoring passif, cas du Réseau National d’Observation du Milieu Marin (RNO) de l’IFREMER) 

et celles qui ont recours aux transplants d’individus provenant d’un site de référence (biomonitoring 

actif, cas du Réseau Intégrateurs Biologiques (RINBIO) de l’IFREMER en Méditerranée). Elles ont 

fait leurs preuves pour de nombreux contaminants tels que les métaux, les Hydrocarbures Aromatiques 

Polycycliques (HAP), les Polychlorobiphényles (PCB), les Pesticides, mais elles apparaissent limitées 

dès lors que l'on s'intéresse à des composés présentant une plus forte polarité. De plus, bien que les 

mollusques bivalves présentent de faibles activités métaboliques ils n'en sont néanmoins pas 

dépourvus. Enfin, bien que ces espèces présentent une certaine plasticité, elles possèdent des 

optimums écologiques (température, salinité, etc. …), des rythmes de vie (ponte, taux de filtration, etc. 

…) de telle sorte que certaines comparaisons sont délicates. 

 

Figure 28 : Mise en œuvre du réseau de surveillance RINBIO (Réseau INtégrateurs BIOlogiques) 

(IFREMER). 

 

II.3 Les nouvelles techniques d'échantillonnages : l’échantillonnage intégratif 

Les techniques d’échantillonnages traditionnelles et de biomonitoring sont limitées pour 

fournir des approches par des évaluations holistiques pour les raisons suivantes : 

- le manque de capacité à échantillonner de manière intégrative dans le temps, 

- les techniques de biomonitoring sont dépendantes des conditions physico-chimiques du milieu 

(notamment en terme de survie des espèces exposées), 

- les résultats fournis sont toujours spécifiques (capacités de bioaccumulation, de biotransformation, 

phénomènes de résistance). 

A ces considérations s’ajoutent également les limites analytiques autant en termes de 

spécificité que de sensibilité. Afin de satisfaire aux nouvelles exigences de surveillance du milieu et de 

l’évaluation des risques, il est apparu nécessaire de développer des outils d’échantillonnages puissants 
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et plus représentatifs de l’exposition réelle dans le milieu. De ce constat est née l’idée de développer 

des outils d’échantillonnage passifs. 

 

II.3.1 Principes de l’échantillonnage passif 

L’échantillonnage passif peut être défini comme un mode d’échantillonnage où le flux de 

molécules du milieu échantillonné vers la phase stationnaire accumulatrice est libre et gouverné par 

une différence de potentiel chimique entre ces deux phases. Le temps nécessaire à l'atteinte de cet 

équilibre est dépendant de l’affinité de la phase collectrice pour le contaminant d'intérêt. Ceci a pour 

conséquence que la distinction entre échantillonnage à l'équilibre et échantillonnage non à l'équilibre 

n'est pas toujours très clair. Ce flux est maintenu jusqu'à l’apparition d’un équilibre (égalité des 

potentiels) entre l’échantillon et l’outil ou bien jusqu’à l’arrêt de la période d’échantillonnage par 

l’utilisateur. Ces échantillonneurs sont la plupart du temps utilisés dans la zone linéaire (déploiement 

de quelques jours à plusieurs mois) de la fonction mathématique décrivant l’accumulation : 

 

 

 

Un certain nombre d'outils ont été récemment développés et couvrent une large gamme de 

polarité (Figure 29). Les plus pertinents pour l’analyse des composés polaires (les APEO, le bisphénol 

A et les substances pharmaceutiques) sont brièvement présentés dans les paragraphes suivants. 

 

 

Figure 29 : Domaines d’application des échantillonneurs intégratifs pour les composés organiques 

(Vrana et al., 2005). 

 

0 1 2 3 4 5 6 7 8 9 10

log Kow

TWA-SPME

POCIS

Ecoscope

CHEMCATCHER

MESCO

nd-SPME

PISCES

SPMD

LDPE

LDPE : Low Density PolyEthylene
SPMD : Semi Permeable Membrane Device
PISCES: Passive water-sampling system 
MESCO :Membrane-enclosed sorptive coating
POCIS : Passive Organic Chemical Integrative
Sampler
TWA-SPME : Time Weighted Average- Solid
Phase Micro Extraction

t en jours 

C eau en µg composé.l-1 

C asdorbant en µg composé. g -1 d’adsorbant 

Masse adsorbant en g 

Rs adsorbant en l. j-1 

[C adsorbant* Masse adsorbant] 

 [Rs adsorbant * t] 
C eau = 



Contexte bibliographique 

 Page 95 
 

II.3.2 Outils d’échantillonnages intégratifs et composés polaires 

 

a) SPMD (Semi Permeable Membrane Device) 

Cet outil consiste en une membrane tubulaire en polyéthylène (LDPE), caractérisée par une 

longueur de 94 cm, une largeur de 2,54 cm et un diamètre de pores inférieur à 10 Å, remplie par un 

lipide de haut poids moléculaire : la trioléine. La membrane (LDPE) mime la membrane biologique, la 

trioléine est quant à elle le principal lipide retrouvé chez les organismes aquatiques. Cette technique a 

été employée avec succès pour la détermination des Hydrocarbures Aromatiques Polycycliques 

(HAP), des Polychlorobiphényles (PCB) et des alkylphénols dans différents systèmes aquatiques 

(Vrana et al., 2005 ; Harman et al., 2008). 

 

b) Chemcatcher® 

Le système utilise une membrane diffusion-limitation et une phase solide comme phase 

réceptrice. Deux types de configurations ont pu être utilisées. Pour l'échantillonnage des composés 

apolaires l’outil est constituée d'une membrane en polyethersulfone et d'une phase de type Empore 

Disk® C18, pour l'échantillonnage des composés organiques polaires l’outil est constitué d’une phase 

de type Empore Disk® SDB-XC (Revue par Vrana et al., 2005).  

 

c) POCIS (Polar Organic Compound Integrative Sampler) 

La POCIS consiste en un milieu de séquestration, phase solide, contenue entre 2 membranes 

microporeuses (diamètre de pore égal à 0,1 µm) en polyéthersulfone caractérisées par une surface 

efficace totale de 41 cm2. Les membranes agissent comme des membranes semi-perméables, qui 

laissent passer au travers les composés chimiques d’intérêt et ne laissent pas passer le matériel 

particulaire ni le matériel biogénique. La POCIS a été conçue pour mimer l’exposition directe 

(respiratoire) des organismes aquatiques aux contaminants chimiques présents en phase dissoute 

(Alvarez et al., 2004 ; Petty et al., 2004). Cette technique a été employée pour la détermination de 

pesticides (Mazzella et al., 2007), de stéroïdes (Vermeirssen et al., 2005 ; Matthiessen et al., 2006 ; 

Arditsoglou et Voutsa, 2008 ; Zhang et al., 2008b), d’alkylphénol-polyéthoxylés, du bisphénol A et 

des substances pharmaceutiques (Jones-Lepp et al., 2004 ; Alvarez et al., 2005 ; revue par Robinson et 

al., 2006 ; Togola et Budzinski, 2007 ; MacLeod et al., 2007 ; Mills et al., 2007 ; Arditsoglou et 

Voutsa, 2008 ; Zhang et al., 2008b). 
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Tableau 31 : Discussion autour des techniques d’échantillonnages. 

 Avantages Inconvénients 

Prélèvement ponctuel - rapidité à mettre en œuvre 

- non intégratif 

- nécessite de nombreuses étapes de préparation de 

l'échantillon (filtration, problème de conservation) 

- onéreux 

Biomonitoring 

- intégration à moyen terme 

- bioaccumulation des composés 

organiques 

- pertes en milieu naturel 

- métabolisation possible selon les classes de 

composés 

- problèmes pour les composés polaires 

- ne permet pas de connaître la concentration en 

analytes d'intérêt dans le milieu 

- nécessite de nombreuses étapes de préparation de 

l'échantillon (lyophilisation, broyage) 

- onéreux 

Echantillonnage intégratif 

- intégratif 

- peu onéreux 

- outil de screening 

- concentration des composés 

organiques 

- large gamme de polarité couverte 

- pertes en milieu naturel 

- nécessite de nombreux développements en 

laboratoire 

- dépendant des conditions du milieu 

 

III   Les techniques d'extraction 

L'analyse quantitative repose d'une part sur une instrumentation sensible et sélective et 

d'autre part sur une technique de préparation de l'échantillon puissante en termes de sélectivité et 

robustesse.  

 

III.1  Les techniques d'extraction des matrices liquides  

Dans le passé, l'extraction liquide-liquide (ELL) était la technique d'extraction des matrices 

liquides. Bien qu'elle demeure une technique de référence (dans un certain nombre de protocoles 

normalisés) elle a été supplantée par de nouvelles techniques d'extraction plus en adéquation avec les 

nouvelles exigences de techniques de laboratoire : facilité de mise en œuvre, économies de solvants et 

de temps, possibilité d’automatisation. L’extraction sur phase solide (SPE) est évidemment très 

largement employée. Le besoin important de données documentant la présence de molécules 

émergentes dans l’environnement a induit une généralisation des méthodologies d’analyse multi-

résidus conduisant à l’extraction simultanée de plusieurs dizaines de molécules appartenant à des 

groupes de micropolluants organiques diversifiés. Ainsi des méthodologies mettant en œuvre des 

phases C18 et de type polymérique (HLB, MCX, etc….) se sont généralisées (Castiglioni et al., 2005 ; 

revue par Petrovic et al., 2005). Cependant, force est de constater que ces approches ont conduit à la 
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génération d’un certain nombre de données erronées. Il est intéressant de noter l’essor des techniques 

d’extraction par MIP (Molecularly Imprinted Polymer) qui ont été appliquées avec succès pour 

l’extraction de micropolluants organiques dans des matrices aqueuses (Bisphénol A (Jiang et al., 2007 

; Pavlovic et al., 2007), nonylphénol (Guerreiro et al., 2008), certaines molécules pharmaceutiques: β-

bloquants (Gros et al., 2008), diéthylstilbéstrol (Jiang et al., 2008), sulfonamides, triméthoprime et 

tétracyclines (Revue par Pavlovic et al., 2007)) et dont le principal avantage réside dans leur très 

grande spécificité. 

D’autres techniques ont récemment émergé : Micro-extraction en phase solide (SPME Solid 

Phase MicroExtraction), la technique SBSE (Stir Bar Sorptive extraction), la micro-extraction en 

phase liquide (LPME : Liquid Phase MicroExtraction). Bien qu’employées de manière 
«confidentielle», elles présentent néanmoins des atouts (automatisation, chimie verte, économique, 

Tableau 32) qui peuvent, dans des actions précises, s’avérer extrêmement intéressants, l’ensemble de 

ces techniques est résumé dans le Tableau 32. 
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Tableau 32 : Principales méthodologies d’extraction pour l’analyse des matrices liquides. 

 Extraction Liquide-Liquide (ELL) Extraction en phase solide (SPE) Micro-Extraction en phase solide (SPME) Stir Bar Sorptive Extraction (SBSE) 

Principe 

Séparation d'un ou plusieurs 

constituants par l'utilisation de leur 

distribution inégale dans deux 

solvants pratiquement non-miscibles. 

Technique la plus largement utilisée 

aujourd’hui. 

Capture certaines familles de molécules sur 

un adsorbant et élution grâce à un solvant 

spécifique. 

Plonger une fibre de silice recouverte d’un adsorbant 

polymérique (Polydimethylsiloxane (PDMS), 

Polyméthylsiloxane/divinylbenzène (PDMS/DVB), 

Polyacrylate (PA)) ou d’un gel de silice greffée C18 

(le plus souvent) dans l’échantillon à analyser, ainsi 

exposée elle se charge des composés extractibles de 

la matrice. 

Même principe que la SPME. 

Barreau rotatif recouvert de phase 

polymérique de type 

Polydiméthylsiloxane (PDMS). Placé 

dans l’échantillon à analyser, ainsi 

exposé il se charge des composés 

extractibles de la matrice. 

Avantages - Méthode simple 

- Très large choix de phase 

silice greffée C18 pour les APEO et le BPA 

phase polymérique de type HLB, MCX pour 

les substances pharmaceutiques, 

- Technique rapide, robuste, économique. 

- Technique d’extraction et de purification 

- Technique rapide 

- Economique en solvant 

-Nécessite de faibles volumes d’échantillons 

-Technique d’extraction et de purification 

- Couplage avec GC, HPLC 

- Technique d’échantillonnage et 

extraction in situ. 

- Couplage avec GC, HPLC 

- Economique en solvant 

-Nécessite de faibles volumes 

d’échantillons 

-Technique d’extraction et de 

purification 

Inconvénients 

- Solvants non miscibles 

- Beaucoup de manutention 

- Formation d’émulsions 

- Larges volumes solvants, souvent 

toxiques 

- Problèmes de colmatage 

- Problèmes d’adsorption liés à l’emprunt de 

chemins préférentiels par les molécules 

ciblées. 

- Problèmes de reproductibilité 

- Nécessite un appareillage de thermo-désorption 

-Problèmes de reproductibilité 

- Problème de sensibilité dans certains cas 

- Nécessite un appareillage de thermo-

désorption 

-Problèmes de reproductibilité 

 

Références Kot-Wasik et al. (2007) 
Petrovic et Barcelo (2001); Fatta et al. (2007) 

; Pavlovic et al. (2007) 

Kumazawa et al. (2003) ; Basheer et Lee (2004) ; 

Basheer et al. (2005) ; Hu et al. (2006)  ; Petrovic et 

Barcelo (2001) ; Fatta et al. (2007); Pavlovic et al. 

(2007) 

Kawaguchi et al. (2004b) ; Kawaguchi 

et al. (2006b) ; Serôdio et al. (2005)  ; 

Petrovic et Barcelo (2001) ; Fatta et al. 

(2007); Pavlovic et al. (2007) 
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III.2  Les méthodes d’extraction des matrices solides ou semi-solides : particules, sédiments, 

boues, matrices biologiques 

Les méthodes d’extraction des matrices solides sont celles plus classiquement employées 

pour l’extraction des composés organiques. La méthode classique, l’extraction Soxhlet qui est longue 

et coûteuse (en temps et en solvant), s’est vue supplantée par des méthodes d’extraction accélérées par 

des micro-ondes (Microwave Assisted Extraction), par la température et la pression (Supercritical 

Fluid Extraction, Pressurized Liquid Extraction). Ces nouvelles techniques sont économiques en 

solvant, rapides mais représentent tout de même un investissement non négligeable (Tableau 33).  
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Tableau 33 : Principales méthodologies pour l’analyse des matrices solides. 

 Sonication Soxhlet M.A.E.Microwave Assisted Extraction P.L.E. Pressurized Liquid Extraction 

Principe 
L’échantillon est immergé dans un 

solvant et irradié par des ultrasons 

L’échantillon est placé dans un dé en 

fibre de verre ou cellulose, en utilisant 

un extracteur Soxhlet, l’échantillon est 

percolé par les vapeurs de solvants 

condensées, de manière répétitive 

L’échantillon est immergé dans un solvant 

absorbant les micro-ondes dans un matra et 

irradié avec une énergie micro-ondes. 

L’échantillon et le solvant sont chauffés et 

mis sous pression dans une cellule en métal. 

Quand l’échantillon est extrait il est 

automatiquement transféré dans un flacon de 

récupération (petit volume de solvant). 

Avantages 

- Méthode simple, 

- Echantillonnage multiple, 

- Rapide, 

-Economique en solvant. 

- Pas de filtration. 

- Extraction rapide, applicable à plusieurs 

échantillons simultanément. 

- Peu de solvant. 

- Températures élevées. 

- Extraction rapide, 

- Peu de solvant, 

- Températures élevées, 

- Pas de filtration, 

- Système automatisé. 

Inconvénients 

- Nécessite un solvant capable de 

conduire les ultra-sons, 

- Nécessite une étape de filtration et 

de purification supplémentaire. 

- Méthode n’est plus en accord des 

nouvelles exigences (temps, solvant), 

 

- Usage de solvant capable d’absorber les 

micro-ondes 

- Nécessite une ou plusieurs étapes de 

filtration 

- Haute température et haute pression 

Références 

Ternes et al. (2005) ; 

Aparicio et al. (2007) ; 

Fatta et al. (2007) ; 

Pavlovic et al. (2007) 

Song et al. (2007) ; 

Jonkers et al. (2005b); 

Morales-Munoz et al. (2005); 

Fatta et al. (2007); 

Pavlovic et al. (2007); 

Jones-Lepp et Stevens (2007) 

Togola et al. (2006); 

Liu et al. (2004); 

Pedersen et al. (2004) ; 

Fatta et al. (2007) ; 

Pavlovic et al. (2007) ; 

Jones-Lepp et Stevens (2007) 

Petrovic et al. (2002) ; 

Heemken et al. (2001) ; 

Fatta et al. (2007) ; 

Pavlovic et al. (2007) ; 

Jones-Lepp et Stevens (2007) 
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IV   Les techniques chromatographiques  

IV.1  L’analyse par chromatographie en phase gazeuse (CG) 

Les composés sont tout d’abord volatilisés dans l’injecteur et entraînés dans le 

chromatographe le long de la colonne chromatographique par un gaz vecteur le plus souvent de 

l’hélium. Après avoir été séparés, les composés arrivent au niveau du détecteur. 

 

IV.1.1  Les principaux couplages  

Concernant l’analyse des APEO, certains couplages avec un Détecteur à Ionisation de 

Flamme ou un Détecteur à Capture d’Electron (Lee, 1999) peuvent être rapportés. Pour les substances 

pharmaceutiques, quelques études se référant à des couplages avec un Détecteur à Capture d’Electron 

(Levasseur et al., 1985) peuvent être notées. 

Face à la complexité analytique posée par l’étude de ces composés dans l’environnement, 

ces méthodes de couplages se sont vues très rapidement limitées et ont été supplantées par les 

associations à des spectromètres de masse (CG-SM). 

 

IV.1.2   Les couplages de chromatographie en phase gazeuse-spectrométrie de 

masse 

 a) L'étape de dérivation 

De manière à améliorer la stabilité des composés, la sensibilité et la précision de l’analyse 

par CG-SM et CG-SM-SM, l’utilisation d’agents de dérivation est courante. Cette étape est 

indispensable à l’analyse des composés pharmaceutiques acides (anti-inflammatoires non stéroïdiens, 

β-bloquants, analgésiques, etc….) et alkylphénol-polyéthoxylés dès lors qu’ils possèdent plus de 2 

groupements «éthoxy». Pour ces derniers, l’analyse par CG-SM est limitée aux APEO possédant 

moins de 6 groupements éthoxy. Les réactions de dérivation les plus courantes sont des réactions de 

sylilation.   

 

IV.2  L'analyse par chromatographie en phase liquide (CL) 

La chromatographie en phase liquide (CL) est dite en phase normale lorsque que l’on oppose 

à une phase stationnaire polaire (type diol, amine) une phase mobile peu ou pas polaire. Cette 

approche a été très utilisée pour l’étude des APEO. Elle conduit à la séparation des composés selon 

leur caractère polaire (chaîne éthoxy) et permet ainsi la séparation de chaque éthoxymère d’un 

mélange donné (Lee, 1999).A cette chromatographie en phase normale est opposée une 

chromatographie dite en phase inverse (colonne stationnaire apolaire et phase mobile polaire). Dans le 

cas des APEO, cette technique conduit à la séparation des composés d’un mélange donné selon leur 

caractère apolaire (radical alkyl). Cette technique s’est généralisée et est désormais la plus répandue 

dans les études environnementales. Les phases stationnaires les plus répandues sont classiquement de 

type C18 Les composés sont généralement entraînés le long de la colonne par un mélange d’eau et de 
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solvant organique (méthanol, acétonitrile) afin de permettre leur séparation en phase liquide. Très 

souvent, ces phases mobiles se voient ajouter des tampons (ammoniums quaternaires, triéthylamine, 

acide acétique, acide formique, etc…) qui participent d’une part à l’analyse chromatographique 

(séparation de molécules présentant une faible affinité avec la colonne) et d’autre part à l’analyse en 

masse (augmentation de la sensibilité liée à une augmentation du rendement d’ionisation (ces sels 

augmentent la volatilité de molécules faiblement volatiles)). Les récentes évolutions des colonnes 

chromatographiques par la diminution de la longueur des colonnes, la diminution des diamètres 

internes, la diminution de la taille des particules, l’augmentation des températures de travail 

(chauffage des colonnes par effet Peltier, chauffage des solvants) ont permis de gagner en temps 

d’analyse et en résolution. Ces améliorations ont conduit à l’émergence de nouvelles technologies de 

chromatographie : UPLC (Ultra Performance Liquid Chromatography) Waters™, RRLC (Rapid 

Resolution Liquid Chromatography) Agilent™. Leur application à des matrices environnementales est 

en plein essor. Les travaux de Petrovic et al. (2006) et l’application de l’UPLC pour la séparation de 

27 composés pharmaceutiques dans des eaux de stations d’épuration peuvent être notés, à ces travaux 

s’ajoutent d’autres travaux plus récents (Boleda et al., 2007 ; Chang et al., 2008 ; Farre et al., 2008a ; 

Huerta-Fontela et al., 2008). 

  

IV.2.1  Les principaux couplages 

Bien que la bibliographie rapporte certaines analyses par chromatographie en phase liquide 

couplée à un détecteur UVs, chromatographie en phase liquide couplée à un détecteur à barrettes de 

diode (Lee,1999 ; revue par Fatta et al., 2007), ces techniques ont été supplantées par les techniques de 

chromatographie en phase liquide couplée à la spectrométrie de masse (revue par Fatta et al., 2007). 

 

IV.2.2  Les couplages de chromatographie en phase liquide - spectrométrie de 

masse (CL-SM)  

Les progrès des techniques d’electrospray associées à la haute sensibilité et sélectivité de la 

spectrométrie de masse ont fait des techniques de chromatographie en phase liquide couplée à la 

spectrométrie de masse (CL-SM) et de chromatographie en phase liquide couplée à la spectrométrie de 

masse en tandem (CL-SM-SM ) les techniques de choix pour l’analyse des composés polaires dans les 

matrices environnementales. Les analyses en mode MRM (qui détectent un ion précurseur et un ion 

fragment de l’analyte) sont la voie la plus sélective et la plus sensible pour mesurer les composés 

d’intérêt. Cependant, malgré leur grande spécificité, des mauvaises interprétations (faux positifs ou 

faux négatifs) peuvent toujours se dérouler en raison d’interférences de la matrice. La Commission 

européenne par la décision 2002/657/EC exige que deux transitions ou plus soient employées pour 

l'identification de n'importe quelle analyte dans le mode MRM. En outre, les rapports des réponses des 

différentes transitions doivent être calculés et comparés à ceux d’un échantillon référence. Pour 

confirmer des résultats positifs, les déviations des rapports d'ions et les déviations de temps de 
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rétention doivent être conformes à ceux fixés par la décision 2002/657/EC. Puisqu'il peut être difficile 

d'obtenir des réponses satisfaisantes pour des transitions moins sensibles, ceci peut poser des 

problèmes potentiels pour des échantillons de basse concentration. En raison probablement de la 

pénurie d'isotopes marqués, la décision 2002/657/EC n'a pas mentionné l'utilisation systématique 

d’isotopes marqués (étalons internes) du composé cible pour l'analyse qualitative et quantitative 

précise. 

L’utilisation de techniques de spectrométrie de masse haute résolution, ou trappes à ions 

peuvent être des outils intéressants pour lever les faux positifs (Revue par Hao et al., 2007). Les 

technologies de spectrométrie de masse à temps de vol ont récemment été appliquées  avec succès 

pour la confirmation de la présence de substances pharmaceutiques dans des matrices 

environnementales complexes (Revue par Hao et al., 2007).  

 

IV.3  Le problème des effets matriciels  

Les effets matriciels existent aussi bien dans les couplages de chromatographie en phase 

gazeuse avec la spectrométrie de masse que dans les couplages de chromatographie en phase liquide à 

la spectrométrie de masse et peuvent affecter la qualité des données générées. Ce phénomène est quasi 

incontournable dans les couplages CL-SM et CL-SM-SM, plus rare dans les couplages de CG-SM et 

CG-SM-SM. Il peut conduire à une suppression du signal partielle ou totale (faux négatif) ou à une 

amélioration du signal (faux positif). Il peut être généré par les composés interférents, présents dans 

les extraits, et qui possèdent des ions similaires (à la fois en SM simple ou en SM tandem). Dans cette 

configuration, le problème peut être résolu par le choix d’un autre ion non interféré, par l’amélioration 

de la procédure de préparation de l’échantillon (purification plus poussée, changement des conditions 

de préparation) ou par l’amélioration du processus de séparation (en CG comme en CL). L’effet 

matriciel engendré par une interaction/compétition entre l’analyte et les composantes de la matrice est 

propre aux couplages mettant en jeu la CL-SM (SM-SM, etc….). En effet, ces couplages reposent sur 

la mise en œuvre d’un processus d’ionisation dit à pression atmosphérique qui est considéré comme un 

processus d’ionisation doux par comparaison à l’impact électronique (processus qui entraîne une 

fragmentation de la molécule visée et également de la matrice) couramment employé dans les 

couplages de chromatographie en phase gazeuse à la spectrométrie de masse). En chromatographie en 

phase liquide couplée à la spectrométrie de masse, ce phénomène a été mis en évidence dans les 2 

modes d’ionisation les plus répandus (electrospay (ESI) et ionisation chimique à pression 

atmosphérique (APCI)), bien qu’il y ait une prévalence des effets en mode electrospray. Pour contrer 

ce phénomène, plusieurs stratégies sont classiquement mises en œuvre (Kloepfer et al., 2005 ; 

Antignac et al., 2005) : purification de l’échantillon (complexe à mettre en œuvre dans les analyses 

multi-résidus, problème de pertes des composés d’intérêt), amélioration de la technique de séparation 

(Van De Steene et al., 2006 ; UPLC Van De Steene and Lambert, 2008), dilution des extraits, 

division (split) avant l’entrée dans le spectromètre de masse. Plus généralement, la mise en œuvre de 
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différentes méthodes de calibration peuvent être envisagées pour générer des données plus fiables 

(méthode des ajouts dosés (Baugros et al., 2008), double étalonnage (étalon interne et étalon 

d’injection)).  

 

IV.4  Réflexion d’harmonisation à l’échelle européenne 

Comme se sont attachés à le montrer les chapitres précédents, il existe une grande 

hétérogénéité des données produites aussi bien en terme de présence que de devenir dans 

l’environnement pour les 3 classes de molécules : les alkylphénol-polyéthoxylés, le bisphénol A et les 

substances pharmaceutiques. Bien qu’elles puissent être inhérentes aux systèmes étudiés, une part de 

cette variabilité peut être expliquée par les méthodologies analytiques. En effet, la comparabilité et la 

fiabilité des données de surveillance sont essentielles pour toute étude de surveillance du milieu et 

pour la gestion des risques environnementaux. Pour les polluants émergents, des problèmes concernant 

la comparabilité des données au niveau européen et international existent. Les méthodes employées 

pour la surveillance des polluants émergents sont donc loin de l'harmonisation ou de la normalisation ; 

en conséquence elles peuvent souffrir de manque de validation.  

La garantie de la qualité signifie développer un système d’activités pour s'assurer que les 

mesures répondent à des normes de qualité définies avec un niveau de confiance suffisant. Le 

développement d'un plan pour la garantie de la qualité inclut de définir des objectifs de surveillance, 

de définir les procédures de contrôle de la qualité et d’évaluer cette qualité.  

Ces entreprises, dès lors que l’intérêt se porte à des composés émergents, sont difficiles à 

mettre en œuvre. En effet elles se confrontent à divers obstacles parmi lesquels : l’absence d’étalons 

analytiques, l’absence d’étalons analytiques marqués, l’absence d’échantillons de référence certifiés 

(CRM).  

En Europe, un effort tout particulier est porté pour améliorer la validité des données 

générées. Divers programmes de recherche ont ainsi intégré des essais inter laboratoires : 

- COST (coopération européenne dans le domaine de la recherche scientifique et technique) avec l’axe 

COST action 636 (xénobiotiques dans le cycle urbain de l’eau), dans le cadre de programme un essai 

inter laboratoires a été conduit sur le dosage des estrogènes dans les eaux de station d’épuration et les 

eaux naturelles ;  

- le projet NORMAN (Network of reference laboratories and related organisations for monitoring and 

bio-monitoring of emerging environmental pollutants) qui vise à créer un réseau de laboratoires de 

référence afin, d’une part, d’améliorer les échanges d’information et de données sur les contaminants 

émergents entre les différents acteurs mis en jeu et, d’autre part, d’encourager l’harmonisation et la 

validation des méthodes de mesure et des outils d’études afin de répondre aux demandes des autorités 

publiques. Dans ce contexte, plusieurs essais inter-laboratoires ont été conduits. Le premier pour la 

validation et l’harmonisation d’une méthodologie analytique pour le dosage, par les laboratoires de 

recherche, des estrogènes dans les eaux de sortie de stations d’épuration, le deuxième pour la 



Contexte bibliographique 

 Page 105 
 

validation et l’harmonisation d’une méthodologie analytique pour le dosage, par les laboratoires de 

référence, des anti-inflammatoires non stéroïdiens (Farre et al., 2008b) ; 

- Récemment, le centre commun de recherche (JRC) de la commission européenne a organisé un 

exercice d’inter comparaison pour le dosage des nonylphénols et octylphénols dans les eaux. Sept 

laboratoires ont participé à cette étude, les méthodologies utilisées ainsi que les résultats obtenus sont 

présentés dans la Figure 30. Comme le souligne Loos et al. (2008), une grande hétérogénéité demeure 

dans les méthodologies sélectionnées par les laboratoires et engendre une grande hétérogénéité dans 

les résultats obtenus, parmi lesquels la difficulté ou l’incapacité de quantifier les NP dans les matrices 

les moins chargées. Ils concluent que des efforts doivent être entrepris afin d’améliorer les 

méthodologies en bannissant l’usage des matières plastiques dans l’ensemble des protocoles 

(extraction SPE) et en effectuant des contrôles des blancs. 

 

 

Figure 30 : Exercice d’inter comparaison mis en œuvre par le JRC pour le dosage des AKP dans les 

eaux en Europe. 

a) méthodologies mises en œuvre par les laboratoires participants 

b) résultats quantitatifs  

 

Les Tableaux 34, 35 et 36 se proposent d’illustrer les faits exposés dans ce chapitre pour les 

alkylphénol-polyéthoxylés, le bisphénol A et les substances pharmaceutiques, respectivement. Pour 

chaque classe de molécules, une évolution des méthodologies analytiques mises en œuvre pour le 

traitement des échantillons environnementaux liquides (eaux) et solides (sédiments, boues et matières 

en suspension) est exposée. 

 

Lab 1 Lab 2 Lab 3 Lab 4 Lab 5 Lab 6 Lab 6 Lab 7
0,4 0,2 0,5 4150 2,3 1 11,82 1
non oui non na non oui oui non
SPE SPE SPE centrifugation ELL SPE SPE

OASIS HLB 
(200)

OASIS HLB (60) C18 Soxhlet Dichlorométhane C18 Envichrom P

Acétate d'éthyle
Acétate d'éthyle/ 
Dichlorométhane

Méthanol/ méthyl-
tertiobutyl éther 

MES 1 Acétone MES 2 Dichlorométhane

CL-SM (tq) CG-SM CL-SM (tq) CG-SM (it) CG-SM CL-Fluo CL-Fluo CG-SM
C18 DB-5 C18 ZB-5 DB-5 Phénylhéxyl Phénylhéxyl DB-1

2,1*150mm 30m 2,1*100mm 30m 30m 4,6*250mm 4,6*250mm 60m
219>133 149 219>133 207>119 135 230nm excitation 230nm excitation 135
227>112 135 219>106 221>119 302nm émission 302nm émission 107
205>106 121 225>112 235>119 57
205>133 107 205>133 278>119 220

292>119 77
4-n-NPd8 4-n-NPd8 4-n-NPd6 4-bromophénol 4-n-NPd8 non non Atrazine-d5

Lab 1 Lab 2 Lab 3 Lab 4 Lab 5 Lab 6 Lab 7

4-NP 200 176 50 110 178 250
4-n-OP 200 181 150 122 120

4-NP 683 957 74 510 495 600
4-t-OP 17 6,6 33 9 150
4-n-OP <0,44 <10

4-NP 70 110 <22 5,1* <10 80* <10
4-t-OP <5 1,5* <5 <50
4-n-OP <1 <0,5*

* données des phases solides en suspension

Etalons internes

NP/OP dans les solutions de standards (ng.ml-1)

NP/OP dans les extraits d'eaux de rivière (ng.ml-1

NP/OP dans les eaux e la rivière Pô (ng.L-1)

MES 1 : lyophilisation, extraction avec un mélange acétone/héxane(2:1), purification sur gel de silice

MES 2 : extraction Randall avec du méthanol chaud, purification sur gel de silice

Extraction

Méthode d'analyse

Extraction Randall

colonne

Volume d'échantillon
Filtration

Solvent d'élution

Ions ou longueurs d'onde suivis
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Tableau 34 : Méthodologies analytiques pour l’analyse des APEO et leurs métabolites dans les matrices environnementales (liquides et solides). 

 

 Analyse multi résidus Type de matrice Extraction / purification Méthode d'analyse  

NPEO+métabolites  

(CAPEC) 
Non Eaux SPE (Carbograph4) CL-ESI-SM Di Corcia et al., 1998 

NPEO + métabolites Non Eaux SPE (C18) CL-ESI-SM-SM Jonkers et al., 2001 

NPEO Non Eaux ELL CL-ESI-SM Ferguson et al., 2001 

NPEO, OPEO, AP-X Non Eaux SPE (C18) CL-ESI-SM Ferguson et al., 2001 

NPEO+métabolites Non Eaux SPE (Envicarb) CL-ESI-SM-SM Houde et al., 2002 

NPEO + métabolites Non Eaux SPE (Isolute ENV+) CL-ESI-SM-SM Loyo-Rosales et al., 2003 

AP Non Eaux SBSE (TD)-CG-SM Kawaguchi et al., 2004a 

AP Non Eaux SPE (MAX) CG-SM (PFBC) Boitsov et al., 2004 

NPEO+métabolites, OP Non Eaux SPE (HLB) CL-ESI-SM-SM Jahnke et al., 2004 

NPEO+métabolites Non Eaux SPE (Envicarb) CL-ESI-SM Berryman et al., 2004 

NPEO métabolites (CAPEC) Non Eaux SPE (Envi-Carb) 
CG-SM 

(n-propanol-acetyl/chloride) 
Cheng et al., 2007 

NPEO+métabolites 

OPEO+métabolites 

BPA 

Oui Eaux SPE (HLB) CL-ESI-SM-SM Loos et al., 2007 

 Analyse multi résidus Type de matrice Extraction / purification Méthode d'analyse  

NPEO+métabolites Oui (BPA) Boues Sonication/ SPE (C18) CL-ESI-SM Petrovic et al., 2002 

NPEO + métabolites Non Sédiments ASE/ SPE (CN) CL-ESI-SM-SM Loyo-Rosales et al., 2003 

NP Non Sédiments Sonication CG-SM Vitali et al., 2004 

NPEO Non Matrices biologiques 

 

ASE CL-ESI-SM-SM ; CL-Fluo Shmitz et al.,2005 

NP Non Sols/ Boues Soxhlet/ SPE (CN) CG-SM Gibson et al., 2005 

AP Non Sédiments ASE CG-SM (BSTFA) Fiedler et al., 2007 
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Tableau 35 : Méthodologies analytiques pour l’analyse du bisphénol A dans les matrices environnementales (liquides et solides). 

 

 

 

 

 

 Analyse multi résidus Type de matrice Extraction / purification Méthode d'analyse  

BPA Non Eaux MELL 
CG-SM (Trimethylchlorosilane, 

hexamethyldisilazane) 
Gonzalez-Casado et al., 1998 

BPA Oui Eaux ELL CG-SM (BSTFA+TMCS) Rudel et al., 1998 

BPA Non Lixiviats SPE (HLB) CL-ESI-SM-SM Sajiki, 2001 

BPA Non Eaux ELL CG-SM (BSTFA+TMCS) Kuch et Ballschmiter, 2001 

BPA Non Eaux (STP) SPE (C18)/ gel silice CG-SM (MSTFA) Spengler et al., 2001 

BPA Non Matrices biologiques SPE (HLB) CL-ESI-SM-SM Tominaga et al., 2006 

BPA Non Eaux 
BPA-imprinted silica SPE (MIP-

SPE) 
CL-UV Jiang et al., 2007 

BPA 
Oui (24 composés à usages 

domestiques) 
Eaux SPE (HLB) CL-ESI-SM-SM Trenholm et al., 2008 

BPA Oui (33 substances prioritaires) Eaux SPE Strata C-18 CG-SM Baugros et al., 2008 

 Analyse multi résidus Type de matrice Extraction / purification Méthode d'analyse  

BPA Oui (œstrogènes, NP, OP) Sédiments MAE/ Silice CG-SM Liu et al., 2004 

BPA Oui (œstrogènes, NP) Sédiments Ultrasonication/ Silice CG-SM Peng et al., 2006a 

BPA Oui (AP) Tissus biologiques ASE / SPE (CN) CL-ESI-SM-SM Shao et al., 2007 

BPA Oui (œstrogènes, NP, NP1EC) Sédiments Ultrasonication CL-ESI-SM Pojana et al., 2007 

BPA 

 
Oui (pesticides) Sédiments Ultrasonication / SPE (HLB) CL-ESI-SM-SM Kitada et al., 2008 
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Tableau 36 : Méthodologies analytiques pour l’analyse des substances pharmaceutiques dans les matrices environnementales (liquides et solides). 

Molécules /classes thérapeutiques Type de matrice Extraction / purification Méthode d'analyse  

AINS Eaux SPME CG-SM Carpinteiro et al., 2004 

AINS, perturbateurs endocriniens Eaux SPE (MAX) CG-SM Lee et al., 2005 

30 molécules (stéroïdes, Antibiotiques, Anti cancéreux, 

β-bloquants, …) 
Eaux 

SPE (MCX) 

SPE (Lichrolut EN) 
CL-ESI-SM-SM Castiglioni et al., 2005 

46 molécules (perturbateurs endocriniens, AINS, 

herbicides, antiépileptique, …) 
Eaux SBSE (PDMS) 

CG-TI-SM 

(MTBSTFA) 
Quintana et al., 2007 

21 molécules (β bloquants, corticostéroïdes) Eaux SPE (MCX) CL-ESI-SM-SM Piram et al., 2008 

Carbamazépine, diclofénac, acide clofibrique, 

diazépam 
Eaux SPE (C18) CL-LTQ orbitrap Gebhardt et Schroder, 2007 

20 molécules (antibiotiques, hypolipémiants, β 

bloquants, antiépileptique, NSAID, …) 
Eaux SPE (STRATA X)) CL-ESI-SM-SM Lacey et al., 2008 

28 molécules (antidépresseurs, antibactériens, drogues, Eaux SPE (MCX) CL-ESI-SM-SM Kasprzyk-Hordern et al., 2008a 

AINS Eaux SPME CG-SM Araujo et al., 2008 

Diclofénac, 4-Hydroxydiclofénac Eaux MISPE CL-DAD Sun et al., 2008 

Molécules /classes thérapeutiques Type de matrice Extraction / purification Méthode d'analyse  

AINS, Ivermectine Sédiments Ultra sonication CL-ESI-SM-SM Loffler and Ternes, 2003 

24 molécules (NSAID, antibiotiques, PCPP…) Boues Ultra sonication / (SPE MCX, SPE C18) CL-ESI-SM-SM Ternes et al., 2005 

9 molécules 

(désinfectants, AINS, estrogènes, …) 
Sédiments MAE / silice, cuivre activé 

CG-SM 

(pyridine/ BSTFA ; 2/1) 
Rice and Mitra, 2007 

AINS Sédiments MAME-SPE (HLB) CL-UV Cueva-Mestanza et al., 2008 

ELL : Extraction Liquide Liquide ; AINS : Anti-inflammatoires non stéroïdiens ; SPE : Extraction en Phase Solide ; SBSE : Stir Bar Sorptive Extraction ; SPME MicroExtraction en Phase 

Solide ; LPME MicroExtraction en Phase Liquide ; CG-SM : Chromatographie en Phase Gazeuse couplée à la Spectrométrie de Masse ; CG-SM-SM : Chromatographie en Phase Gazeuse 

couplée à la Spectrométrie de Masse en tandem ; CL-SM : Chromatographie en phase Liquide couplée à la Spectrométrie de Masse ; CL-SM-SM : Chromatographie en Phase Liquide couplée à 

la Spectrométrie de Masse en tandem ; CL-UV : Chromatographie en Phase Liquide couplée à un détecteur Ultra-Violet ; LC-DAD : Chromatographie en Phase Liquide couplée à un détecteur à 

barrettes de diode ; CN : Cyanopropyle ; HLB : Hydrophilic Lipophilic Balanced ; ASE : Extraction Accélérée par Solvant ; MAE Extraction Assistée par Micro-ondes ; MISPE Molecularly 

Imprinted Solid Phase Extraction ; BSTFA : [N, O-Bis(trimethylsilyl)trifluoroacétamide ; BSTFA+ TMCS : [N, O-Bis(trimethylsilyl)trifluoroacétamide +Trimethylchlorosilane ;MSTFA : [N-

Methyltriméthylsilyltrifluoroacétamide] 
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Bilan  

 

Ce premier chapitre a permis de situer la thèse dans le contexte actuel de la problématique liée 

à l’étude des contaminants émergents : alkylphénol-polyéthoxylés, bisphénol A et substances 

pharmaceutiques dans les systèmes naturels. L’état de l’art ici exposé s’est attaché à mettre en 

évidence la difficulté de l’étude de ces contaminants dans l’environnement au regard de : 

 


 la complexité et la grande hétérogénéité des structures et des propriétés 

physicochimiques des molécules évoquées, 

 


 la diversité et la complexité de l’étude de leurs sources (grande hétérogénéité des 

données publiées dans la littérature aussi bien en termes de présence que de devenir). Notamment au 

travers de la compréhension de leur devenir au sein des stations d’épuration: point d’entrée vers les 

écosystèmes aquatiques de ces contaminants, 

 


 la complexité de l’étude de leur devenir dans les systèmes aquatiques (grande 

hétérogénéité des données environnementales publiées dans la littérature), 

 


 la complexité analytique que représente l’étude de ces molécules dans des matrices 

environnementales complexes, 

 


 leurs potentiels toxiques considérés individuellement et du besoin d’évaluation de leurs 

effets en mélanges (dans des concentrations réalistes d’un point de vue environnemental). 
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Objectifs de thèse  

 

Les travaux de recherche conduits dans le cadre de cette thèse se sont organisés selon deux 

axes principaux : un axe méthodologique et un axe applicatif. 

Dans un premier temps, cette étude s’est attachée à développer, optimiser et valider des 

méthodologies et des procédures analytiques pour l’analyse de substances émergentes dans les 

matrices environnementales (dissoutes, solides, biologiques) notamment les matrices complexes. Dans 

le même temps, de nouvelles approches pour le monitoring des molécules organiques par le 

développement d’un nouvel outil d’échantillonnage, les POCIS (Polar Organic Compounds Integrative 

Sampler), a été entrepris, d’une part par des expérimentations en laboratoire et d’autre part par des 

validations in situ. 

Dans un deuxième temps, cette étude s’est attachée à renseigner le cycle biogéochimique des 

alkylphénol-polyéthoxylés, principalement, et des substances pharmaceutiques, secondairement.  

Un important effort de recherche a été accordé à l’étude de la présence et du devenir de ces 

deux classes de molécules dans les stations d’épuration, permettant ainsi l’acquisition du premier jeu 

de données nationales représentatif pour ces deux classes de molécules. Le deuxième axe fort de ce 

travail reposant sur la considération de l’ensemble des phases rejetées dans l’environnement : les 

phases dissoutes, les phases solides en suspension et les boues.  Des échantillonnages répétés dans le 

temps et dans l’espace ont permis l’observation des dynamiques propres à ces systèmes ainsi que leur 

impact sur le milieu récepteur, notamment au travers de  l’étude de l’impact de la station d’épuration 

de Marseille sur la calanque de Cortiou et la rade de Marseille.  

Une évaluation de la qualité des milieux aquatiques français : dulçaquicoles, estuariens et 

littoraux a également été conduite.   

La Seine et plus spécialement l’estuaire de Seine, de part la très forte pression anthropique 

exercée sur son bassin versant a fait l’objet d’un monitoring de 5 années (2002-2006). Ainsi de 

multiples campagnes d’échantillonnage ont été menées et ont permis  d’identifier et de caractériser les 

sources de la contamination ainsi que leurs dynamiques, d’étudier le devenir des contaminants dans 

l’estuaire ainsi que les dynamiques intrinsèques aux systèmes, d’étudier les phénomènes de transferts 

vers d’une part le milieu marin et d’autre part vers les organismes biologiques. Un effort de recherche 

particulier a été porté sur le rôle des phases solides en suspension dans le cycle biogéochimique des 

APEO.  

Afin d’acquérir une meilleure représentativité de l’état de contamination des systèmes 

français, 4 autres grands estuaires français ont été étudiés : la baie de l’Authie, la baie de la Vilaine, 

l’estuaire de la Gironde et l’estuaire de l’Adour.  
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MATERIEL ET METHODES 
 

Une analyse chimique repose sur un nombre d’étapes qui peuvent être divisées en 4 groupes. 

La justesse et la représentativité des données générées reposent sur la connaissance et la maîtrise du 

devenir des substances à chacune de ces étapes : échantillonnage, conservation, préparation de 

l’échantillon et analyse/détection. 

Dans une première partie, les différentes études, en milieu naturel et en laboratoire, réalisées 

dans ce travail sont décrites. Dans une seconde partie, les différentes techniques analytiques utilisées 

pour le dosage des molécules d’intérêt, dont le choix est brièvement exposé, dans les matrices 

environnementales complexes au cours de ces études sont décrites.  
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I  Sites d’études et expérimentations 

I.1 Etude du devenir dans les stations d’épuration  

Seize stations d’épuration représentatives des principaux processus d’épuration des eaux 

usées présents à l’échelle nationale ont été étudiées. De plus, certaines usines d’assainissement 

possédant des traitements avancés dits tertiaires ont été sélectionnées en France et en Espagne, et ont 

été évaluées spécifiquement par rapport à ces traitements qui pourront se généraliser à l’avenir. En 

raison d’un contexte national délicat en matière d’assainissement des eaux usées et pour garantir un 

contrôle des données et de leurs interprétations, les informations concernant les caractéristiques des 

stations d’épuration (nom de l’usine de traitement des eaux usées, localisation, milieu récepteur, 

processus mis en œuvre pour le traitement des eaux usées) ainsi que les plans d’échantillonnage seront 

présentés dans une annexe confidentielle (Annexe III) attachée à ce document afin d’assurer la 

confidentialité des données.  

 

I.2 Etude du devenir dans les écosystèmes aquatiques  

Un certain nombre de sites ont fait l’objet d’investigations plus ou moins poussées et par 

différentes approches:  

- Les principaux estuaires français avec un intérêt plus particulier porté à l’estuaire de la Seine,  

- les milieux dulçaquicoles (la Jalles d’Eysines, l’Adour, la Garonne,…) 

- les milieux marins côtiers : plus particulièrement la rade de Marseille, 

Ils seront présentés dans les paragraphes suivants. 

 

I.2.1  L'estuaire de la Seine et ses affluents  

a) Généralités sur l’estuaire 

L’estuaire de la Seine, exutoire naturel de la Seine, concerne le territoire compris entre le 

barrage de Poses en amont - premier barrage sur la Seine, et limite d’influence de la marée dynamique, 

situé à 160 km en amont du Havre - jusqu’à la partie orientale de la baie de Seine. Trois zones sont 

distinguées (Figure 32) : l’estuaire amont ou estuaire fluvial, l’estuaire moyen (zone de variation de la 

salinité) et l’estuaire aval ou estuaire marin (de Honfleur à la partie orientale de la baie de Seine 

limitée au nord par le parallèle du Cap d’Antifer et à l’ouest par le méridien de l’Orne). Le débit du 

fleuve à Poses est relativement faible (480 m3.s-1, moyenne des 30 dernières années) avec des crues 

automnales ou hivernales qui dépassent 2200 m3.s-1 et des étiages avec des débits inférieurs à 100 m3.s-

1. Situé en Manche, l’estuaire de la Seine est un estuaire dont le fonctionnement hydrodynamique est 

fortement influencé par la marée. Ce régime macrotidal induit dans la zone de mélange des eaux 

marines et des eaux douces (estuaire moyen) la formation d’un bouchon vaseux ou zone de turbidité 

maximale qui joue le rôle de piège de matières en suspension, de régulateur physico-chimique pour 



 
 

bon nombre d’éléments naturels (oligoéléments) ou polluants notamment les métaux par des 

phénomènes de désorption, adsorption… et 

à l’oxydation de la matière organique piégée dans cette zone. Les p

pressions sont résumées dans l’Annexe 

 

Figure 
 

b) Les principaux affluents

Les 9 principaux affluents de l’estuaire de Seine ainsi que leurs principales 

sont présentés dans l’Annexe IV.

c) Campagnes d’échantillonnage

Quatre campagnes ont été réalisées en 2004

ZOOTOX 2), du 20 au 23 septembre (MEDOC1) et 

concerné des eaux de l’estuaire et de la baie de Seine (phase dissoute et phase particulaire). Des 

sédiments ont également été prélevés. Les différentes campagnes de prélèvements ont concerné des 

points fixes (Pont de Normandie) avec des s

dulçaquicole vers le milieu marin. Les prélèvements ont été réalisés de

Une campagne a été réalisée du 7 au 12 mai 2005. Des prélèvements d’eaux ont été 

effectués, manuellement depuis les berges et les ponts, au niveau des principaux affluents de l’estuaire 

aval, au niveau de 3 stations d’épuration de la Seine ainsi qu’à Poses (Barrage) considéré comme la 

bon nombre d’éléments naturels (oligoéléments) ou polluants notamment les métaux par des 

phénomènes de désorption, adsorption… et qui entraîne une décroissance de la teneur en oxygène liée 

à l’oxydation de la matière organique piégée dans cette zone. Les principales caractéristiques et 

’Annexe IV). 

Figure 31 : Présentation de l’estuaire de Seine 

Les principaux affluents 

Les 9 principaux affluents de l’estuaire de Seine ainsi que leurs principales 

. 

Campagnes d’échantillonnage 

���� Campagnes 2004 

Quatre campagnes ont été réalisées en 2004 : le 16 mai (SA ZOOTOX1), 

23 septembre (MEDOC1) et le 30 novembre (RNO). Les 

concerné des eaux de l’estuaire et de la baie de Seine (phase dissoute et phase particulaire). Des 

sédiments ont également été prélevés. Les différentes campagnes de prélèvements ont concerné des 

points fixes (Pont de Normandie) avec des suivis de cycles de marées et des transects du milieu 

dulçaquicole vers le milieu marin. Les prélèvements ont été réalisés depuis des navires

���� Campagnes 2005  

Une campagne a été réalisée du 7 au 12 mai 2005. Des prélèvements d’eaux ont été 

ellement depuis les berges et les ponts, au niveau des principaux affluents de l’estuaire 

aval, au niveau de 3 stations d’épuration de la Seine ainsi qu’à Poses (Barrage) considéré comme la 
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bon nombre d’éléments naturels (oligoéléments) ou polluants notamment les métaux par des 

une décroissance de la teneur en oxygène liée 

rincipales caractéristiques et 

 

Les 9 principaux affluents de l’estuaire de Seine ainsi que leurs principales caractéristiques 

16 mai (SA ZOOTOX1), le 15 juin (SA 

30 novembre (RNO). Les prélèvements ont 

concerné des eaux de l’estuaire et de la baie de Seine (phase dissoute et phase particulaire). Des 

sédiments ont également été prélevés. Les différentes campagnes de prélèvements ont concerné des 

uivis de cycles de marées et des transects du milieu 

navires. 

Une campagne a été réalisée du 7 au 12 mai 2005. Des prélèvements d’eaux ont été 

ellement depuis les berges et les ponts, au niveau des principaux affluents de l’estuaire 

aval, au niveau de 3 stations d’épuration de la Seine ainsi qu’à Poses (Barrage) considéré comme la 
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limite amont de l’estuaire. Des prélèvements ont été simultanément réalisés tout au long de l’estuaire 

de manière à obtenir un état global à un instant donné de l’état de contamination de l’estuaire de la 

Seine. 

���� Campagnes 2006 

Deux campagnes ont été réalisées en 2006 : une première du 26 au 27 février 2006 (SA 

AFFLUENTS 2) et la deuxième du 4 au 5 juillet 2006 (SA AFFLUENTS 3). Ces 2 campagnes de 

prélèvements ont fait suite à une première campagne qui avait eu lieu en mai 2005. La première 

campagne s’est déroulée dans des conditions hivernales : température basse, fort débit de la Seine (la 

campagne succède à un épisode de crue). Au contraire cette deuxième campagne s’est déroulée dans 

des conditions estivales : température élevée, débit d’étiage. L’ensemble des campagnes est résumé 

dans le Tableau 37. 

Tableau 37 : Tableau récapitulatif des campagnes réalisées en Estuaire et Baie de Seine. 

 
Année 

2004 

Année 

 2005 

Année 

2006 

 16-mai 15-juin 20 / 23-septembre 
30-

novembre 
7 /12 -mai 26 / 27- février 4/5- juillet 

Affluents (10)     � � � 

Transect dans l'estuaire (Poses 

à Honfleur) 

    � � � 

Point fixe (Honfleur) � � �     

Transect en estuaire marin  �  �    

 

 

Figure 32 : Localisation des points d’échantillonnages en baie de Seine dans le cadre du programme de 

surveillance RNO (IFREMER). 
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Figure 33 : Localisation des points d’échantillonnages dans le cadre du suivi de l’estuaire de Seine et 

des 9 principaux affluents (Seine aval). 

 

I.2.2  Le continuum Garonne -Estuaire de la Gironde (France) 

a) Généralités sur le système  

Exutoire des vastes bassins de la Garonne et de la Dordogne, le système fluvio-estuarien de 

la Gironde est le plus vaste estuaire macrotidal européen avec ses 635 km2 de superficie à marée haute 

et une influence s’exerçant à plus de 150 km de la mer (Figure 34). Il est formé de la confluence de la 

Dordogne et de la Garonne qui drainent un bassin versant de 71 000 km2. L’embouchure se situe à une 

distance de 76 km du point de rencontre des deux rivières et de l’estuaire. Situé dans le Golfe de 

Gascogne, l’estuaire de la Gironde se caractérise par un fonctionnement hydrodynamique fortement 

influencé par la marée avec un marnage pouvant atteindre 5 m au niveau de l’embouchure. Le temps 

moyen de résidence des eaux varie entre 20 et 90 jours et les vitesses de courant, très variables, 

peuvent atteindre 3 m.s-1. Les concentrations en matières en suspension (MES) responsables de la 

turbidité dépassent fréquemment 400 mg.l-1 en surface ; 10 g.l-1 est une valeur courante à proximité du 

fond. Ce système est caractérisé par une forte production biologique et une biodiversité considérée 

comme proche de l’état naturel qui se traduisent par le maintien de l’intégralité du cortège de poissons 

migrateurs fréquentant l’estuaire et une exploitation de la ressource biologique importante (pêcheries). 

Les principales caractéristiques et pressions du système sont résumées dans l’Annexe V. 
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Figure 34 : Présentation de l’estuaire de la Gironde. 

 

b) Campagnes d’échantillonnage 

Une campagne d’échantillonnage s’est déroulée en novembre 2005 et a couvert l’ensemble 

du système depuis l’aval de Toulouse jusqu’à l’embouchure au Verdon. Afin de pouvoir effectuer des 

comparaisons ; les prélèvements des points sous influence de la marée ont été réalisés à marée basse. 

Les prélèvements d’eaux ont été effectués manuellement depuis les berges et les ponts (Figure 35).  
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Figure 35 : Localisation des points d’échantillonnage suivis sur la Garonne. 

 

I.2.3  Le continuum Adour-Estuaire de l'Adour (France) 

a) Généralités sur le système  

L’Adour, rivière d’une longueur de 309 km draine un bassin versant de près de 16 880 km2 

divisé en 4 sous bassins hydrographiques (Figure 36). Les caractéristiques remarquables du système 

sont présentées dans l’Annexe VI. 

 

Figure 36 : Bassin hydrographique de l’Adour. 
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b) Campagnes d’échantillonnage 

Une campagne d’échantillonnage s’est déroulée en novembre 2005 et a couvert l’ensemble 

du système depuis Saint-Mont jusqu’à l’embouchure à Bayonne. Afin de pouvoir effectuer des 

comparaisons les prélèvements des points sous influence de la marée ont été réalisés à marée basse. 

Les prélèvements d’eaux ont été effectués manuellement depuis les berges et les ponts (Figure 37). 

 

Figure 37 : Localisation des points d’échantillonnage suivis sur l’Adour. 

 

I.2.4  L’Estuaire de la Vilaine 

a) Généralités  

La Vilaine est le fleuve le plus important du Nord-Ouest de la France (225 km de long). Son 

estuaire est l'exutoire naturel des eaux d'un vaste bassin versant essentiellement agricole (environ 10 

400 km², soit le tiers de la surface de la Bretagne). La Baie de Vilaine est un écosystème abrité, les 

courants de marée y sont faibles et le temps de résidence des eaux supérieur à 50 jours (Figure 38).  
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Figure 38 : Présentation du bassin versant de la Vilaine et des principales pressions anthropiques. 

b) Campagnes d’échantillonnages 

Des campagnes d’échantillonnages ont été réalisées en 3 points (Figure 39):  

- le site du barrage d’Arzal, point d’entrée de l’estuaire de la Vilaine, a fait l’objet d’échantillonnages 

moyennés hebdomadaires asservis au débit durant la période du 18/04/06 au 24/07/06 (12 semaines). 

- les sites du Halguen (47°30.05 N 2°29.63 W) et du Maresclé (47°27.83 N 2°29.75 W) situés dans la 

zone d’influence du panache de la Vilaine ont fait l’objet d’échantillonnages ponctuels bimensuels 

durant la période du 18/04/06 au 24/07/06. 

 

Figure 39 : Localisation des points d’échantillonnage dans le cadre du suivi de l’estuaire de la Vilaine. 
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I.2.5  La baie d’Authie  

a) Présentation générale 

L’Authie est un petit fleuve côtier de 103 km qui draine un bassin versant de 1 305 km2 à 

dominante agricole (80% des surfaces à usages agricoles). Son bassin versant présente une faible 

anthropisation : 75 000 habitants soit une densité de population de 57 habitants au km2. Elle se jette en 

Manche (Figure 40).  

 

 

Figure 40 : Présentation de l’estuaire de l’Authie. 

 

b) Campagnes d’échantillonnages 

Des campagnes d’échantillonnages se sont déroulées dans la zone intertidale au niveau de la 

vasière nord (50-22.2170 N ; 1-36.4840 E) en février, mai, septembre et novembre 2004. Afin de 

pouvoir assurer la comparaison des données, les prélèvements d’eaux ont été réalisés, manuellement, à 

l’étal de basse mer.  

 

I.2.6  La méditerranée orientale : la rade de Marseille et la calanque de Cortiou 

(France) 

a) Généralités 

Le littoral marseillais est fortement urbanisé et industrialisé, diverses sources de 

contaminations chimiques ont été identifiées et sont représentées dans la Figure 41. La rade de 

Marseille est concernée par les rejets de plusieurs réseaux d’assainissement : Marseille, Iles du Frioul, 

le Rove, Ensues la Rodonne, Sausset les Pins, Cassis (hors zone mais à proximité. Avec 17 000 

hectares desservis concernant 16 communes et près d’un million d’habitants, le réseau 

d’assainissement de l’agglomération marseillaise est l’un des plus importants de France. Le réseau 

d’assainissement collecte les eaux usées des particuliers mais aussi celles des centres hospitaliers, 

laboratoires, établissements scolaires et autres établissements industriels. 
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Figure 41 : Schéma de principe des différents apports en contaminants chimiques au milieu marin de 

l’agglomération marseillaise. 

 

La station dispose d’un procédé de traitement physico-chimique d’une capacité de 1 600 000 

équivalents-habitants. Cet ouvrage possède une filière de traitement qui permet de retenir les éléments 

grossiers et d’éliminer une grande partie des particules en suspension, répondant ainsi aux normes 

réglementaires en vigueur. Les eaux traitées sont rejetées vers l’Anse de Cortiou. 

b) Campagnes d’échantillonnage 

 

 

Figure 42 : Localisation des points d’échantillonnage suivis au  niveau du littoral marseillais. 
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CHANTIER 46 5.20.346198 43.19.2707136 

PLANIER 76 5.13.14897 43.12.592335 
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Deux campagnes de prélèvements embarquées (navire océanique côtier Europe, IFREMER) 

ont été réalisées. La première campagne s’est déroulée en novembre 2004. Son but était d’étudier 

l’influence locale du rejet de la station d’épuration de Marseille dans un milieu semi fermé : la 

calanque de Cortiou. Des prélèvements d’eaux ont été réalisés en sub-surface (profondeur 0.1m) dans 

le panache de dilution du rejet, parallèlement des prélèvements de sédiments de surface ont été réalisés 

à l’aide d’une benne Reineck. La seconde campagne s’est déroulée en novembre 2006 et visait d’une 

part à compléter les résultats et tendances obtenus lors de la première campagne dans la calanque de 

Cortiou et d’autre part à caractériser le profil de contamination de la rade marseillaise en 3 points : le 

Planier (site marin sans influences anthropiques directes), les sites d’Huveaune et du Chantier (sites 

sous impacts anthropiques directs). Des prélèvements d’eaux ont été réalisés en sub-surface 

(profondeur 0,1m) dans le panache de dilution du rejet ainsi qu’en chacun des points de la rade 

marseillaise, parallèlement des prélèvements de sédiments de surface ont été réalisés à l’aide d’une 

benne Reineck sur chacun des sites (Figure 42). 

c) Campagnes d’échantillonnage biologique 

� Espèce ciblée : Le merlu Merluccius merluccius 

 Figure 43 : Le merlu Merluccius merluccius. 
 

Appelé merlan en Méditerranée, le merlu du golfe du Lion est présent sur l'ensemble du 

bassin méditerranéen (mais plus abondant dans l'ouest et en Adriatique) (Figure 43). Espèce démersale 

à très large répartition dans le golfe du Lion depuis le secteur côtier (30 m) jusqu'à 800 mètres, elle est 

très fréquente entre 80 et 150 mètres de profondeur et commune sur les bords du talus continental. Si 

pendant la vie larvaire, l'alimentation est constituée de crustacés copépodes planctoniques, à son 

arrivée sur le fond, le merlu mange des crustacés (euphausiacés et mysidacés) ainsi que des poissons 

benthiques (gobies). Les adultes se nourrissent surtout de poissons (plus de 90% des proies), jeunes 

merluccidés, chinchards, gobies, maquereaux, argentines, anchois, sardines, sprats, cépoles. Le merlu 

se nourrit beaucoup plus au printemps qu'en été et en automne. La croissance présente une très grande 

variabilité individuelle fortement liée à la durée de la période de reproduction qui peut s'étaler sur 

toute l'année. Le merlu se reproduit toute l'année mais surtout d'octobre à janvier, sur les fonds de 100 

à 300 mètres. Dans le golfe du Lion, la première maturité sexuelle est atteinte vers 3-4 ans 

(IFREMER).  
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Figure 44 : Localisation des campagnes d’échantillonnages biologiques dans le Golf du Lion. (a) 
Campagne mai 2005, (b) Campagne octobre 2006. 

 

La première campagne d’échantillonnages s’est déroulée en mai 2005 au niveau de 4 sites du 

Golf du Lion (Figure 44a) : site TECPEC, site I, site III et site IV, situés sue la marge continental 

(profondeur de 30 à 100m). La deuxième campagne d’échantillonnage s’est déroulée en octobre 2006 

au niveau de 3 sites du golfe du Lion : site V, site VI et site XVII (Figure 44b), situés dans la partie 

centrale du Golf du Lion (profondeur de 200 à 400 m). 

 

I.3 Développement des nouveaux outils d’échantillonnage intégratifs 

Le développement et la validation des outils d’échantillonneurs intégratifs Polar Organic 

Compound Integrative sampler POCIS reposent sur 2 étapes. La première étape consiste à déterminer 

expérimentalement les taux d’échantillonnages (Rs) pour chacune des molécules d’intérêt. La 

deuxième étape consiste en une validation des résultats expérimentaux par des déploiements in situ des 

POCIS  

 

I.3.1 Expérimentation en laboratoire 

Deux expérimentations en laboratoire, complémentaires, ont été conduites. Leur principe est 

exposé ci-dessous. 
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a) Expérimentation 1 : 

Figure 45: Schéma du dispositif d’expérimentation en aquarium. 
 

Afin de réaliser des expérimentations en milieu dynamique un dispositif expérimental a été 

réalisé (Figure 45). Son intérêt est de permettre l’accès à des réplicats exposés dans des conditions 

identiques (l’exposition par bécher ne permet pas l’exposition simultanée de plusieurs POCIS dans 

une même unité expérimentale). Il permet également de tester les effets cinétiques (vitesse) sur les 

taux d’échantillonnage des POCIS, avec ses 2 niveaux d’exposition (intérieur/extérieur). 

L’unité expérimentale est un aquarium en verre de dimension 80x40x30cm contenant 70 

litres d’eau du robinet (dont le bruit de fond en molécules d’intérêt a été vérifié auparavant). Deux 

systèmes d’exposition ont été placés en son sein. Durant l’ensemble de l’expérimentation les systèmes 

sont placés dans une pièce thermostatée, à l’abri de la lumière naturelle. Pour prévenir les phénomènes 

de dégradation induits par la lumière artificielle qui peut être présente dans la pièce, les aquariums sont 

recouverts de carton. Durant l’ensemble de l’expérimentation la température et le pH sont suivis 

quotidiennement. Pour déterminer les Rs le plan expérimental présenté dans la Figure 46 a été mis en 

œuvre.   
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Figure 46 : Plan expérimental de l’expérience cinétique. 

 

b) Expérimentation 2: 

Afin de compléter les résultats de l’expérience sur les APEO et le BPA, une seconde 

expérience en bécher a été réalisée. Les POCIS ont été exposées, individuellement dans des béchers de 

2 litres, à un milieu supplémenté en analytes d’intérêt, agité par agitation magnétique avec un 

renouvellement du milieu quotidien (changements d’eaux, concentration nominale de 1 µg.l-1). Le plan 

d’expérimentation est présenté dans la Figure 47. 

 

 

Figure 47 : Plan expérimental de l’expérience cinétique 2. 

 

I.3.2  Expérimentations sur le terrain 

Afin de valider les outils, plusieurs sites ont fait l’objet de déploiements et d’investigation, 

plus ou moins poussée. Un site d’étude principal, la Jalle d’Eysines, et des sites d’études secondaires 

sont présentés ci-dessous. 
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a) La Jalle d’Eysines 

De par sa proximité du laboratoire et sa faible complexité, le site d’étude de la Jalle 

d’Eysines a été choisi comme site principal de validation in situ des outils d’échantillonnages. Une 

approche combinant des échantillonnages intégratifs et des échantillonnages ponctuels a été mise en 

œuvre selon le protocole exposé dans la Figure 48. Trois points d’études ont été sélectionnés au niveau 

de la Jalle : un point Amont et un point Aval par rapport au rejet de la station d’épuration de 

Cantinolles et le rejet de la station d’épuration (Figure 49). 

 

 

Figure 48 : Plan d’échantillonnage de la manipulation de validation in situ des POCIS au niveau du 
site de la Jalle d’Eysines. 

 

 

Figure 49 : Localisation des points de suivi au niveau du site de la Jalle d’Eysines. 
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b) L’Alsace : le système de la rivière Lauch 

La rivière Lauch est une petite rivière alsacienne qui appartient au bassin collecteur du Rhin, 

d’une longueur de 50 km et dont le bassin versant, à dominante agricole (forte activité viticole), a une 

superficie de 390 km2. Une campagne de déploiement s’est déroulée de mai à juin 2006 sur 4 sites : un 

piézomètre d’eaux souterraines servant à satisfaire une offre d'eau potable (ESO7), la rivière Lauch en 

amont de l'usine de traitement des eaux résiduaires (ESU 3), la rivière Lauch en aval de l'usine de 

traitement des eaux résiduaires (ESU 4), l'effluent de la station d’épuration de Merxheim (RESO7) 

(Figure 50, Figure 51). 

 

Figure 50 : Plan d’échantillonnage conduit lors du déploiement au niveau du système de la Lauch. 

 

 1cm/ 300m 

Figure 51 : Localisation des points d’échantillonnages au niveau du système de la Lauch (SWIFT). 
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II  Les méthodologies analytiques mises en œuvre  

II.1 Remarques générales 

Toute la verrerie utilisée au cours de l’analyse est préalablement lavée à l’eau et au détergent 

puis chauffée à 450°C pendant 6 heures afin d’éliminer toute trace organique. Pour éviter les 

contaminations croisées, il existe différents jeux de verrerie dédiés selon le niveau de contamination 

des matrices (matrices naturelles, matrices de station d’épuration). Afin d’assurer la validité des 

analyses effectuées, les solvants et réactifs sont de haute qualité et testés pour leur bruit de fond en 

composés d’intérêt, notamment en ce qui concerne le nonylphénol et le bisphénol A : 

- l’acétone et l’acétate éthyle (Multisolvent, HPLC grade, Sharlau),  

- l’acétonitrile (Ultra Gradient HLPC grade, JT Baker), 

- le méthanol (Gradient grade for Liquid Chromatography, Merck),  

- l’acide chlorhydrique (37-38 %, Baker analyzed, JT Baker), 

- l’eau ultrapure (JT Baker),  

- l'hydroxyde d’ammonium (ACS Reagent, Sigma aldrich), 

- l’eau d’Evian® en bouteille de verre. 

 

II.2 Dosage des alkylphénol-polyéthoxylés 
Les alkylphénol-polyéthoxylés (APEO) et le bisphénol A (BPA) dosés dans cette étude sont 

représentés dans le Tableau 38. La méthodologie mise en œuvre au cours de cette étude est résumée 

dans la Figure 52 .  

 

 

Figure 52 : Méthodologies pour l’analyse des APEO et BPA dans les matrices environnementales. 
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Tableau 38 : Récapitulatif des agents industriels suivis dans cette étude. 

 

II.2.1 Préparation des échantillons 

a) Préparation des échantillons d’eaux 

Afin de subir le protocole d’extraction, les différentes phases doivent être séparées. Les 

eaux, conservées dans des bouteilles en verre ambré (préalablement chauffées à 450°C pendant 6 

heures) à 4°C, sont filtrées par passage au travers d’un filtre en fibre de verre GF/F Whatman 

(préalablement chauffé à 450°C, pendant 6 heures) de diamètre de pores 0,7 µm (VWR, Strasbourg, 

France). Lorsque la matrice aqueuse présente une charge particulaire importante (entrée de station 

d’épuration) une étape de pré-filtration est réalisée par passage sur un filtre en fibre de verre GF/A 

Whatman (préalablement chauffés à 450°C, pendant 6 heures) de diamètre de pores 1,2 µm (VWR, 

Strasbourg, France). Cette étape permet un dosage indépendant des APEO dissous et particulaires.  

Nom de la molécule Abréviations CAS Pureté Nature du produit 

4-nonylphénol technique 
C9H19

OH

4-NP 

84852-15-3  Liquide visqueux 

4-tert-octylphénol 

OH

C8H17 4-t-OP 

140-66-9 99.1% Solide 

Acide nonylphénoxyacétique 

O
CH2 O

OH

C9H19  

4-NP1EC 

3115-49-9 * > 98% Liquide visqueux 

Nonylphénol monoéthoxylé 

O
CH2

CH2
OH

C9H19  

4-NP1EO 

26027-38-3 99% Liquide visqueux 

Nonylphénol diéthoxylé 

O
CH2

CH2
O

CH2
CH2

OH

C9H19

4-NP2EO 

26027-38-2 99% Liquide visqueux 

p-n-nonylphénol p-n-NP 104-40-5* >98 % 
Solution dans le nonane  

(100µg.ml-1) 

p-n-Nonylphénol monoéthoxylé p-n-NP1EO 104-35-8* >95 % 
Solution dans le nonane 

 (100µg.ml-1) 

Bisphénol A 

 

 

 

BPA 

80-05-7  Solide 

Bisphénol A-d16 BPA-d16   Solide 

CHO OH

CH3

CH3
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b) Préparation des échantillons de boues 

Les échantillons de boues solides (volume total supérieur à 500 ml) sont homogénéisés à 

l’aide de spatules, un sous échantillon d’environ 50 g est prélevé et congelé (-20°C) dans une 

barquette en aluminium jusqu’à l’étape de lyophilisation. 

Les échantillons de boues liquides sont homogénéisés par agitation manuelle et répartis dans 

des falcons de 50 ml pour subir une étape de centrifugation (2 étapes de 10 min, 3000 g). Le 

surnageant est ôté à l’aide d’une pipette pasteur, les culots sont récupérés à l’aide d’une spatule, 

rassemblés dans une barquette en aluminium et stockés à -20°C jusqu’à l’étape de lyophilisation. 

c) Lyophilisation 

Les phases solides : matières en suspension, sédiments, boues, tissus biologiques subissent 

une première étape de lyophilisation qui conduit à leur déshydratation par sublimation (Lyophilisateur 

RP2V, CIRP, Argenteuil, France). Les sédiments sont ensuite tamisés à 2 mm puis homogénéisés. 

Après lyophilisation, les matrices sont pesées afin d’obtenir leur masse sèche puis stockées à l’abri de 

la lumière et de l’humidité (afin d’éviter une reprise en eau) jusqu’à l’analyse.  

II.2.2 Protocole d'extraction des matrices liquides 

a) Extraction (Publication n°2) 

Les matrices liquides, stockées en chambre froide 4°C (24-48 heures), sont mises à 

température et acidifiées à pH 2 (1,9<pH<2,0) à l’aide d’une solution diluée d’acide chlorhydrique 

(solution 3,5 mM). Le volume d’échantillon est mesuré à l’aide d’une éprouvette : 0,2 à 0,3 litre pour 

les eaux d’entrées de stations d’épuration, 0,5 litre pour les eaux de sorties de station d’épuration, 0,5 à 

1 litre pour les eaux naturelles. Entre 50 et 200 µl de la solution contenant les étalons internes 

(solution mélange à 1-2 µg.g-1 pour chaque composé, méthanol) sont pesés dans des flacons en verre et 

ajoutés aux échantillons. 

Les cartouches octadécyle (BondElut C18, 200 mg, 3 cc, Varian) sont conditionnées avec du 

méthanol (5 ml) puis de l’eau pH2 (5 ml). Les échantillons sont déposés sur la cartouche à un débit de 

100 ml.10min-1. La cartouche est alors rincée par de l’eau (3 ml) puis par un mélange méthanol/eau pH 

2 (50/50 ; v/v ; 3 ml). Les cartouches sont ensuite séchées sous vide (10 mm Hg) pendant 60 minutes. 

Enfin, les composés sont élués par un mélange méthanol/dichlorométhane (50/50 ; v/v ; 5 ml). 

b) Purification (Publication n°3) 

Les extraits précédemment obtenus sont reconcentrés sous flux d’azote jusqu’à un volume 

final de 100 µl. Des cartouches SPE de type HF-PSA (BondElut, 500 mg, 3 cc, Varian) sont 

conditionnées par du méthanol (3 ml) puis par un mélange méthanol/dichlorométhane (80/20 ; v/v ; 3 

ml). Les extraits sont déposés sur les cartouches dans 2 ml mélange méthanol/dichlorométhane (80/20 

; v/v) et les flacons sont rincés avec 2 fois 500 µl du mélange. Les cartouches sont ensuite rincées par 



Matériel et Méthodes 

 Page 132 
 

6 ml du mélange méthanol/dichlorométhane (80/20 ; v/v) puis par 6 ml mélange 

méthanol/dichlorométhane/acide trifluoroacétique (79/19/2 ; v/v/v). Les extraits obtenus sont 

reconcentrés sous flux d’azote jusqu’à un volume final compris entre 100-200 µl. 

II.2.3 Protocole d’extraction des matrices solides 

a) Extraction (Publication n°3) 

Les APEO et les métabolites contenus dans les matrices solides sont extraits par application 

d’un champ micro-ondes en présence du mélange méthanol/dichlorométhane (75/25 ; v/v ; 30 ml). 

Une rotation des molécules de solvants va alors se produire afin de s’aligner suivant le champ micro-

ondes provoquant une agitation et un chauffage de l’extrait. L’extracteur micro-ondes (Prolabo, 

Fontenay sous bois, France) est programmé pour produire un champ d’une intensité de 30 W pendant 

10 min. Les APEO sont alors transférés de la matrice vers l’extrait organique. Les extraits sont alors 

filtrés sur coton de verre (préalablement lavé par 3 rinçages successifs au dichlorométhane).Les 

extraits filtrés sont ensuite reconcentrés à l’aide d’un reconcentrateur automatique, sous vide par 

chauffage (Rapidvap, 80°C, 15 min) (Bioblock, Fontenay-sous-Bois, France).  

b) Purification (Publication n°3)  

Les extraits précédemment obtenus sont  repris dans 60 ml d’eau pH 2 et vont subir les 

mêmes étapes de préparation/extraction que les échantillons aqueux : une première étape de 

purification sur cartouche C18 puis une seconde étape de purification sur cartouche HF-PSA. Les 

extraits finaux obtenus sont alors conservés à -20 °C jusqu’à l’analyse chromatographique. 

 

II.2.4  Protocole d’extraction des biles  

L’analyse des métabolites d’APEO dans les matrices biologiques de type bile nécessite une 

étape de déconjugaison enzymatique. 1 ml de tampon acétate (acétate de sodium trihydrate 99%) et 

d’acide acétique (100% Normapur) à pH 5 est ajouté à 100 µl de bile. 20 µl d’un mélange composé de 

β-glucuronidase et d’aryl-sulfatase (100000 et 7500 unités.ml-1 respectivement, extraits de l’organisme 

Haelix pomatia, Sigma Aldrich) sont également ajoutés. Le mélange est ensuite placé dans un 

incubateur à une température de 40°C pendant 2 heures. Après incubation, l’extrait est acidifié à pH 2 

afin subir le protocole d’extraction (C18)/purification (HF-PSA) précédemment exposé. 

 

II.2.5 Quantification des APEO et de leurs métabolites : Analyse par CL-SM 
(Publication n°2)  

La caractérisation et la quantification des APEO et de leurs métabolites s’effectuent par 

chromatographie en phase liquide haute performance couplée à la spectrométrie de masse CL-SM. Les 

caractéristiques de cette technique sont présentées en Annexe VII. L’analyse des APEO s’effectue en 2 

temps. En effet, la caractérisation d’un échantillon nécessite deux injections : une en mode 
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d’ionisation négatif et l’autre en mode d’ionisation positif. Les conditions de séparation et les 

paramètres de détection de ces analyses sont présentés en Annexe VII. La Figure 53 présente les 

chromatogrammes obtenus dans chacun des modes d’ionisation. 

 

 

Figure 53 : Chromatogrammes des APEO et BPA en CL-ESI-SM. 

 

II.2.6 Méthode de quantification des APEO et de leurs métabolites  

La méthode de quantification retenue ici est celle de l’étalonnage interne. Elle procède par 

comparaison de l’aire du pic du composé étudié avec celle du pic de l’étalon interne rajouté au début 

de la manipulation en quantité connue. Les composés choisis doivent répondre à plusieurs conditions 

pour être utilisés comme étalons internes. Ils doivent présenter des propriétés physico-chimiques 

proches des composés à doser afin de compenser au mieux les pertes absolues intervenant lors des 

différentes étapes de traitement des échantillons. De plus, ces composés doivent être chimiquement 

stables, avoir sensiblement les mêmes temps de rétention que les composés à doser et ne pas être 

présents naturellement dans les échantillons à analyser. Le composé à doser et l’étalon interne servant 

à le quantifier ne répondant pas de la même façon lors de la détection par spectrométrie de masse, il 

est nécessaire de déterminer un coefficient de réponse (coefficient correctif) entre ces deux composés. 

Cette détermination est réalisée par l’injection, avant et après chaque série d’analyse d’environ 10 

échantillons, d’un mélange constitué d’une solution de composés non deutérés en concentrations 

connues et de la solution d’étalons internes utilisée (de concentrations connues). 
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II.3 Dosage des substances pharmaceutiques  
Vingt et une substances pharmaceutiques appartenant à 6 classes thérapeutiques ont été 

retenues pour  leurs usages en France (usages avec ou sans prescriptions), leurs représentativités en 

terme de modes d’actions, de persistance et de potentiels toxiques pour l’environnement. Leur liste et 

leur structure sont présentées dans le Tableau 39 et la Figure 54.  

 
Figure 54 : Structure des molécules pharmaceutiques sélectionnées dans cette étude. 

 

 

 

 

 

 

 

 

 

 

 

 

Bromazepam
(Lexomil )

Alprazolam 
(Xanax )

Diazépam 
(Valium )

Amitriptylline
(Laroxyl)

Imipramine 
(Tofranil )

Doxépine 
(Quitaxon)

Caféine Théophylline

Fluoxétine 

(Prozac )

Paracétamol 
(Doliprane )

Carbamazépine 
(Tegretol)

Aspirine 
(Aspegic)

Naproxène 
(Naprox)

Kétoprofène 
(Ketum)

Ibuprofène 
(Nurofen)

Salbutamol 
(Ventoline)

Terbutaline 
(Bricanyl)

Gemfibrozil (Lipur) Anti dépresseurs

(imipraniques)

Anti dépresseur 

(non imipranique)

Nordiazépam 
(Nordaz)

Anxiolytique 

(Benzodiazépines)

Antiépileptique, 
Normothymique

Diclofénac 
(Voltarène)

Hypolipidémiant

Anti-inflammatoires non 
stéroïdiens

Analgésiques,

Antipyrétiques

Antiasthmatiques, ββββ-stimulants

Stimulants



Matériel et Méthodes 

 Page 135 
 

 

Tableau 39 : Substances pharmaceutiques sélectionnées dans cette étude. 

Classe thérapeutique 
Nom de la 

molécule 
Abréviations CAS Pureté Nature du produit 

Stimulants 
Caféine Caf 58-08-2 - Solide 

Théophylline Théo 58-55-9 ≥ 99% Solide 

Bronchodilatateurs 

β-stimulants Salbutamol Salbu 18559-94-9 - Solide 

β-stimulants Clenbutérol Clenbu 21898-19-1 ≥ 95% Solide 

β-stimulants Terbutaline Terbu 23031-32-5 - Solide 

Anti-inflammatoires Non Stéroïdien 

Ibuprofène Ibu 15687-27-1 - Solide 

Naproxène Naprox 22204-53-1 - Solide 

Kétoprofène Kéto 22071-15-4 - Solide 

Diclofénac Diclo 15307-79-6 - Solide 

Analgésiques 
Aspirine Asp 50-78-2 ≥ 99,5% Solide 

Paracétamol Para 103-90-2 - Solide 

Hypolipémiants Gemfibrozil Gemf 25812-30-0 - Solide 

Antidépresseurs/ 

Anxiolytiques 

Normothymique Carbamazépine Cbz 298-46-4 - Solide 

Antidépresseurs 

imipraminiques 

Imipramine Imi 113-52-1 - Solide 

Amitriptyline Ami 549-18-8 - Solide 

Doxépine Dox 1229-29-4 - Solide 

Antidépresseurs  Fluoxétine Fluox 59333-67-4 - Solide 

Anxiolytiques 

(Benzodiazépines) 

Diazépam Dzp 439-14-5 - Solide 

Nordiazépam Ndzp 1088-11-5 - Solide 

Alprazolam Alpra 28981-97-7 - Solide 

Bromazépam Broma 1812-30-2  Solide 

Etalons internes 

Diazépam-d5 Dzp-d5 65854-76-5 99,0% 
Solution dans le 

méthanol (100µg.ml-1) 

Nordiazépam- d5 Ndzp-d5 65891-80-7 99% 
Solution dans le 

méthanol (100µg.ml-1) 

Amytriptyline- d6 Ami-d6 549-18-8 98,0% 
Solution dans le 

méthanol (100µg.ml-1) 

Paracétamol- d4 Para-d4  98,0% 
Solution dans le 

méthanol (100µg.ml-1) 

Caféine- c13 Caf-C13  99% 
Solution dans le 

méthanol (100µg.ml-1) 

Imipramine- d4 Imi-d4 113-52-0 ≥98% 
Solution dans le 

méthanol (100µg.ml-1) 

Salbutamol- d3 Salbu-d3  99,0% 
Solution dans le 

méthanol (100µg.ml-1) 

Gemfibrozil- d6 Gemf-d6   Solide 

Ibuprofène- d3 Ibu-d3 121662-14-4 99,0% Solide 

 

II.3.1 Préparation des échantillons  

a) Préparation des échantillons d’eaux 
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Afin de subir le protocole d’extraction, les différentes phases doivent être séparées. Les 

eaux, conservées dans des bouteilles en verre ambré (préalablement chauffées à 450°C pendant 6 

heures) à 4°C, sont filtrées par passage au travers d’un filtre en fibre de verre GF/F Whatman 

(préalablement chauffé à 450°C, pendant 6 heures) de diamètre de pores 0,7 µm (VWR, Strasbourg, 

France). Lorsque la matrice aqueuse présente une charge particulaire importante (entrée de station 

d’épuration) une étape de pré-filtration est réalisée par passage sur un filtre en fibre de verre GF/A 

Whatman (préalablement chauffés à 450°C, pendant 6 heures) de diamètre de pores 1,2 µm (VWR, 

Strasbourg, France). Cette étape permet un dosage indépendant des substances pharmaceutiques 

dissoutes et particulaires.  

b) Préparation des échantillons de boues 

Les échantillons de boues solides (volume total supérieur à 500 ml) sont homogénéisés à 

l’aide de spatules, un sous échantillon d’environ 50 g est prélevé et congelé (-20°C) dans une 

barquette en aluminium jusqu’à l’étape de lyophilisation. 

Les échantillons de boues liquides sont homogénéisés par agitation manuelle et répartis dans 

des falcons de 50 ml pour subir une étape de centrifugation (2 séries de 10 min, 3000 g). Le 

surnageant est ôté à l’aide d’une pipette pasteur, les culots sont récupérés à l’aide d’une spatule, 

rassemblés dans une barquette en aluminium et stockés à -20°C jusqu’à l’étape de lyophilisation. 

 

c) Lyophilisation 

Les phases solides : matières en suspension, sédiments, boues, tissus biologiques subissent 

une première étape de lyophilisation qui conduit à leur déshydratation par sublimation (Lyophilisateur 

RP2V, CIRP, Argenteuil, France). Les sédiments sont ensuite tamisés à 2 mm puis homogénéisés. 

Après lyophilisation, les matrices sont pesées afin d’obtenir leur masse sèche puis stockées à l’abri de 

la lumière et de l’humidité (afin d’éviter une reprise en eau) jusqu’à l’analyse. 

II.3.2 Protocole d'extraction des matrices liquides 

a) Protocole d’extraction pour l’analyse CPG-SM (Togola et Budzinski, 

2008) 

Les matrices liquides, stockées en chambre froide 4°C, sont mises à température et acidifiées 

à pH 2 (2,0<pH<2,1) à l’aide d’une solution diluée d’acide chlorhydrique (solution 3,5 mM). Le 

volume d’échantillon est mesuré à l’aide d’une éprouvette : 0,5 litre pour les eaux d’entrées de stations 

d’épuration, 0,5 litre pour les eaux de sorties de stations d’épuration, 0,5-1 litre pour les eaux 

naturelles. Entre 50 et 200 µl de la solution contenant les étalons internes (solution à 1-2 µg.g-1 pour 

chaque composé, méthanol) sont pesés dans des flacons en verre et ajoutés aux échantillons. 

Les cartouches MCX (mode mixte échangeurs de cation-phase inverse) (OASISMCX, 60 

mg, 3 cc, Waters) sont rincées et conditionnées avec de l’acétate d’éthyle (3 ml) puis de l’eau pH 2 (3 
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ml). Les échantillons sont déposés sur la cartouche à un débit de 100 ml.10min-1. La cartouche est 

ensuite rincée par de l’eau pH 2 (3 ml). Les cartouches sont alors séchées sous vide (10 mm Hg), 

pendant 60 minutes. Enfin, les composés sont élués successivement par 3 ml d’acétate d’éthyle puis 3 

ml de mélange acétate d’éthyle/acétone (50/50 ; v/v) et enfin 3 ml de mélange acétate 

d’éthyle/acétone/ hydroxyde d’ammonium (49/49/2 ; v/v/v). 

b) Protocole d’extraction pour l’analyse CL-SM-SM 

Les cartouches MCX (mode mixte échangeurs de cation-phase inverse) (OASIS MCX, 60 

mg, 3 cc) sont conditionnées avec de l’acétate d’éthyle (3 ml) puis de l’eau pH2 (3 ml). Les 

échantillons, 100 ml d’échantillon quelque soit la matrice sont déposés sur la cartouche à un débit de 

100 ml.10min-1. La cartouche est ensuite rincée par de l’eau pH 2 (3 ml). Les cartouches sont alors 

séchées sous vide (10 mm Hg) pendant 60 minutes. Les composés sont ensuite élués successivement 

par 3 ml d’acétate d’éthyle puis 3 ml de mélange acétate d’éthyle/acétone (50/50 ; v/v) et enfin 3 ml de 

mélange méthanol/dichlorométhane/hydroxyde d’ammonium (47,5/47,5/5 ; v/v/v). 

II.3.3 Protocole d’extraction des matrices solides 

a) Extraction (Togola et Budzinski, soumis)  

Les substances pharmaceutiques contenues dans les matrices solides sont extraites par 

application d’un champ micro-ondes en présence du mélange acétonitrile/eau pH2 (70/30 ; v/v ; 30 

ml). Une rotation des molécules de solvants va alors se produire afin de s’aligner suivant le champ 

micro-ondes provoquant une agitation et un chauffage de l’extrait. L’extracteur micro-ondes (Prolabo, 

Fontenay sous bois, France) est programmé pour produire un champ d’une intensité de 30 W pendant 

10 min. Les substances pharmaceutiques sont alors transférées de la matrice vers l’extrait organique. 

Les extraits sont alors filtrés sur coton de verre (préalablement lavé par 3 rinçages successifs au 

dichlorométhane). Les extraits filtrés sont ensuite reconcentrés à l’aide d’un reconcentrateur 

automatique, sous vide par chauffage (Rapidvap, 80°C, 20 min) (Bioblock, Fontenay-sous-Bois, 

France).  

 

II.3.4 Protocole de purification des matrices solides 

Les extraits précédemment obtenus sont alors repris dans 30 ml d’eau pH2 et vont subir les 

mêmes étapes de préparation/extraction que les échantillons aqueux : étape de purification sur 

cartouche MCX. Les extraits finaux obtenus sont alors conservés à -20°C jusqu’à l’analyse 

chromatographique.  
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Figure 55 : Méthodologies générales pour l’analyse des substances pharmaceutiques. 

 

II.3.5 Quantification des substances pharmaceutiques : Analyse par CPG-SM 

L’analyse s’effectue en 2 étapes. Une première étape permet l’analyse des composés dits 

neutres et une seconde permet l’analyse des composés dits acides et nécessite une étape de préparation 

supplémentaire. Préalablement à leur injection, les extraits subissent une étape de dérivation afin 

d’améliorer la séparation et la détection des composés. Pour cela, 30 µl de N-Méthyl-N-

(triméthylsilyl) trifluoroacétamide, est ajouté à l’extrait. La réaction de dérivation est accélérée en 

plaçant les échantillons dans une étape à 65°C pendant 35 minutes. Les conditions d’analyse ainsi que 

les paramètres de détection sont présentées en Annexe VIII. La Figure 56 présente les 

chromatogrammes obtenus pour chacun des modes d’analyse. 
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Elution : - Acétate d’éthyle

- Acétate d’éthyle/Acétone (50/50; v/v)

- Acétate d’éthyle/Acétone/hydroxyde d’ammonium 
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Extraction Micro-Ondes (MAE)
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Acidification de l’échantillon liquides pH2

0.5 l entrées de station d’épuration

0.5-1 l sorties de station d’épuration

0.5-1 l eaux naturelles

Ajout des étalons internes

100 à 200 ng, individuel

Extraction sur Phase solide (SPE) phase MCX

Elution : - Acétate d’éthyle

- Acétate d’éthyle/Acétone (50/50; v/v)
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Figure 56: Chromatogrammes présentant la séparation des substances pharmaceutiques par CG-SM. 

 

Comme se sont attachés à le montrer les paragraphes précédents, la technique de choix pour 

l’analyse des substances pharmaceutiques est le couplage de la chromatographie en phase liquide à la 

spectrométrie de masse. Il est apparu, au cours de ces travaux, que les méthodologies reposant sur 

l’utilisation de techniques de chromatographie en phase gazeuse pouvaient souffrir d’un manque de 

robustesse, dès lors que l’analyse portait sur des matrices environnementales complexes : les eaux 

d’entrée et de sortie de stations d’épuration, les boues de stations d’épuration. En conséquence, un 

transfert de méthodologies vers des techniques plus adaptées comme la chromatographie en phase 

liquide couplée à la spectrométrie de masse en tandem s’est avéré indispensable à la conduite de ces 

travaux. 

 

II.3.6 Quantification des substances pharmaceutiques : Analyse par CL-SM-SM 

L’analyse des substances pharmaceutiques s’effectue par chromatographie en phase liquide 

ultrarapide couplée à de la spectrométrie de masse en tandem (RRLC®-SM-SM). Elle nécessite deux 
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séries d’injection : une en mode d’ionisation négative et l’autre en mode d’ionisation positive. Les 

conditions de séparation et les paramètres de détection de ces analyses sont présentés en Annexe IX. 

La Figure 57 présente les chromatogrammes obtenus pour chacun des modes d’analyse. 

 

 

Figure 57 : Chromatogrammes présentant la séparation des substances pharmaceutiques par CL-SM-

SM. a) séparation en mode ESI+ ; b) séparation en mode ESI-. 

 

II.3.7 Méthode de quantification des substances pharmaceutiques  

La méthode de quantification retenue ici est celle de l’étalonnage interne. Elle procède par 

comparaison de l’aire du pic du composé étudié avec celle du pic de l’étalon interne rajouté au début 

de la manipulation en quantité connue. Les composés choisis doivent répondre à plusieurs conditions 

pour être utilisés comme étalons internes. Ils doivent présenter des propriétés physico-chimiques 
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proches des composés à doser afin de compenser au mieux les pertes absolues intervenant lors des 

différentes étapes de traitement des échantillons. De plus, ces composés doivent être chimiquement 

stables, avoir sensiblement les mêmes temps de rétention que les composés à doser et ne pas être 

présents naturellement dans les échantillons à analyser. Le composé à doser et l’étalon interne servant 

à le quantifier ne répondant pas de la même façon lors de la détection par spectrométrie de masse, il 

est nécessaire de déterminer un coefficient de réponse (coefficient correctif) entre ces deux composés. 

Cette détermination est réalisée par l’injection, avant et après chaque série d’analyse d’environ 10 

échantillons, d’un mélange constitué d’une solution de composés non deutérés en concentrations 

connues et de la solution d’étalons internes utilisée (de concentrations connues). 

 

II.4 Méthodologies d’analyse des POCIS  

II.4.1 Protocole d’extraction de la phase HLB 

Afin d’extraire l’ensemble des molécules ciblées (n= 27), un protocole d’extraction multi-

résidus a été développé et mis en œuvre. Après retrait du milieu, la POCIS est désassemblée: les 

anneaux en inox sont retirés, les membranes sont séparées, la phase HLB est récupérée à l’aide d’eau 

Evian® et collectée dans un bécher en verre. La phase est ensuite déposée dans une pipette pasteur 

dont l’extrémité est obstruée à l’aide de coton de verre purifié. Après dépôt, la phase est séchée 

pendant 60 à 90 minutes, sous vide. L’élution est conduite par dépôts successifs de 10 ml de méthanol 

puis 10 ml d’un mélange méthanol/dichlorométhane (50/50 ; v/v). Les extraits obtenus sont ensuite 

aliquotés et évaporés pour un transfert dans un solvant d’injection approprié. 

 

II.4.2 Protocole d’extraction de membranes 

Après désassemblage, les membranes (2 membranes pour une POCIS) sont collectées dans 

un flacon en verre pour subir une extraction par ultrasonication, en 2 étapes : 2 fois 10 min dans 10 ml 

d’hexane puis 2 fois 10 min dans 10 ml de méthanol. Les extraits sont ensuite évaporés, sous flux 

d’azote, puis répartis en différents sous échantillons et transférés dans un solvant d’injection 

approprié. 
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I  Méthodologies analytiques pour l’étude des alkylphénol-polyéthoxylés dans les 

matrices environnementales 

Ce paragraphe est consacré à la présentation des méthodologies analytiques développées et 

optimisées dans le cadre de ces travaux de recherche visant à étudier les alkylphénol-polyéthoxylés 

dans les systèmes aquatiques. Elle s’articule autour de 4 publications. La première a permis, au travers 

d’une revue des méthodologies analytiques couramment employées pour l’analyse des APEO et de 

leurs métabolites dans des matrices environnementales, de présenter le contexte général dans lequel 

s’insèrent ces travaux de recherche d’un point de vue méthodologique et de mettre en avant les 

carences. Les 2 publications suivantes ont pour objectifs de présenter les méthodologies analytiques 

développées au sein du laboratoire pour l’analyse des métabolites d’APEO dans les matrices aqueuses 

(Publication 2) et les matrices solides (Publication 3). Enfin une 4ème publication rapporte les 

démarches de validation qui ont été mises en œuvre afin d’assurer la validité des données générées, 

notamment dans un contexte réglementaire. 

La plupart des études réalisées sur les métabolites d’APEO (AP, APEO, APEC) souffrent de 

manque de validation et de manque de robustesse. Les développements et les optimisations conduits 

au cours de ces travaux de thèse ont permis d’améliorer la fiabilité et la robustesse des méthodologies 

analytiques pour l’étude des matrices environnementales. 

 

I.1 Méthodologies analytiques pour l’analyse des APEO dans les matrices environnementales 

 
Figure 58 : Méthodologies globales pour l’analyse des APEO dans les matrices environnementales. 
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La Figure 58 présente la méthodologie globale mise en œuvre dans cette étude. Elle repose 

sur la mise en œuvre de méthodologies adaptées aux nouvelles exigences de l’analyse. Ces méthodes 

d’analyse : extraction en phase solide, extraction assistée par micro-ondes sont économiques en 

solvants et permettent l’analyse simultanée d’un grand nombre d’échantillons (n=24 échantillons) en 

un temps compatible avec le respect de l’intégrité de l’échantillon. 

 

I.2 Démarches de validation des méthodes (Publication n°4) 

I.2.1 Capacité du laboratoire à conduire des analyses traces 

 

 

Figure 59 : Une année de suivie des blancs de protocole en 4-NP (ng) (n=28, 2 opérateurs). 

 

Les alkylphénols sont des contaminants ubiquistes de l’environnement et par conséquent de 

nos laboratoires. Comme cela a été mis en évidence précédemment, les alkylphénols entrent dans la 

composition de nombreux produits (détergents, plastiques, peintures etc.…) qui peuvent entrer en 

contact du matériel analytique et des échantillons et qui sont susceptibles d’en altérer l’intégrité. Une 

année de suivi des blancs manipulation en 4-NP a permis de mettre en évidence et de confirmer que le 

bruit de fond du laboratoire était compatible avec l’analyse de traces de métabolites d’APEO dans des 

matrices environnementales (concentrations moyennes inférieures à 30 ng dans la pièce dédiée à 

l’analyse des matrices les plus contaminées, Figure 59). Néanmoins, des contaminations ponctuelles 

de l’environnement, indépendantes de la filière de contrôle de nos échantillons, ont pu être mises en 

évidence. Outre le fait qu’elles confirment l’hypothèse d’une imprégnation des environnements 

intérieurs par le 4-NP, elles soutiennent la nécessité d’accompagner chaque série d’analyse par des 

blancs méthodologiques. L’absence de validation peut conduire à une surestimation des niveaux de 

contamination environnementaux (Loos et al., 2008). 
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I.2.2 Validation des méthodologies de préparation de l’échantillon 

La problématique de la validation et de la comparabilité des données concernant la présence 

des substances émergentes dans l’environnement est au cœur des préoccupations de notre communauté 

depuis la mise en œuvre de la DCE à l’échelle européenne. 

I.2.2.1  Validation du protocole de traitement des échantillons d’eaux (Publications n°2 et 

4) 

La Figure 60 présente les taux de récupération obtenus par la méthodologie d’analyse des 

échantillons d’eaux appliquée aux 4 types de matrices testées. Afin de progresser dans la validation de 

la méthode, des eaux «complexes» ont été fabriquées et supplémentées en analytes d’intérêt. Le 

viandox est couramment utilisé par les épurateurs et certaines équipes de recherche afin de mimer les 

charges organiques des eaux de stations d’épuration (Tusseau et al., 2002 ; Gourlay et al., 2005). Les 

substances humiques Aldrich sont quant à elles couramment utilisées pour mimer les charges des eaux 

naturelles (Lowe et Hissain, 2008). A l’exception du 4-NP1EC qui présente un taux de récupération de 

50% dans la matrice simulant les eaux du milieu naturel, l’ensemble des autres molécules étudiées 

présente des taux de récupération compris entre 80% et 130% selon la molécule considérée. Les 

écarts-type mesurés sont inférieurs à 20% et mettent en évidence que la méthodologie répond à des 

critères de répétabilité et de reproductibilité (Figure 60).  

 

Figure 60 : Résultats de la démarche de validation des matrices aqueuses. 

Eau lab. : rendements moyens du protocole complet (extraction + purification) (n=28, 7 mois) pour des eaux Evian supplémentées, 

Mil mim : eau supplémentée par 10 mg.l-1 d’acides humiques (extraction + purification) (n=3),  

Eff mim : eau supplémentée par 2 mg.l-1 de Viandox® (extraction + purification) (n=3),  

Inf mim : eau supplémentée par 10 mg.l-1 de Viandox® (extraction + purification) (n=3).  
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I.2.2.2 Validation du protocole de traitement des échantillons solides 

(Publications n°3 et 4) 

La Figure 61 présente les rendements globaux obtenus avec la méthodologie d’analyse des 

échantillons solides appliquée aux 3 types de matrices testés. Des sédiments du bassin d’Arcachon ont 

été utilisés pour d’une part leur faible niveau de contamination en APEO et d’autre part par leurs 

caractéristiques (granulométrie, taux de carbone organique). A l’exception du 4-NP1EC qui présente 

un taux de récupération de 50 % dans le sédiment supplémenté à 1 µg.g-1, l’ensemble des autres 

molécules étudiées présente des taux de récupération compris entre 60 % et 130 % selon la molécule 

considérée. Les écarts-type mesurés sont inférieurs à 20 % et mettent en évidence que la méthodologie 

répond à des critères de répétabilité et de reproductibilité.  

 

Figure 61 : Résultats de la démarche de validation pour les matrices solides. 
Lab solv : solvant supplémenté  (n=4, indépendants), 

Sed 1 : sédiment supplémenté à 100 ng.g-1 (n=3), 

Sed 2 : sédiment supplémenté à 1 µg.g-1 (n=3), 

 

I.2.3  Validation de l’analyse par couplage CL-ESI-SM (Publications n°2 et 4) 

Le Tableau 40 présente les effets matriciels mesurés pour les 3 matrices étudiées (une eau de 
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2 conditions testées (avec ou sans étape de purification). Les observations mettent en évidence l’effet 

positif de la mise en œuvre de l’étape de purification sur HF-PSA. Ceci est illustré par la Figure 62. En 
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conduit également à une diminution des phénomènes de suppression de signal et à une augmentation 

de la sensibilité. La figure 62c présente les profils chromatographiques d’une eau de surface avec et 

sans la mise en œuvre de l’étape de purification, elle met en évidence un gain d’abondance de près de 

50 % pour l’ensemble des molécules. 

 

Figure 62 : Mise en évidence de l’effet positif de la mise en œuvre d’une étape de purification pour 
l’analyse des APEO dans les matrices complexes. 

 

Les phénomènes matriciels apparaissent comme corrélés à la charge matricielle de 

l’échantillon (Tableau 44 : sortie de STEP> entrée de STEP> milieu naturel) (Jahnke et al., 2004 ; Koh 

et al., 2008 ). En mode d’ionisation négative, le phénomène semble affecter l’ensemble des composés 

de manière homogène (les étalons de quantification comme les composés à quantifier). La 

quantification par étalonnage interne apparaît comme efficace pour contrôler l’effet matriciel et ainsi 

permettre la génération de données quantitatives fiables. En mode d’ionisation positive, les 

phénomènes affectent de manière homogène les étalons de quantification et les composés à quantifier 

dans les milieux naturels et les eaux de sortie de STEP. En revanche un important phénomène 

d’extinction de signal est observé pour le 4-NP1EO et le 4-NP2EO dans les eaux d’entrée de stations 

d’épuration. L’hypothèse d’une compétition pour l’ionisation entre l’ensemble des NPEO qui sont 

présents en grandes concentrations dans les eaux non traitées, puisque ce sont les formes utilisées dans 

les mélanges commerciaux, peut être avancée. En effet, en chromatographie liquide en phase inverse, 

les molécules sont séparées par leur caractère hydrophobe ce qui a pour conséquence la non séparation 

des NPEO. La forte dégradation que subissent ces molécules au cours des processus de traitement mis 
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en œuvre dans les stations d’épuration pourrait expliquer que ces phénomènes d’extinction de signal 

soient prépondérants dans les eaux brutes par comparaison aux eaux traitées. L’hypothèse d’une 

interaction entre les NPEO et des matières organiques ayant le potentiel d’être fortement dégradées au 

cours du processus de traitement des eaux usées ne peut cependant pas être écartée. 

 

Tableau 40 : Effets matriciels en LC-ESI-MS. 
 Eaux de surface Sortie de STEP Entrée de STEP 

 SPE C18+HF-PSA SPE C18 SPE C18+HF-PSA SPE C18 SPE C18+HF-PSA SPE C18 

4-NP -18% 38% 29% 39% 36% 54% 

4-t-OP 7% 39% -8% 17% 20% 46% 

4-NP1EC 9% 69% 39% 22% 42% I 

p-n-NP 6% 55% 45% 42% 56% 62% 

4-NP1EO 4% 9% 24% 16% 96% 78% 

4-NP2EO 21% 23% 38% 32% 79% 78% 

p-n-NP1EO 7% 10% 12% 12% 34% 29% 

BPA -13% 39% 30% -40% 18% 46% 

BPA-d16 -2% 35% 24% -39% -28% I 

I : interféré 

Les méthodologies analytiques développées pour l’analyse quantitative des APEO et de leurs 

métabolites ainsi que le bisphénol A dans les matrices aqueuses et les matrices solides répondent à des 

critères de validation de manière satisfaisante et sont applicables à la conduite d’études 

environnementales. 

 

II  Nouvelles méthodologies d’échantillonnages : développements et applications pour 
l’étude des écosystèmes aquatiques 
 
II.1 Problématique- Contexte (Publication n°5) 

Le précédent paragraphe a posé le problème de la justesse et de la fiabilité des données 

générées dans les études de monitoring environnemental. Cette section pose le problème de la 

représentativité des données générées par les approches classiques dans le cadre d’études 

environnementales descriptives ou dans un cadre réglementaire, ce qui revient à poser le problème de 

la variabilité dans l’environnement.  

La Figure 63 présente ce que peut être la variabilité dans l’environnement, au travers de 

mesures de métabolites d’APEO dans 2 écosystèmes aquatiques (la baie de Vilaine et le site 

d’Honfleur en estuaire de Seine). Quelque soit l’échelle de temps considérée, les variations sont 

importantes et peuvent atteindre un facteur 10 pour certaines molécules (notamment le 4-NP1EC). 

Plusieurs facteurs peuvent expliquer ces tendances tels que la variabilité des usages, l’efficacité des 

processus de traitements mis en œuvre dans les stations d’épuration, la variabilité des conditions 

hydriques, la variabilité des conditions climatiques, l’existence d’apports ponctuels, … Au regard de 
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ces tendances, il apparaît plus que jamais évident que l’acquisition de données environnementales 

représentatives repose sur l’obtention d’un nombre suffisant de données. Ce qui en raison de 

contraintes logistiques, techniques et financières apparaît comme un véritable obstacle. La nécessité de 

développer de nouveaux outils capables de générer des données environnementales intégratives est 

plus que jamais primordiale.  

A  

B  
Figure 63 : La variabilité dans l’environnement. 

A) Variabilité observée dans la distribution et les concentrations de métabolites d’APEO au niveau de la Baie de 

Vilaine (prélèvements ponctuels, bimensuelles, avril-juillet 2006), B) Variabilité observée dans la distribution et 

les concentrations de métabolites d’APEO au niveau d’Honfleur, estuaire de Seine (prélèvements ponctuels, mai-

02 à mai-05). 

 

La démarche globale de développement des outils d’échantillonnage sélectionnés Polar 

Organic Compound Integrative Sampler (POCIS) repose sur la mise en œuvre d’étapes successives : la 

validation d’une méthode de récupération des molécules ciblées, la détermination des taux 

d’échantillonnage pour chacune des molécules ciblées et la validation in situ. 
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II.2 Validation d’un protocole d’extraction combinée  

La Figure 64 présente les rendements moyens obtenus (n=3) pour le protocole d’extraction 

combinée développé et validé pour l’extraction des métabolites d’APEO, du bisphénol A (BPA) et des 

substances pharmaceutiques (n=28 molécules). Il repose sur une élution successive avec 10 ml de 

méthanol puis 10 ml d’un mélange méthanol/dichlorométhane (50/50 ; v/v). Les taux de récupération 

pour la majorité des molécules sont supérieurs à 60 % à l’exception de la terbutaline (20 %) et de 

l’aspirine (35 %). Les écarts-types sont inférieurs à 20 %. Ce protocole, considéré comme satisfaisant 

et validé, a été appliqué à l’analyse des phases de POCIS. 

 

 

Figure 64 : Rendements d’extraction du protocole d’extraction combinée pour l’analyse des 28 

molécules sélectionnées dans les phases HLB des POCIS (moyenne +/-RSD (n=3)). 

 

II.3 Détermination des taux d’échantillonnage des POCIS 

Les POCIS sont des outils destinés à l’échantillonnage de composés polaires, dont le log 

Kow est inférieur à 3, dans les systèmes aquatiques. Les métabolites d’APEO considérés dans cette 

étude, à l’exception du 4-NP1EC, sont considérés comme des molécules semi-polaires. En effet, elles 

présentent des valeurs de log Kow comprises entre 4,2 et 4,5. La question de leur distribution dans 

l’échantillonneur (partition entre la phase et la membrane) est donc particulièrement intéressante. 

II.3.1  Distribution des métabolites au niveau des POCIS 

Concernant la répartition des métabolites d’APEO au cours de l’expérience cinétique (T14), 

il peut-être remarqué qu’à T3, à l’exception du 4-NP1EC, la majorité des métabolites est associée à la 

membrane et qu’une minorité a réussi à franchir la membrane. Au cours du temps, cette proportion 

augmente mais reste néanmoins faible (inférieure à 50 %). Il apparaît donc que la sorption des 

métabolites d’APEO les plus hydrophobes se fait en deux étapes. Une première étape au cours de 

laquelle les métabolites sont sorbés sur la membrane en polyethersulfone et une deuxième étape au 

cours de laquelle, par un phénomène de désorption/sorption, les molécules parviennent à se fixer à la 
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Figure 65 : Distribution des métabolites d’APEO dans les POCIS. Part des métabolites d’APEO 
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d’échantillonnage dans des proportions importantes (selon que le Rs est plus ou moins contrôlé par la 

couche limite). 

Concernant les APEO, Harman et al. (2008) n’ont pas réussi à déterminer de Rs pour le 

nonylphénol (isomère linéaire), 0,058 l.j-1 pour l’octylphénol. Ardistoglou et Voutsa (2008) rapportent 

des valeurs de Rs: 0,12 l.j-1 pour le 4-t-OP, 0,11 l.j-1 pour le 4-NP, 0,09 l.j-1 pour le 4-NP1EO.  

Des taux d’échantillonnages ont été déterminés pour une poignée de molécules, les 

comparaisons sont difficiles. Alvarez (2007) rapporte des valeurs de Rs de 0,112 l.j-1 pour l'ioxynil, 

0,22 l.j-1 pour le déisopropylatrazine (DIA), 0,26 l.j-1 pour la déethylatrazine. Mazzella et al. (2007) 

rapportent des valeurs de Rs de 0,176 l.j-1 pour l'ioxynil, 0,063 l.j-1 pour la déisopropylatrazine, 0,121 

l.j -1 pour la déethylatrazine. De même Zhang et al. (2008) et Arditsoglou et Voutsa (2008) ont étudié 

les taux d’échantillonnages pour différentes hormones stéroïdiennes, ils obtiennent des valeurs de Rs 

égales à 0,1 l.j-1et 0,119 l.j-1 pour l’estrone et 0,045 l.j-1 0,115 l.j-1 pour l’estradiol, respectivement.  

Bien que les conditions expérimentales puissent expliquer une partie de cette variabilité, ce 

facteur n’apparaît pas comme suffisant pour expliquer les variations observées. Il est intéressant de 

noter qu’excepté Mazzella et al. (2007) et Togola et Budzinski (2007) qui mentionnent l’uage de l’eau 

comme solvant de récupération, toutes les autres publications indiquent l'usage du méthanol comme 

solvant de récupération de la phase adsorbante. Le méthanol est un solvant possédant un fort pouvoir 

éluant. Comme cela a pu être mis en évidence, une part significative des composés peut être adsorbée 

sur la membrane. Par conséquence, l'hypothèse d’une élution des composés adsorbés sur la membrane 

conduisant à une augmentation de la valeur de Rs peut être avancée.  

Si dans le cadre de cette étude, l’ensemble de la POCIS (membrane+ phase) est considéré 

pour la détermination du Rs des APEO, une bonne concordance (60 % pour le 4-NP, 85 % pour le 

BPA, 145 % pour le 4-NP2EO) peut alors être observée avec les données de Arditsoglou et Vousta 

(2008).  

Comme le met en évidence le Tableau 41, cette expérience en laboratoire n’a pas permis de 

mettre en évidence un effet de la vitesse sur les taux d’échantillonnage, ce qui ne signifie pas que ce 

paramètre ne puisse pas avoir un effet dans les milieux naturels (Publication n°5, Togola et Budzinski, 

2007). En effet, les conditions de l’expérimentation n’ont permis de tester qu’une différence de vitesse 

égale à un facteur 2. 
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Tableau 41 : Valeurs de Rs (l.j-1) obtenues expérimentalement pour les 28 molécules sélectionnées. 

Rs (l.j-1) POCIS int POCIS ext 
Cbz 0,32±0,06 0,33±0,05 
Dzp 0,35±0,05 0,36±0,05 

Alpra 0,44±0,04 0,44±0,05 
Broma 0,16±0,04 0,17±0,04 
Ndzp 0,38±0,01 0,41±0,04 
Fluox 0,24±0,09 0,25±0,05 
Ami 0,40±0,08 0,39±0,09 
Imi 0,43±0,08 0,41±0,08 

Doxé 0,41±0,09 0,38±0,08 
Terbu 0,25±0,04 0,26±0,07 
Salbu 0,05±0,01 0,06±0,02 

Clenbu 0,48±0,07 0,50±0,08 
Caf 0,16±0,03 0,16±0,04 

Théo 0,02±0,01 0,02±0,01 
Para 0,01±0,01 0,02±0,01 
Ibu 0,23±0,01 0,27±0,03 

Naprox 0,16±0,03 0,17±0,01 
Diclo 0,14±0,01 0,14±0,02 
Kéto 0,16±0,03 0,17±0,01 
Gemf 0,33±0,05 0,33±0,02 

4-NP1EC 0,28±0,05 0,28±0,05 
4-NP 0,02±0,01 0,02±0,00 

4-t-OP 0,09±0,01 0,09±0,01 
NP1EO 0,01±0,002 0,01±0,002 
NP2EO 0,01±0,002 0,01±0,002 
4-BPA 0,02±0,002 0,02±0,002 

 

II.5 Validation in situ  

II.5.1  Les POCIS comme outils intégratifs (Publication n°5) 

Les POCIS ont été exposées dans un réseau de piézomètre en Alsace (21 jours). En parallèle 

une caractérisation de l’eau par une approche classique (prélèvement ponctuel) a été réalisée. Les 

résultats obtenus sont présentés dans la Figure 66. Bien qu’une contamination de la phase dissoute ait 

pu être mise en évidence par le prélèvement ponctuel (Figure 66), certaines classes de molécules telles 

que les antidéprésseurs et les hypolipémiants n’ont pas pu être détéctées en dépit de limites de 

détection inférieures au ng.l-1. Au contraire, certaines de ces molécules (l’amitryptiline, le gemfibrozil, 

le diclofénac) ont pû être détectées et quantifiées dans la phase des POCIS (révélant ainsi leur 

présence dans les eaux de captage). Ainsi, les POCIS apparaissent comme de très bons outils de pré-

diagnostics pour les études de monitoring, d’une part, par leur capacité à concentrer les substances 

dissoutes et d’autre part par leur capacité à discrimer les zones fortement impactées des zones 

«pristines». 
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Figure 66 : Données de présence en substances pharmaceutiques et en métabolites d’APEO dans 

l’environnement. Cas d’un piézomètre dans la région de Merxheim. 

A) Données de présence dans la phase dissoute, exprimées en ng.l-1 

B) Données de présence dans la phase de POCIS exposées pendant 21 jours, exprimées en ng.g-1  

II.5.2 Les POCIS comme outils quantitatifs  

Les POCIS ont été exposées dans la jalles d’Eysines (durée de 14 jours). En parallèle, une 

caractérisation de l’eau par une approche classique (prélèvements ponctuels à T0, T2, T7, T9, T12, 

T14) a été réalisée. Les taux d’échantillonnage déterminés en laboratoire ont été appliqués aux POCIS 

exposés dans le milieu afin d’estimer une concentration intégrée dans le milieu. 

Que ce soit pour les métabolites d’APEO (le 4-NP, le 4-NP1EC) ou pour les substances 

pharmaceutiques (la carbamazépine, la fluoxétine), une bonne adéquation est notable entre la 

concentration moyenne estimée à partir des 6 prélèvements ponctuels et celle déterminée par les 

POCIS exposées dans le milieu, indépendament de la concentration dans le milieu (fluoxétine : 1-2 

ng.l-1, 4-NP1EC : 79-740 ng.l-1) (Figure 67). Les observations confirment que la POCIS est un outil 

intégratif, ayant la capacité d’intégrer les variations du milieu, et un outil quantitatif.  
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Figure 67 : Comparaison des données obtenues par prélèvements ponctuels et échantillonnages 
intégratifs lors d’une étude de 14 jours au niveau de la Jalles d’Eysines. 

La figure présente les valeurs obtenues lors des 6 échantillonnages ponctuels (histogrammes) ; la concentration 
moyenne estimée dans le milieu en se basant sur ces 6 mesures ponctuelles (e.g. CBZ moy.) ; la concentration 
moyenne estimée à partir de la POCIS exposée pendant les 14 jours de l’expérimentation (e.g. CBZ POCIS.) 
 

II.5.3 Les POCIS comme outils quantitatifs, les limitations (Publication n°5) 

Les études ont montré certaines limites comme se propose de le mettre en évidence la Figure 

68 qui présente les valeurs obtenues par les 2 approches : classique (3 prélèvements moyennés 24 

heures) et intégrative (POCIS exposée dans le milieu pendant 7 jours) au niveau d’un effluent de 

station d’épuration. Si les concentrations moyennes obtenues par les 2 mesures présentent une bonne 

adéquation dans le cas de la carbamazépine, il n’en est pas de même pour le 4-NP1EC pour lequel on 

observe une sous-estimation des concentrations estimées par la POCIS ou bien alors pour la fluoxétine 

et le 4-NP pour lesquels on observe une surestimation des concentrations estimées par la POCIS. 

Plusieurs hypothèses peuvent être avancées, la première étant celle d’une altération de l’intégrité de la 

membrane de la POCIS qui pourrait d’une part affecter les taux d’échantillonnage et d’autre part 

permettre que certains phénomènes de dégradation se produisent (conduisant ainsi à une sous-

estimation des concentrations dans le milieu). L’autre hypothèse réside dans la mauvaise 

détermination des taux d’échantillonnage lors des expérimentations en laboratoire. En effet, les 

mésocosmes d’expérimentation sont des systèmes peu complexes et stabilisés durant l’expérience: peu 

de turbulences, pas de matières en suspension, absence de composantes biologiques. Ces composantes, 

présentes dans les systèmes naturels, sont autant de facteurs qui peuvent affecter les taux 

d’échantillonnage.  
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Figure 68 : Comparaison des données obtenues par prélèvements ponctuels et échantillonnages 
intégratifs lors d’une étude de 7 jours au niveau de la station d’épuration de Cantinolles (jalle 
d’Eysines). La figure présente les valeurs obtenues lors des 6 échantillonnages ponctuels (histogrammes); la concentration 
moyenne estimée à partir de la POCIS exposée pendant les 14 jours de l’expérimentation (e.g. CBZ POCIS.) 

 
A titre d’exemple, la Figure 69 illustre l’effet de l’un de ces paramètres sur 

l’échantillonnage. Cette figure présente les concentrations en métabolites d’APEO et en substances 

pharmaceutiques mesurées, après 7 jours d’exposition à une eau traitée de station d’épuration, dans 

des POCIS exposées d’une part dans une zone sans turbulence (bâche) et d’autre part dans une zone de 

forte turbulence (canal). Bien que les POCIS aient été exposées au même milieu (même concentration 

de substances dans la phase aqueuse), il apparaît que les concentrations en composés d’intérêt diffèrent 

significativement d’un facteur 2 à 3 entre les 2 sites d’exposition, avec des concentrations plus fortes 

pour le site le plus turbulent. Ainsi, les taux d’échantillonnage de chaque molécule apparaissent 

affectés par les facteurs de turbulence de l’eau (vitesse, agitation) (Togola et Budzinski, 2007, Mac 

Leod et al, 2006 ; Arditsoglou et Vousta, 2008). 

 

Figure 69 : Concentrations en métabolites d’APEO et en substances pharmaceutiques dans les POCIS 

exposées à une eau traitée (pendant une période de 7 jours, n=3). 

0

1

2

3

4

5

effluentT0 effluentT2 effluentT7

µg.l-1

4-NP

4-NP POCIS

0

1

2

3

4

5

6

7

8

9

10

effluentT0 effluentT2 effluentT7

µg.l-1

4-NP1EC

4-NP1EC POCIS

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

effluentT0 effluentT2 effluentT7

µg.l-1

CBZ

CBZ POCIS

0,00

0,01

0,01

0,02

0,02

0,03

0,03

0,04

0,04

0,05

0,05

effluentT0 effluentT2 effluentT7

µg.l-1

FLUOX

FLUOX POCIS

Surestimation

Sous estimation

Surestimation

0,0

1,0

2,0

3,0

4,0

5,0

6,0
µg.g-1

Eff. bâche

Eff. canal



Synthèse 

 Page 159 
 

A ce stade, les POCIS, par leur capacité à fournir des données intégratives et à discriminer 

les écosystèmes selon les pressions qu’ils subissent, apparaissent comme d’excellents outils de pré-

monitoring capables d’évaluer l’évolution de l’état de contamination chimique d’un milieu. Même si 

certaines limites demeurent quant à leur capacité à donner des mesures quantitatives,  il est à noter que 

l’amplitude des variations n’excède pas un facteur 5 et que les ordres de grandeurs de contamination 

sont respectés. Leur facilité de déploiement, d’extraction et d’analyse en font un outil de choix pour 

les organismes de surveillance.  

 

III  Présence et devenir des alkylphénol-polyéthoxylés et des substances 

pharmaceutiques dans les stations d’épuration (Publication n°4) 

III.1 Caractérisation des eaux brutes 

III.1.1 Remarques générales  

Tableau 42 : Données de présence des 25 molécules étudiées dans la phase dissoute des eaux brutes, 
au niveau de 7 stations d’épuration. 

  
Min Max Fréquence de détection 

(µg.l-1) (µg.l-1) 

AINS, Analgésiques 

Ibu 1,68 16,6 100% 
Para 54,77 324,95 100% 
Asp 1,46 382,28 100% 

Diclo 0,062 2,59 100% 

Stimulants Caf 2,8 6,1 100% 
Théo 6,97 19,66 100% 

Antidépresseurs, Anxiolytiques 

Cbz 0,17 1,27 100% 
Dzp 0,001 0,07 100% 
Ndzp 0,007 0,035 100% 
Alpra nd 0,002 6% 
Broma 0,004 0,29 100% 
Fluox 0,001 0,046 100% 
Ami 0,027 0,65 100% 
Doxe nd 0,03 82% 
Imi nd 0,023 88% 

Hypolipémiants Gemf 0,36 3,36 100% 

Bronchodilatateurs 
Clenbu nd 0,01 41% 
Salbu nd 0,032 88% 
Terbu nd 0,019 82% 

APEO 

4-NP 0,685 15,784 100% 
4-t-OP nd 16,057 71% 

4-NP1EO 0,285 12,716 100% 
4-NP2EO 0,139 2,323 100% 
4-NP1EC 0 10,102 82% 

 

 

      

 

De manière générale, une généralisation de la contamination des eaux d’entrées de station 

d’épuration a été mise en évidence (Tableau 42). A l’exception de quelques molécules qui sont 

présentes à des fréquences inférieures à 50 % (l’alprazolam et le clenbutérol), l’ensemble des autres 

Abondance 

Fréquence de détection 
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molécules étudiées sont présentes à des fréquences supérieures à 50 %. 16 d’entre elles ont été 

détectées et quantifiées dans l’ensemble des STEP étudiées. Selon les molécules, les données de 

présence sont extrêmement variables : du ng.l-1 pour l’alprazolam ou la fluoxétine à plusieurs 

centaines de µg.l-1 pour l’aspirine ou le paracétamol. De même, pour une même molécule, la variabilité 

intersites apparaît comme significative. Ainsi, à titre d’exemple, il est notable que les concentrations 

mesurées varient de 1,5 µg.l-1 à plus de 382 µg.l-1pour l’aspirine, de 0,6 µg.l-1 à 15,8 µg.l-1 pour le 4-

NP. 

III.1.2 Tendances concernant la présence des métabolites d’APEO dans les eaux 
brutes 

Comme cela a pu être évoqué dans le paragraphe précédent, une importante variabilité des 

apports entre STEP a pu être observée. Les eaux d’entrée des STEP SE-1, SE-2 et SE-3 apparaissent 

significativement plus contaminées que celles des eaux des STEP CA-1, CA-2, CA-3 et SE-4 (Figure 

70). Bien que SE-1 soit localisée en zone périurbaine, elle traite les rejets d’une raffinerie dont les 

processus mettent en œuvre l’usage d’APEO. Les stations SE-2 et SE-3, pour leur part, traitent de 

nombreux rejets industriels qui mettent en jeux l’usage d’APEO (les industries agro-alimentaires, 

l’industrie chimique) et des lixiviats. Les stations CA-1 et CA-2 sont des petites stations d’épuration 

localisées dans des zones périurbaines qui traitent quasi exclusivement des eaux domestiques. Les 

stations CA-3 et SE-4, bien qu’étant localisées dans des zones fortement urbanisées auxquelles est 

associé un tissu industriel diffus, traitent quasi exclusivement des eaux domestiques et quelques rejets 

industriels (RSDE, 2007). 

 

Figure 70 : Données de présence des métabolites d’APEO dans la phase dissoute des eaux brutes 
(phase dissoute, ng.l-1). 

 

Pour résumer, il apparaît que les usages domestiques sont responsables d’un apport 

chronique d’APEO aux stations d’épuration, la composante majoritaire et discriminante apparaissant 
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être les usages industriels. En France, les usages d’APEO dans les applications industrielles et 

domestiques semblent courants bien qu’une restriction d’usages et de mise sur le marché soit entrée en 

application depuis le 17 janvier 2005 (restriction d’usages pour un certain nombre d’applications, 

moins de 0,1 % en masse du produit). Les démarches de substitution de ces produits semblent être 

encore inachevées.  

III.1.3 Tendances concernant la présence des substances pharmaceutiques dans les 

eaux brutes 

Une importante discrimination et variabilité dans les apports de substances pharmaceutiques 

a pu être mise en évidence (Figure 71). Le paracétamol, l’aspirine, les anti-inflammatoires non 

stéroïdiens (l’ibuprofène), la caféine et la théophylline sont quantifiés dans des concentrations très 

largement supérieures au µg.l-1 (Figure 71a). Ces molécules sont les composantes actives de 

médicaments ne nécessitant pas de prescriptions médicales et qui sont parmi les plus vendus (en 

quantité) en France. Par opposition, les composantes actives de médicaments nécessitant des 

prescriptions médicales tels que les antidépresseurs (la fluoxétine, le nordiazépam, l’amitryptiline), 

certains anti-inflammatoires non stéroïdiens (le diclofénac) et les hypolipémiants (le gemfibrozil) sont 

quantifiés à des concentrations inférieures à la centaine de ng.l-1 (Figure 71b). Les molécules suivies 

dans cette étude sont d’usages courants et n’ont pas permis de discriminer les STEP qui traitent des 

effluents hospitaliers. 
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Figure 71 : Données de présence des substances pharmaceutiques dans la phase dissoute des eaux 
brutes (phase dissoute, µg.l-1). 

 

III.2 Caractérisation des eaux traitées de station d’épuration  

Tout d’abord, il a pu être observé une contamination généralisée des eaux traitées par les 2 

classes de molécules sélectionnées (Tableau 43). Que ce soit en termes de fréquence de détection ou 

d’abondance, les effluents sont dominés par les métabolites de NPEO qui sont quantifiés à des 

concentrations pouvant être supérieures au µg.l-1 ainsi que par la carbamazépine, le gemfibrozil et le 

diclofénac qui sont également quantifiés à des concentrations de l’ordre du µg.l-1 (Togola et al., 2008 ; 

Baugros et al., 2008) . Bien qu’elles soient quantifiées à des concentrations inférieures à la centaine de 

ng.l-1, la présence généralisée de molécules de types antidépresseurs et anxiolytiques dans les eaux 

traitées est notable (concentration moyenne de 28 ng.l-1 pour l'amitryptiline, 19 ng.l-1 pour le 

nordiazépam). A la différence des eaux brutes, la variabilité des abondances mise en évidence dans les 

rejets de STEP, de moindre amplitude, semble conditionnée par l’efficacité des processus d’épuration 

des eaux mis en jeu en leur sein et non pas par la typologie des eaux traitées. Ainsi, les deux classes de 

molécules étudiées : les détergents et les substances pharmaceutiques apparaissent comme deux 

classes de contaminants prioritaires pour l’environnement au regard de leur ubiquité dans les eaux 

traitées, à l’échelle du territoire français. 
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Tableau 43 : Données de présence des 25 molécules étudiées dans la phase dissoute des eaux traitées, 

au niveau de 7 stations d’épuration. 

  
Min Max Moyenne Médiane Fréquence de détection 

(µg.l-1) (µg.l-1) (µg.l-1) (µg.l-1) 
AINS, 

analgésiques 

 

Ibu nd 0,9 0,183 0,124 83% 
Para 0,014 2,1 0,181 0,077 100% 
Asp nd 0,78 0,242 0,13 89% 

Diclo 0,06 1,51 0,823 0,92 100% 

Stimulants Caf 0,009 0,8 0,201 0,089 100% 
Théo 0,026 0,81 0,23 0,125 100% 

Antidépresseurs, 

anxiolytiques 

 

Cbz 0,16 1,73 0,857 0,9 100% 
Dzp 0,001 0,09 0,014 0,004 100% 
Ndzp 0,001 0,036 0,019 0,019 100% 
Alpra nd 0,024 0,004 0,003 72% 
Broma nd 0,065 0,014 0,012 94% 
Fluox 0,002 0,034 0,012 0,009 100% 
Ami 0,015 0,058 0,028 0,028 100% 
Doxe nd 0,015 0,004 0,003 78% 
Imi nd 0,002 0,001 0 44% 

Hypolipémiants Gemf 0,015 0,52 0,202 0,154 100% 

Bronchodilatateurs 
Clenbu nd 0,002 0,001 0 39% 
Salbu nd 0,024 0,013 0,013 94% 
Terbu nd 0,017 0,006 0,004 89% 

 

 

      

 

III.3  Devenir des APEO et des substances pharmaceutiques dans les stations d’épuration  

III.3.1  Bilan d’abattement global  

Les 7 stations d’épuration ont pour point commun de mettre en œuvre un processus de 

traitement biologique des eaux usées par boues activées. Deux tendances ont pu être observées dans le 

devenir des molécules au cours des processus de traitement des eaux usées.  

Un certain nombre de molécules sont éliminées à des rendements élevés quelque soit la 

configuration mise en œuvre (rendements d’abattements supérieurs à 99 % pour le paracétamol, 

compris entre 92 % et 99 % pour l’aspirine, entre 95 % et 99 % pour l’ibuprofène, entre 87 % et 99 % 

pour la caféine et la théophylline ; Figure 72). Bien qu’elles soient dégradées dans les STEP, les 

rendements d’abattements pour les molécules telles que le gemfibrozil, le bromazépam, le 4-NP ou le 

4-NP1EO sont plus variables compris entre 65 % et 99 % pour le 4-NP, 65 % et 99 % pour le 4-

NP1EO, 55 % et 98 % pour le gemfibrozil. Les phénomènes qui concourent à cette variabilité ne sont 

pas encore connus et nécessiteront de plus amples investigations, notamment par modélisation (Teske 

et al., 2008 ; Miège et al., 2008).   

En opposition à ces molécules qui sont dégradées au cours des processus de dégradation, il 

est notable qu’un certain nombre d’entre elles traversent les processus sans être affectées par les 

traitements mettant en jeu des boues activées (Figure 73). Ainsi des molécules telles que la 
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carbamazépine, le nordiazépam, le diclofénac présentent des taux d’abattement inférieurs à 10 % voir 

même négatifs ce qui implique qu’une partie des molécules est générée au cours du processus de 

traitement des eaux usées. Ces molécules apparaissent comme étant réfractaires aux processus de 

traitement par boues activées. Elles présentent pour caractéristique d’être excrétées en partie sous 

formes métabolisées conjuguées. Les phénomènes de clivage initiés durant l’acheminement des eaux 

brutes se poursuivent au cours du processus de traitement des eaux et conduisent à la libération de 

formes libres des substances considérées. D’autres molécules telles que le 4-NP1EC sont générées au 

cours du processus de dégradation. Les APEC et donc le 4-NP1EC, sont les métabolites de la 

biodégradation aérobie des APEO dont le siège est les boues activées (Figure 73). Ces résultats 

renforcent l’idée de la nécessité de considérer les métabolites de dégradation des APEO pour 

comprendre et évaluer les processus de traitements des eaux usées et que la considération seule du 4-

NP conduit à une sous évaluation des risques liées aux rejets de ces composés vers les milieux. 

Ces tendances globales, qui sont parmi les premières à exposer le devenir de molécules 

émergentes dans les stations d’épuration en France, sont cohérentes avec les données de la 

bibliographie (Revue par Soares, 2008 ; revue par Teske et Arnold, 2008 ; revue par Miège et al., 

2008) et permettent d’affirmer l’inégalité des processus de traitements des eaux usées quant à leur 

efficacité à abattre les molécules organiques émergentes. 
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Figure 72 : Efficacité des STEP quant à l’abattement d’APEO et des substances pharmaceutiques Cas des molécules abattues. 

La figure présente les concentrations entrantes (        ) et sortantes (        ) en molécules d’intérêt dans la phase dissoute (µg.l-1) 
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Figure 73 : Efficacité des STEP quant à l’abattement d’APEO et des substances pharmaceutiques. Cas des molécules réfractaires. 

La figure présente les concentrations entrantes (         ) et sortantes (        ) en molécules d’intérêt dans la phase dissoute (µg.l-1). 
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III.3.2  Description du devenir des métabolites d’APEO et des substances 

pharmaceutiques au cours des processus  

III.3.2.1  Efficacité des traitements primaires et secondaires  

Les traitements primaires consistent en un abattement des matières en suspension par 

décantation. A l’exception de l’aspirine et du 4-NP pour lesquels un abattement respectif de 80 % et 

58 % est observé, ce type de traitement apparaît comme peu efficace (R < 30 %) pour abattre les 

substances organiques polaires ou semi-polaires (la carbamazépine, le diclofénac, le 4-NP1EO) 

présentes dans la phase aqueuse (Figure 74). C’est au sein de la phase de traitement biologique 

(secondaire) que les processus concourant à l’abattement des substances se déroulent (Figure 74). Si 

les taux d’abattement sont supérieurs à 90 % pour un certain nombre de molécules (l’aspirine, le 

paracétamol, l’ibuprofène, le 4-NP, le 4-NP1EO) (Teske et al., 2008), un certain nombre de molécules 

apparaissent comme réfractaires aux processus de dégradation mis en jeu au cours des traitements par 

boues activées (10 % pour la carbamazépine, 36 % pour le diclofénac) (Leclercq et al., 2008 ; Zhang et 

al., 2008). 

 

Figure 74 : Devenir de substances pharmaceutiques et des métabolites d’APEO au cours de processus 

de traitements Iaire et IIaire. Données de présence dans la phase dissoute (µg.l-1) et rendements d’abattement pour chaque étape de la 

filière de traitement des eaux. (Rendement de la phase de traitement Iaire = ([entrée]-[T Iaire ]/[entrée]) ; Rendement de la phase de traitement 

IIaire = ([T Iaire]-[T II aire ]/[T Iaire]). 

III.3.2.2  Efficacité des traitements tertiaires  

L’ajout de traitements tertiaires se généralise dans les processus de traitement des eaux, ce 

sont des traitements complémentaires qui permettent d’obtenir une qualité supérieure des eaux rejetées 

(diminution des matières en suspension, abattement de l’azote et du carbone) dans le milieu naturel 
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dans un but de protection du milieu naturel ou de réutilisation pour des applications industrielles ou 

agricoles. Pour les molécules les plus dégradables, l’abattement initié dans les processus de boues 

activées se poursuivent au cours des traitements tertiaires comme c’est le cas pour le paracétamol, la 

caféine ou l’ibuprofène (Figure 75). Concernant le 4-NP ou le 4-NP1EO, il n’est pas surprenant 

d’observer une augmentation des concentrations mesurées entre l’effluent biologique et l’effluent final 

(92 % pour le 4-NP). En effet, ces molécules sont les produits de biodégradation finaux des NPEO 

commerciaux. Le fait que leurs concentrations augmentent dans les effluents tertiaires dénote, de 

manière indirecte, un abattement global des APEO plus abouti. Comme le met en évidence la Figure 

75, les molécules qui apparaissent comme réfractaires aux traitements biologiques par boues activées 

ne semblent pas significativement abattues par les traitements tertiaires étudiés (décanteur rapide) 

comme ceci est notable pour l’amitryptiline, le diclofénac ou la carbamazépine (R<30 %).  

 

Figure 75 : Devenir de substances pharmaceutiques et des métabolites d’APEO au cours de processus 

de traitements des eaux usées. Données de présence dans la phase dissoute (µg.l-1) et rendements d’abattement pour chaque étape 

de la filière de traitement des eaux. (Rendement de la phase de traitement Biologique = ([entrée]-[T Bio ]/[entrée]) ; Rendement de la phase 

de traitement IIIaire = ([T Bio]-[T III aire ]/[T Bio]). 

 

Pour résumer, ces tendances semblent confirmer l’hypothèse les traitements tertiaires, dont le 

principe est d’appliquer un traitement agissant via d’autres mécanismes d’élimination, conduisent à 

l’amélioration de la qualité des effluents rejetés dans les milieux naturels pour les molécules d’APEO 

et les substances pharmaceutiques étudiées (Martin-Ruel et al., 2008 ; Teske et al., 2008 ; programme 

POSEIDON).  
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III.4  Rôle des phases solides en suspension 

L’un des axes fort de ces travaux de recherche était la considération des phases solides en 

suspension et l’évaluation de leur rôle dans la contamination des phases aqueuses. Concernant les 

métabolites d’APEO, les observations ont pu mettre

comprises entre la dizaine de ng.

règle générale, une diminution de la contamination de la phase particulaire au fur et à mesure 
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al., 2008).  
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a) 

en suspension  

L’un des axes fort de ces travaux de recherche était la considération des phases solides en 

suspension et l’évaluation de leur rôle dans la contamination des phases aqueuses. Concernant les 

métabolites d’APEO, les observations ont pu mettre en évidence des valeurs de contamination 

comprises entre la dizaine de ng.g-1 et plusieurs dizaines de µg.g-1 selon le métabolite considéré. En 

règle générale, une diminution de la contamination de la phase particulaire au fur et à mesure 

dans le processus de traitement est notable. Dans les eaux brutes, la part des phases 

solides dans la contamination des phases aqueuses peut atteindre de 20 à 80

contaminante selon le métabolite considéré (Figure 76) (Koh et al., 2008). Dans les eaux traitées leur 

: inférieure à 10% pour le 4-NP1EC qui est le métabolite le plus
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, qu’en règle générale, la charge contaminante en métabolites d’APEO portée par 

les phases solides est abattue au cours des processus de traitements des eaux. L’essentiel de cette 

dégradation semble se dérouler au cours du processus de traitement biologique des eaux

es processus de décantation primaire apparaissant comme modérément efficaces (

Même si certaines molécules pharmaceutiques (la caféine, l’aspirine, le 

être quantifiées dans des concentrations supérieures au µg.g-1 dans les entrées de STEP, les 

concentrations mesurées sont dans la plupart des cas inférieures à la centaine de ng.g

molécules telles que le salbutamol, le clenbutérol, la terbutaline sont systématiquement en dessous des 

A l’exception de certains antidépresseurs  (l’amitryptiline, 

% de la charge contaminante peut être amenée par les phases solides 

les eaux traitées, il apparaît que pour la grande majorité des substances 

pharmaceutiques, les phases solides en suspension apparaissent comme de faibles vecteurs de 

%) par comparaison aux phases dissoutes (Figure 76).  
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L’un des axes fort de ces travaux de recherche était la considération des phases solides en 

suspension et l’évaluation de leur rôle dans la contamination des phases aqueuses. Concernant les 

des valeurs de contamination 

selon le métabolite considéré. En 

règle générale, une diminution de la contamination de la phase particulaire au fur et à mesure de 

ans les eaux brutes, la part des phases 

de 20 à 80 % de la charge 

. Dans les eaux traitées leur 

NP1EC qui est le métabolite le plus polaire, 

NP (composé hydrophobe) dans le cas de SE-1. Néanmoins, il 

, qu’en règle générale, la charge contaminante en métabolites d’APEO portée par 

de traitements des eaux. L’essentiel de cette 

dégradation semble se dérouler au cours du processus de traitement biologique des eaux (Figure 76 a), 

(Figure 76 b) (Koh et 

le kétoprofène) peuvent 

entrées de STEP, les 

concentrations mesurées sont dans la plupart des cas inférieures à la centaine de ng.g-1. Certaines 

tiquement en dessous des 

mitryptiline, la fluoxétine, le 

minante peut être amenée par les phases solides 

traitées, il apparaît que pour la grande majorité des substances 

pharmaceutiques, les phases solides en suspension apparaissent comme de faibles vecteurs de 

 



 
 

Figure 76 : Part de chacune des phases (solides et dissoutes) dans la contamination des phases 
aqueuses, évolution au cours des processus de 

a) Part de chacune des phases dans les eaux brutes et traitées au nivea
dans les eaux brutes, eaux décantées et eaux traitées au niveau de SE
 

 

III.5 Données de présence des métabolites d’APEO et 

boues issues des processus de traitement des eaux usées

Les dosages qui ont été conduits au niveau des filières boues ont permis de mettre en évidence 

une contamination chronique des boues issues des processus de tra

les métabolites d’APEO et par 

discrimination entre la contamination des boues par les métabolites d’APEO et les substances 

pharmaceutiques est mise en évidence.

moyennes de 1 mg.l-1 selon le composé considéré

une concentration moyenne mesurée égale à 1902 µg.l

896 µg.l-1) et le 4-NP1EC (concentration moyenne de 1842 µg.l

et al., 2006). Ces résultats semblent également suggérer l’existence de différents mécanismes de 

sorption : des interactions de type hydrophobe pour le 4

d’interactions pour le 4-NP1EC notamment des interactions de type électrostatique entre la molécule 

et la paroi bactérienne (bactéries présentes dans les boues activées). Une grande variabilité des 

concentrations mesurées a égalem

d’entrée. En effet, les STEP SE-

importants dans les eaux d’entrée sont également celles qui montrent les niveaux de con

plus importants dans les boues finales.

 

b) 

Part de chacune des phases (solides et dissoutes) dans la contamination des phases 
aqueuses, évolution au cours des processus de traitements des eaux

Part de chacune des phases dans les eaux brutes et traitées au niveau de SE-1 ;  b) Part de chacune des phases 
dans les eaux brutes, eaux décantées et eaux traitées au niveau de SE-2.  

Données de présence des métabolites d’APEO et des substances pharmaceutiques dans les 

boues issues des processus de traitement des eaux usées 

Les dosages qui ont été conduits au niveau des filières boues ont permis de mettre en évidence 

une contamination chronique des boues issues des processus de traitement des eaux usées à la fois par 

par les substances pharmaceutiques (Figure 77). U

discrimination entre la contamination des boues par les métabolites d’APEO et les substances 

pharmaceutiques est mise en évidence. Les métabolites d’APEO sont présents à des concentrations 

selon le composé considéré : le 4-NP1EO apparaissant le plus abondant avec 

une concentration moyenne mesurée égale à 1902 µg.l-1, devant le 4-NP (concentration moyenne de 

NP1EC (concentration moyenne de 1842 µg.l-1) (Ghanem et al., 2007 ; Ballesteros 

. Ces résultats semblent également suggérer l’existence de différents mécanismes de 

interactions de type hydrophobe pour le 4-NP1EO et le 4

NP1EC notamment des interactions de type électrostatique entre la molécule 

et la paroi bactérienne (bactéries présentes dans les boues activées). Une grande variabilité des 

concentrations mesurées a également été observée et semble liée au profil de contamination des eaux 

-1, SE-2, SE-3 qui présentaient les niveaux de contamination les plus 

importants dans les eaux d’entrée sont également celles qui montrent les niveaux de con

plus importants dans les boues finales. 
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Part de chacune des phases (solides et dissoutes) dans la contamination des phases 
traitements des eaux. 
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Figure 77 : Données de présence des métabolites d’APEO et des substances pharmaceutiques dans les 
boues de station d’épuration (7 stations d’épuration, concentrations moyennes+/-RSD µg.l-1). 
 

A l’exception de l’aspirine et du kétoprofène qui sont quantifiés dans des concentrations 

supérieures à la centaine de µg.l-1, les autres molécules pharmaceutiques sont présentes dans des 

concentrations nettement inférieures : de l’ordre du µg.l-1 pour les antidépresseurs, de la dizaine de 

µg.l-1 pour la caféine ou bien la carbamazépine. Ces tendances sont cohérentes avec le caractère 

polaire des molécules étudiées (Beausse et al., 2004). De plus, comme cela a été montré pour le 4-

NP1EC, la présence de certaines molécules pharmaceutiques dans des concentrations significatives 

pourraient être induite par d’autres types d’interactions que les interactions hydrophobes, comme par 

exemple des interactions de type électrostatiques (EAWAG). De plus, on ne peut exclure que la 

présence des tensioactifs, notamment des APEO, dans des concentrations importantes, puissent 

favoriser les phénomènes de sorption via leur caractère amphiphile. 

Au regard des usages des boues issues des processus de traitements des eaux en France, avec 

plus de 60% d’entre elles valorisées par des usages agricoles (IFEN), la contamination des boues 

ultimes par les métabolites d’APEO et les substances pharmaceutiques pose la question de l’impact de 

cette valorisation pour l’environnement, notamment au travers des apports vers les eaux de surface par 

les phénomènes de ruissellement et de lessivage des terres agricoles, au travers des risques associés à 

la contamination de la ressource en eau via les processus de percolation des eaux, et enfin au travers 

des risques liés aux transferts sols-plantes.  

L’ensemble des résultats et tendances observés pour les alkylphénol-polyéthoxylés a fait 

l’objet d’une publication (publication n°4). 
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IV   L’estuaire de Seine : un écosystème sous pression, le bilan de 6 années d’étude 

Les principaux objectifs de ce paragraphe sont de présenter les résultats obtenus dans le cadre 

du programme de recherche Seine-Aval, de 2002 à 2006, au travers d’une synthèse des principaux 

faits et conclusions acquis durant ces 5 années de monitoring. 

 

IV.1  Programme de recherche : le Programme SEINE AVAL  

Le programme Seine aval est un programme de recherche scientifique intégrée mis en place 

en 1995 pour comprendre l'origine des principales problématiques de l’estuaire de Seine : l'évolution 

géomorphologique du système, la contamination des eaux (chimique, (micro)biologique,...), les 

dysfonctionnements aquatiques (conditions physico-chimiques,...) ainsi que leurs évolutions et leurs 

impacts écologiques et socio-économique.  

Les travaux de recherche conduits dans le cadre de cette thèse portaient sur l’étude de la 

contamination chimique des eaux de l’estuaire de Seine par les détergents alkylphénol-polyéthoxylés 

et leurs métabolites de dégradation. Cinq années de monitoring de l’estuaire de Seine ont permis 

l’acquisition de données concernant les sources, la présence et le devenir des APEO et de leurs 

métabolites dans le système estuarien. 

 

IV.2 Les Sources d’APEO en estuaire de Seine  

Au niveau de l’estuaire de Seine, les efforts de recherche se sont cantonnés à 3 sources 

principales : les STEP au travers de l’étude des effluents de 3 stations d’épuration, les 9 principaux 

tributaires et la Seine à son point d’entrée dans l’estuaire. 

IV.2.1 Les Stations d’épuration (Publication n°6, Publication n°7) 

IV.2.1.1 Données de présence dans les effluents 

 Cinq années de monitoring ont permis de mettre en évidence une contamination chronique des 

effluents de stations d’épuration de l’estuaire de Seine par les métabolites d’APEO (Tableau 44). Les 

phases dissoutes présentent une distribution des métabolites caractéristique des effluents de STEP 

utilisant des traitements secondaires biologiques avec le NP1EC composé majoritaire devant le 4-NP 

et les formes éthoxylées 4-NP1-2EO. Les concentrations mesurées sont comprises entre la dizaine de 

ng.l-1 et la dizaine de µg.l-1 (39-627 ng.l-1 pour le 4-NP, 307-11637 ng.l-1  pour le 4-NP1EC, 16-1168 

ng.l-1 pour les 4-NP1-2EO) quels que soient le composé et la STEP considérés. Au contraire, dans les 

phases solides, une distribution radicalement différente est remarquable. Les formes éthoxylées et le 4-

NP sont plus abondantes que les acides NP1EC. Là encore, des concentrations importantes en 

métabolites sont mesurées dans les phases solides quels que soient le composé et la STEP considérés. 

Elles sont comprises entre la centaine de ng.g-1 et plusieurs dizaines de µg.g-1 (508-23047 ng.g-1 pour 

le 4-NP, 1134-30751 ng.g-1  pour le 4-NP1-2EO, 570-19556 ng.g-1  pour le 4-NP1EC). Dans le cas des 
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métabolites d’APEO la part de la phase solide dans la contamination des effluents peut atteindre 70 % 

de la pollution rejetée dans le milieu. Pour une même station d’épuration, il peut être observé des 

variations des concentrations en métabolites, que ce soit dans la phase dissoute ou la phase 

particulaire, qui peuvent atteindre un facteur 10. 

Tableau 44 : Données de présence en métabolites d’APEO dans les effluents de station d’épuration 

dans les phases dissoutes et les phases solides (2002-2006). 

Phases dissoutes 
ng.l-1 C° max C° min  C° moyenne  RSD 

STP ELBEUF 
4-NP1-2EO 1168 47 364 361 
4-NP1EC 11637 580 2848 3531 

4-NP 576 81 255 171 

STP EMERAUDE 
4-NP1-2EO 1121 200 519 263 
4-NP1EC 6138 800 3352 1840 

4-NP 627 39 301 173 

STP TANCARVILLE 
4-NP1-2EO 497 16 134 165 
4-NP1EC 7384 307 2078 2304 

4-NP 480 59 200 140 
Phases solides 

ng.g-1 C° max C° min C° moyenne RSD 

STP ELBEUF 
4-NP1-2EO 30751 1134 11979 9410 
4-NP1EC 19556 1370 7010 5936 

4-NP 20599 2070 8686 5850 

STP EMERAUDE 
4-NP1-2EO 25745 1197 10946 7874 
4-NP1EC 18014 570 7542 6078 

4-NP 15041 508 6009 4633 

STP TANCARVILLE 
4-NP1-2EO 15518 1723 7456 4018 
4-NP1EC 10902 3793 7172 2479 

4-NP 23047 2100 9084 5870 
Concentrations minimales, maximales, moyennes mesurées dans les effluents au cours des 6 années d’étude dans les phases dissoutes (ng.l-1) 

et solides (ng.g-1) 

IV.2.1.2 Tendances dans la présence des métabolites d’APEO dans les effluents 

Les tendances observées au cours des 5 années de monitoring ont mis en évidence des 

dynamiques saisonnières de fonctionnement des STEP notamment pour le 4-NP1EC (Tableau 44 et 

Figure 78) avec des concentrations maximales en été et des concentrations minimales en hiver. Deux 

paramètres clés semblent pouvoir expliquer ces observations : l’efficacité des phénomènes 

d’abattement est dépendante, d’une part, de la température (en effet les phénomènes de biodégradation 

sont thermo-dépendants (augmentation des concentrations en APEO à courte chaîne éthoxy et des 

APEC pour les mois les plus chauds)) et, d’autre part, du temps de résidence hydraulique dans les 

STEP qui conditionne les phénomènes de dégradation et de sorption. Cette étude permet également de 

mettre en évidence que, bien qu’une restriction d’usages soit entrée en application depuis le 17 janvier 

2005, elle ne semble pas pour autant se traduire par une diminution des rejets en APEO dans le milieu. 
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Figure 78 : Tendances saisonnières dans la distribution et la présence les principaux métabolites 

d’APEO au niveau de l’effluent de la station d’épuration de Rouen (2002-2006). 

IV.2.2 Les principaux tributaires (Publication n°7) 

IV.2.2.1 Données de présence dans les phases dissoutes 

On note tout d’abord une contamination chronique et généralisée du bassin versant de 

l’estuaire de Seine par les alkylphénol-polyéthoxylés et leurs métabolites de biodégradation (Figure 

79). Les mesures réalisées permettent de classifier les tributaires en 2 classes.  

 

Figure 79 : Données de présence des métabolites d’APEO dans les affluents au cours des 3 
campagnes. 

 

Le Cailly, le Commerce, L’Eure, L’Austreberthe et La Risle présentent des profils de 

contamination élevés à modérés avec des concentrations en composés alkylphénoliques de l’ordre de 

la centaine de ng.l-1. La distribution est caractéristique avec le 4-NP1EC composé majoritaire dans la 

phase dissoute quelle que soit la saison ; cette distribution est caractéristique des effluents de station 

d’épuration présentant des traitements secondaires biologiques qui sont généralisées sur les bassins 

versants des tributaires susnommés. Une importante variabilité des concentrations mesurées est 

également mise en évidence avec des amplitudes de contamination qui peuvent atteindre un facteur 10 
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(Austreberthe, février-juillet 2006). Les tendances observées semblent corrélées au fort degré 

d’anthropisation et d’industrialisation des bassins versants.  

L’Andelle, Le Rançon, La Sainte-Gertrude et le Robec présentent des profils de 

contamination faibles à modérées avec des concentrations en composés alkylphénoliques comprises 

entre quelques dizaines et centaines de ng.l-1. Par opposition au groupe précédemment exposé, les 

phases dissoutes sont dominées par le 4-NP devant les NP1-2EO. Ces tributaires collectent les eaux de 

bassins versants plus ruraux présentant une anthropisation et industrialisation de leurs bassins versants 

plus faible. L’existence de sources de contamination situées en amont (et distantes) du point 

échantillonné ainsi que l’existence de phénomènes de dilution et/ou dégradation sont deux hypothèses 

qui peuvent être avancées. L’hypothèse de rejets diffus liés à des phénomènes de ruissellement 

(apports via les épandages agricoles de boues de stations d’épuration) pet également être émise.  

L’évaluation du risque écotoxicologique induit par la présence d’une substance sur les 

organismes aquatiques peut être conduite par comparaison des valeurs mesurées dans le milieu à une 

valeur prédite sans effet (PNEC). Si le rapport est supérieur à 1 des effets sont susceptibles de se 

dérouler dans les milieux. En se basant sur la valeur de PNECaqua du 4-NP égale à 330 ng.l-1 

(INERIS, 2005) et celle du 4-NP1EC égale à 2000 ng.l-1 (Fenner et al., 2002).  

Pour l’ensemble des tributaires, les concentrations totales mesurées sont inférieures d’une 

part au valeur de PNECaqua du 4-NP et d’autre part aux EQS (300 ng.l-1 pour le 4-NP) fixés dans la 

cadre de la DCE, ce qui semblerait laisser penser que les risques environnementaux liés à la présence 

d’APEO dans les tributaires sont faibles. Néanmoins, il n’en demeurre pas moins qu’en certains points 

(proximité des rejets de STEP) et en certaines conditions (débit d’étiage) ; un risque chimique lié à la 

présence d’APEO seuls ou en mélange persiste.  

IV.2.2.2 Flux en métabolites d’APEO amenés par les tributaires  

Au cours des 3 campagnes réalisées sur les tributaires, les flux de métabolites d’APEO ont 

pu être estimés (Figure 80). Les affluents qui présentent les profils de contamination des phases 

aqueuses les plus marqués ne sont pas ceux qui exercent le maximum de pression sur l’écosystème 

estuarien. Force est de constater l’importance de considérer les flux en contaminants dans la conduite 

d’études de monitoring. Ainsi, L’Eure et la Risle apparaissent comme étant responsables de la plus 

forte pression exercée par les tributaires sur le système estuarien avec des apports en métabolites qui 

peuvent atteindre la dizaine de grammes par jour. Les variations en flux sont importantes pour les plus 

grands systèmes mais ne semblent pas liées à des variations saisonnières (maximum en mai-2005 pour 

l’Eure, en février- 2006 pour l’Andelle). L’hypothèse d’une relation avec les variations dans les usages 

et dans l’efficacité des processus d’abattement des stations d’épuration peut être avancée. 
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Figure 80 : Flux en métabolites d’APEO amenés en estuaire de Seine par les 9 principaux tributaires. 

Figure 81 : Concentrations en métabolites d’APEO mesurées à Poses dans les phases dissoutes (clair) 

et solides (foncé) au cours des 5 années de monitoring. 

0

5

10

15

20

25

30

35

40

45

eure andelle robec cailly austreberthe rançon sainte gertrude commerce risle

g.j-1

Mai-2005

Fev-06

juil-06

0

500

1000

1500

2000

2500

3000

3500

4000

4-
N

P
1E

O
4-

N
P

2E
O

N
P

1E
C

4-
N

P
4-

N
P

1E
O

4-
N

P
2E

O
N

P
1E

C
4-

N
P

4-
N

P
1E

O
4-

N
P

2E
O

N
P

1E
C

4-
N

P
4-

N
P

1E
O

4-
N

P
2E

O
N

P
1E

C
4-

N
P

4-
N

P
1E

O
4-

N
P

2E
O

N
P

1E
C

4-
N

P
4-

N
P

1E
O

4-
N

P
2E

O
N

P
1E

C
4-

N
P

4-
N

P
1E

O
4-

N
P

2E
O

N
P

1E
C

4-
N

P
4-

N
P

1E
O

4-
N

P
2E

O
N

P
1E

C
4-

N
P

4-
N

P
1E

O
4-

N
P

2E
O

N
P

1E
C

4-
N

P
4-

N
P

1E
O

4-
N

P
2E

O
N

P
1E

C
4-

N
P

mars-02 mai-02 juil-02 sept-02 nov-02 mars-03 juil-03 mai-05 fev-06 juil-06

ng.l-1
0

200

400

600

800

1000

1200

1400

1600

1800

2000 valeur(m3.s-1)



Synthèse 

 Page 177 
 

IV.2.3 L’influence de la zone amont : la région parisienne (Publication n°7) 

Une importante variabilité des concentrations mesurées à Poses a pu être mise en évidence 

aussi bien dans la phase dissoute que dans la phase particulaire (en ng.g-1 tout comme en ng.l-1) 

(Figure 81). A titre d’exemple les concentrations mesurées en 4-NP1EC varient entre 146 et 2913 ng.l-

1 dans la phase dissoute et entre 18 et 232 ng.l-1 pour le 4-NP dans la phase particulaire. Selon les 

saisons, la part de la phase solide dans la contamination globale apparaît également variable et peut 

atteindre des valeurs égales à 50 % de la contamination pour le 4-NP (mars-2003). 

 

 

Figure 82 : Flux en métabolites d’APEO entrants dans l’estuaire durant la période d’étude 2002-2006. 

 

Une part importante des variations mesurées dans les phases aqueuses peut être expliquée 

par les variations naturelles du débit de la Seine. Ainsi, si l’on raisonne en termes de flux d’APEO 

arrivant au niveau de l’estuaire, une amplitude maximale des quantités égales à 3,5 (Figure 82) peut 

être notée. D’autres phénomènes semblent s’ajouter aux facteurs de dilution pour expliquer les 

variations observées : l’influence de la variabilité des rejets des effluents situés en amont, notamment 

la station d’épuration d’Achères qui traite la grande majorité des eaux domestiques et/ou industrielles 

de la région parisienne, l’influence de rejets secondaires diffus liés aux ruissellements (épandages de 

boues), les variations des capacités épuratoires intrinsèques du milieu.  

 

IV.2.4 Bilan des apports en Seine (Publication n°7) 

Bien que les nonylphénol-polyéthoxylés fassent l’objet d’une restriction d’usages depuis le 

17 janvier 2005, il semble que les processus de substitution ne soient pas encore établis comme le 

montrent les données acquises depuis l’année 2005 et qui confirment une contamination chronique de 

l’ensemble du système hydrologique de l’estuaire de la Seine. 
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A Poses, les quantités apportées en 2006 sont plus faibles que celles apportées, en général, 

durant les années antérieures, bien qu’elles restent néanmoins importantes. De nouvelles études 

devront être conduites pour confirmer les tendances observées.  

La zone amont apparait comme étant principalement responsable de l’état de contamination 

de l’estuaire de la Seine. Par comparaison, la part des stations d’épuration de l’estuaire et des affluents 

apparaît comme mineure mais non négligeable et d’autant plus importantes en conditions estivales. 

Ces 2 sources participent à la contamination chronique de l’estuaire (Figure 83).  

 

Figure 83 : Part des différentes sources d’APEO dans la contamination de l’estuaire de Seine en 

fonction des saisons (kg.jour-1). 

 

IV.3  Le devenir des métabolites d’APEO en estuaire de Seine (Publication n°6) 

IV.3.1  Le devenir des métabolites d’APEO dans l’estuaire fluvial 

Les données obtenues entre 2002 et 2006 ont mis en évidence une contamination chronique 

de l’estuaire de Seine par les alkylphénol-polyéthoxylés et leurs métabolites de biodégradation. Les 

concentrations observées sont fonction de la station, de la saison et de la structure des composés. Le 4-

NP1EC est le composé majoritaire de la phase dissoute devant le 4-NP et les NP1EO et NP2EO 

(Figure 84). De l’amont vers l’aval  la distribution en composés reste identique avec le 4-NP1EC 

majoritaire dans la phase dissoute. Le 4-NP est présent en concentrations importantes (quelques 

centaines de ng.g-1) dans la phase particulaire devant les composés éthoxylés à courte chaîne: 4-

NP1EO et 4-NP2EO (quelques dizaines ng.g-1). En règle générale, peu de phénomènes de dilution sont 

observés dans la phase dissoute tout au long de l’estuaire à l’exception des mois estivaux (caractérisés 

par une dégradation (biodégradation et photodégradation) plus importante et des temps de résidence 

des eaux dans l’estuaire plus importants.  

Au contraire au fur et à mesure que la concentration en MES (bouchon vaseux) augmente 

dans l’estuaire la concentration en composés dans la phase particulaire, exprimée en ng.g-1, diminue. 
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Seine, elle apparaît comme extrêmement variable selon le composé et la localisation spatio-

temporelle : minoritaire pour le 4-NP1EC, pouvant atteindre plus de 50 % pour le 4-NP1EO et le 4-

NP. Une tendance à l’augmentation de la part des solides en suspension au fur et à mesure de 

l’avancement dans l’estuaire a pu être observée, associée à l’augmentation des teneurs en matières en 

suspension, mettant en évidence le rôle joué par le bouchon vaseux dans le cycle biogéochimique des 

APEO en estuaire de Seine. Peu de données renseignent de la part des phases particulaires dans la 

contamination (Isobe et al., 2001 ; Wang et al., 2006 ; Xu et al., 2006 ; Li et al., 2008) et spécialement 

dans les estuaires (Jonkers et al., 2005 ; Lara Martin et al., 2008). 

 

Figure 84 : Devenir des métabolites d’APEO dans l’estuaire de Seine au cours de 2 campagnes a) mai 

2005 ; b) juillet 2006. Part de la phase solide dans la contamination de la phase aqueuse. 
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IV.3.2  Risque chimique lié
fluvial 
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question. De plus, les métabolites d’APEO sont présents en mélange, associés à de nombreux autres 

contaminants chimiques : des effets synergiques 

naturels. Ainsi, un risque chimique lié à la présence des APEO en estuaire de Seine a pu être mis en 

évidence.  

 

Figure 85 : Evaluation du risque lié à la présence de métabolites d’APEO en estuaire de Seine
(Concentration t
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IV.4  Présence et devenir des métabolites d’APEO dans l’estuaire de Seine marin (Publication°7) 

Deux campagnes ont permis de mettre en évidence les phénomènes de transferts d’APEO de 

l’estuaire fluvial vers l’estuaire marin (Figure 86a et b). Quelle que soit la saison (hiver/été), le 

principal phénomène qui se déroule est un phénomène de dilution très marqué pour le 4-NP1EC (R2 

supérieurs à 0,9) et moins net pour les autres métabolites notamment le 4-NP (Figure 86c). Ce qui 

dénote que des phénomènes de dégradation (anaérobie) ou des phénomènes de sorption/désorption se 

déroulent. Ce qui conduit à la mesure de concentrations inférieures à la centaine de ng.l-1 pour les 

points les plus marins.  

 

 

.  

Figure 86 : Devenir des métabolites d’APEO dans l’estuaire de Seine marin a) Juillet 2003 ; b) 
Novembre 2004 ; c) corrélation entre salinité et concentrations en 4-NP1EC et 4-NP mesurées dans la phase 

aqueuse (phase dissoute + particulaire). 
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V Les APEO et les substances pharmaceutiques : contaminants ubiquistes du littoral 

français 

Les principaux objectifs de ce paragraphe sont de présenter les résultats obtenus dans le 

cadre des programmes de recherche Seine-Aval, ANR Ec2CO et le programme MEDICIS/METROC 

au travers d’une synthèse des principaux faits et conclusions acquis au cours de ces 3 études de 

monitoring. 

V.1 Les sources de métabolites d’APEO et de substances pharmaceutiques en milieu marin 

V.1.1 Etude de cas : La calanque de Cortiou, Impact d’un rejet en milieu marin 
(Publications 9et 10) 

V.1.1.1 Données de présence dans la calanque de Cortiou 

Deux campagnes d’échantillonnages se sont déroulées en novembre 2004 et novembre 2006.  

 

Tableau 45 : Données de présence en métabolites d’APEO et substances pharmaceutiques dans la 

phase dissoute et les sédiments de la calanque de Cortiou 

Phase aqueuse (ng.l-1) Sédiments (µg.kg-1) 
  Min  Max  % det.   Min  Max  % det. 

Stimulants CAFF 1,1 911,8 100 Stimulants CAFF 40 6222 100 

Antidépresseurs, 

anxiolytiques 

CARBA <Lod I 100 

Antidépresseurs, 

anxiolytiques 

CARBA <Lod 36 40 
AMI <Lod I 100 AMI <Lod 3 20 
IMI <Lod <Lod 0 IMI <Lod <Lod 0 

DOX <Lod 1,0 67 DOX <Lod <Lod 0 
DZP <Lod 1,1 17 DZP <Lod <Lod 0 

NDZP 0,6 2,3 100 NDZP <Lod 43 20 

Analgésiques, AINS 

ASP 16,1 1989,8 100 

Analgésiques, AINS 

ASP 182 1870 100 
IBU 0,8 432,7 100 IBU 11 64 100 

PARA 1,3 540,8 100 PARA 14 28 100 
NAPRO 0,6 132,5 100 NAPRO 61 279 100 
KETO 1,5 461,4 100 KETO <Lod 611 40 
DICLO 0,9 106,5 100 DICLO <Lod <Lod 0 

Bronchodilatateurs TERBU 0,4 3,4 100 Bronchodilatateurs TERBU <Lod 7 40 
SALBU <Lod 2,4 67 SALBU <Lod 3 20 

Hypolipémiants GEMF 0,5 39,4 100 Hypolipémiants GEMF <Lod 12 60 

Détergents APEO et 

métabolites 

4- <Lod <Lod 0 

Détergents APEO et 

métabolites 

4-NP1EC <Lod <Lod 0 
4-NP 182 17 100 4-NP 585 4114 80 

4- 471 21 100 4-NP1EO 449 3528 40 
4- 452 26 100 4-NP2EO 475 2598 100 

4-t-OP <Lod <Lod 0 4-t-OP 524 524 20 

 

    
 

 

a) Présence dans la phase dissoute  

Concernant les substances pharmaceutiques, les concentrations mesurées dans la calanque de 

Cortiou sont globalement très élevées, avec cependant une gamme de variation très importante selon 

les composés (Tableau 45). Les anti-inflammatoires non stéroïdiens (l’aspirine, le diclofénac, le 

Abondance 

Fréquence de détection 
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naproxène, l’ibuprofène et le kétoprofène), le paracétamol et la caféine sont présents à de très fortes 

concentrations, supérieures ou égales au µg l-1 (Togola et Budzinski, 2008). Pour les antidépresseurs 

(l’amitriptyline, le diazépam, le nordiazépam) et l'hypolipémiant (le gemfibrozil) les concentrations 

sont plus faibles, de l'ordre de la dizaine de ng l-1. Ces niveaux de concentrations sont représentatifs de 

la consommation de chaque composé. La caféine provient majoritairement de la consommation de 

boissons, les anti-inflammatoires et autres antipyrétiques sont des composés fortement utilisés sans 

prescription médicale. Par opposition, les antidépresseurs et les hypolipémiants sont des composés 

moins consommés quantitativement car ils nécessitent une prescription médicale et des prises 

beaucoup moins importantes.  

La station d’épuration de Marseille présente une étape de traitement physicochimique des eaux 

usées et est dépourvue de traitement biologique. La distribution et les abondances des différentes 

substances pharmaceutiques dans la calanque de Cortiou sont similaires à celles des eaux entrant dans 

les stations d’épuration ou issues des traitements physicochimiques comme cela a été discuté 

précédemment. 

Les métabolites d’APEO sont quantifiés à des concentrations comprises entre la dizaine et la 

centaine de ng.l-1. L’absence de 4-NP1EC est notable. Là encore, cette distribution est la conséquence 

de la typologie des traitements mis en œuvre dans la station d’épuration de Marseille. Le 4-NP1EC et 

les autres APEC sont les métabolites issus de la biodégradation aérobie des APEO, or ce phénomène 

se déroule durant certains processus de traitement biologique des eaux (boues activées, comme cela a 

été discuté). 

b) Présence dans la phase sédimentaire  

Une contamination chronique des sédiments par les substances pharmaceutiques et les 

métabolites d’APEO (Tableau 45) est notable. Seules quelques substances pharmaceutiques ont été 

détectées dans les sédiments : la caféine, l'aspirine, le naproxène et le kétoprofène. Ce sont les 

composés qui présentent la plus forte teneur dans l’eau qui sont les composés majoritairement 

retrouvés dans les phases solides (concentrations supérieures à la centaine de µg.kg-1). Les métabolites 

d’APEO sont également quantifiés à des concentrations importantes, supérieures au mg.kg-1 pour les 

points les plus impactés, ce qui est consistant avec leurs caractères hydrophobe et persistant 

notamment pour le 4-NP et le 4-NP1EO. 

V.1.1.2 Devenir dans la calanque de Cortiou 

a) Devenir dans la phase aqueuse  

Une diminution des concentrations mesurées dans la phase aqueuse des eaux de la calanque 

de Cortiou est observée au fur et à mesure de l’éloignement du point de rejet. Pour les molécules telles 

que l’aspirine, la caféine, l’ibuprofène ou le 4-NP, leur devenir semble être principalement dicté par 

les phénomènes de dilution qui se produisent dans la calanque (coefficients de corrélation supérieurs à 
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0,9) (Figure 87). Pour les autres molécules les coefficients de corrélation sont moins bons ce qui 

dénote que d’autres phénomènes contribuent à leur devenir dans la calanque. Des phénomènes de 

dégradation semblent s’ajouter à ce phénomène de dilution : des phénomènes de biodégradation dans 

le cas du 4-NP1EO et 4-NP2EO (qui sont des molécules connues pour être extrêmement 

biodégradables), des phénomènes de photodégradation dans le cas du naproxène (Lin et al., 2006 ; Lin 

and Reinhard, 2005). 

 

Figure 87 : Devenir des substances pharmaceutiques et des métabolites d’APEO dans la phase aqueuse 

de la calanque de Cortiou, sous influence du rejet de la station d’épuration de Marseille. 

 

Bien que ces résultats ne soient pas présentés ici, les phases solides en suspension sont 

apparues comme, d’une part, d’importants réservoirs que ce soit pour les métabolites d’APEO ou 

certaines molécules pharmaceutiques telles que l’aspirine ou bien encore la caféine et, d’autre part, 

comme d’importants vecteurs de contamination vers le milieu marin. 

b) Devenir dans la phase sédimentaire 

Comme dans le cas de la phase aqueuse, on dénote une tendance à la décroissance de la 

contamination que ce soit en termes de distribution (nombre de molécules détectées) ou en termes 

d’abondance au fur et à mesure que l’éloignement de la calanque. Cependant, les tendances 

apparaissent moins marquées que celles observées dans la phase aqueuse. Elles peuvent s’expliquer 

par d’une part des phénomènes de biodégradation qui peuvent se dérouler au sein des sédiments et 

d’autre part par l’hétérogénéité de la nature du substrat (la granulométrie, la richesse en substances 
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organiques ; Delle Site et al., 2001 ; Lorphensri et al., 2006 ; Suntisukaseam et al., 2007) offrant ainsi 

des capacités de sorption pour les molécules organiques variables (Figure 88). 

 

 

 

Figure 88 : Devenir des substances pharmaceutiques et des métabolites d’APEO dans la phase 

sédimentaire de la calanque de Cortiou, sous influence du rejet de la station d’épuration de Marseille. 

 

Comme cette étude de cas le met en évidence, les apports directs et chroniques via les rejets 

de stations d’épuration en milieu marin sont d’importants vecteurs de contamination. Bien que leurs 

impacts semblent cantonnés à une zone à proximité du rejet (<1 km) au sein de laquelle ils sont 

susceptibles d’engendrer des risques toxicologiques et écotoxicologiques, ils apparaissent néanmoins 

comme d’importants points d’entrée des substances considérées pour les écosystèmes marins côtiers 

notamment via leurs apports en matières en suspension.  

V.1.2 Les systèmes dulçaquicoles 

Comme cela a pu être mis en évidence au travers des sections précédentes V et VI, les 

stations d’épuration sont le vecteur d’apports chroniques et significatifs de substances 

pharmaceutiques et d’APEO pour les milieux récepteurs. Ainsi, l’ensemble des systèmes 

dulçaquicoles étudiés (la Garonne, l’Adour, la Seine, la Vilaine, la Jalle d’Eysines ou bien encore la 

Lauch) ont montré une contamination de leurs phases aqueuses (dissoutes et particulaires lorsque 

qu’une analyse a pu être conduite) par les métabolites de biodégradation des APEO dans des gammes 
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de dilution du milieu. Cela nous permet de conclure, d’une part, en une contamination chronique des 

systèmes dulçaquicoles par les métabolites d’APEO et, d’autre part, en l’existence d’un risque 

chimique lié à la présence de métabolites à l’échelle du territoire français (Figure 89). Ainsi, les 

fleuves et rivières français apparaissent comme une source d’apports en substances d’intérêt pour les 

systèmes littoraux de la façade ouest (Atlantique et Manche). Parce qu’à l’échelle du littoral atlantique 

ces apports se font via des systèmes estuariens, la question du rôle de ces écosystèmes dans le transfert 

des contaminants apparaît comme majeure.  

 

V.2 Présence et devenir des métabolites d’APEO dans les estuaires macrotidaux (Publication 
n°8) 

V.2.1 Données de présence dans la phase dissoute 

 

Tableau 46 : Données de présence des métabolites d’APEO dans les phases dissoutes des principaux 

estuaires macrotidaux français. 

Phase Dissoute ng.l-1 4-NP1EO 4-NP2EO 4-NP1EC 4-NP 4-t-OP 

Baie de Vilaine 
Min 6 3 7 5 2 
Max 248 38 74 50 7 

% détection 100% 82% 82% 100% 32% 

Baie d’Authie 
Min 12 3 <2 14 NR 
Max 64 49 47 76 NR 

% détection 100% 100% 50% 100% NR 

Estuaire de Gironde  
Min 14 12 5 21 NR 
Max 89 83 88 125 NR 

% détection 100% 100% 100% 100% NR 

Estuaire d’Adour 
Min 12 6 57 11 NR 
Max 53 36 99 35 NR 

% détection 100% 100% 100% 100% NR 

Estuaire de Seine 
Min 87 59 685 161 NR 
Max 136 116 1128 221 NR 

% détection 100% 100% 100% 100% NR 

 

Une contamination généralisée de chacun des estuaires étudiés par les métabolites de 

biodégradation d’APEO (Tableau 46) est observée. L’estuaire de Seine est de loin le plus impacté avec 

des concentrations de plusieurs centaines de ng.l-1 selon les composés. Ce qui met en avant l’intérêt de 

l’estuaire de Seine en tant que site modèle pour l’étude du devenir des APEO dans les systèmes 

estuariens. Les estuaires de l’Authie, la Gironde, l’Adour et la Vilaine apparaissent comme 

significativement moins contaminés même si des concentrations comprises entre le ng.l-1 et plusieurs 

centaines de ng.l-1 ont pu être mesurées. Ces contaminations modérées ainsi que la distribution des 

composés (bien que le 4-NP1EC soit dosé dans des teneurs significatives, il n’est pas nécessairement 

le composé majoritaire dans la phase dissoute) sont cohérentes avec les pressions auxquelles sont 

soumises les différents systèmes : bassins versants à dominantes agricoles, présentant des zones de 

pressions urbaines localisées (Bordeaux pour la Gironde ; Bayonne pour l’Adour) et des tissus 

industriels diffus.  
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V.2.2 Rôle des phases particulaires dans la contamination des estuaires 

 

Tableau 47 : Données de présence et rôle des matières en suspension dans la contamination des phases 

aqueuses des principaux estuaires macrotidaux français. 

Estuaire de la Seine  Estuaire de la Seine 

C° ng.g-1 MES Min Max Moy 
Part des MES dans 

contamination (%) 
Min Max Moy 

Honfleur 
4-NP1EO 35 396 211 

Honfleur 
4-NP1EO 26% 82% 46% 

4-NP2EO 32 449 194 4-NP2EO 33% 65% 49% 
4-NP 177 2510 906 4-NP 25% 85% 65% 

Caudebec 
4-NP1EO 173 519 398 

Caudebec 
4-NP1EO 5% 97% 36% 

4-NP2EO 986 1040 1013 4-NP2EO 4% 93% 38% 
4-NP 832 5182 2703 4-NP 20% 99% 57% 

Poses 
4-NP1EO 28 2367 917 

Poses 
4-NP1EO 0% 94% 33% 

4-NP2EO 180 1683 763 4-NP2EO 0% 94% 28% 
4-NP 2015 5453 3799 4-NP 4% 99% 34% 
Estuaire de l’Adour  Estuaire de l’Adour  

C° ng.g-1 MES Min Max Moy 
Part des MES dans 

contamination (%) 
Min Max Moy 

Transect 
4-NP1EO 114 179 135 

Transect 
4-NP1EO 22% 26% 24% 

4-NP2EO 30 86 66 4-NP2EO 4% 27% 15% 
4-NP 211 357 304 4-NP 33% 52% 43% 

Estuaire de la Gironde  Estuaire de la Gironde  

C° ng.g-1 MES Min Max Moy Part des MES dans 

contamination (%) 
Min Max Moy 

Transect 
4-NP1EO 11 139 62 

Transect 
4-NP1EO 16% 26% 21% 

4-NP2EO 9 113 60 4-NP2EO 13% 21% 19% 
4-NP 37 567 223 4-NP 30% 56% 40% 
Baie de l’Authie  Baie de l’Authie  

C° ng.g-1 MES Min Max Moy 
Part des MES dans 

contamination (%) 
Min Max Moy 

Variations 

intersaison 

4-NP1EO 21 177 102,6 Variations 

intersaison 

4-NP1EO 0% 37% 15% 
4-NP2EO 25 89 66,8 4-NP2EO 0% 67% 20% 

4-NP 51 1337 517 4-NP 7% 92% 46% 

 

Une fois encore une contamination généralisée des phases solides en suspension par les 

métabolites d’APEO a pu être mise en évidence (Tableau 47). Comme pour la phase dissoute, c’est en 

estuaire de Seine que les plus fortes concentrations sont mises en évidence avec des valeurs comprises 

entre la centaine de ng.g-1 et plusieurs µg.g-1, notamment pour le 4-NP et le 4-NP1EO (5453 ng.g-1 

pour le 4-NP,  2367 ng.g-1 pour le 4-NP1E0). Les valeurs mesurées dans l’ensemble des autres 

estuaires étant significativement inférieures avec des valeurs maximales généralement inférieures au 

µg.g-1. Quelque soit le système considéré, la part des phases solides dans la contamination globale des 

phases aqueuses est loin d’être négligeable avec en moyenne 50 % de la contamination apportée par 

les phases solides dans le cas du 4-NP dans les systèmes considérés (Isobe et al., 2001 ; Wang et al., 

2006 ; Xu et al., 2006 ; Li et al., 2008). Quelque soit le système considéré, les variations observées 

semblent être liées à des remises en suspension, ponctuelles, liées à des phénomènes climatiques ou 

encore à des dragages (fréquents en estuaire de Seine et de Gironde) comme en Août 2004 dans la 
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Baie de l’Authie, où la contribution de la part solide dans la contamination totale en 4-NP atteint près 

de 90 % lors d’une campagne d’échantillonnage faisant suite à une tempête (Figure 89).  

 

Figure 89 : Tendances dans la contribution des phases solides à la contamination de la Baie de 

l’Authie par les APEO (% de la contamination aqueuse). 

 

V.3 Présence et devenir des métabolites d’APEO et des substances pharmaceutiques dans les 

écosystèmes marins côtiers 

En conséquence d’apports continus via, d’une part, les rejets directs des stations d’épuration 

et d’autre part les apports chroniques des écosystèmes dulçaquicoles au milieu marin, une 

contamination des écosystèmes marins côtiers a pu être mise en évidence à la fois par les métabolites 

de dégradation des APEO (Figure 91) et par les substances pharmaceutiques (Figure 92). Les données 

mesurées démontrent un bruit de fond environnemental en métabolites d’APEO équivalent à la dizaine 

de ng.l-1, compris entre le ng.l-1 et la dizaine de ng.l-1 pour les substances pharmaceutiques (Heemken 

et al., 2001 ; Weigel et al., 2002 ; Weigel et al., 2004 ;  Comeau et al., 2008 ; Kasprzyk-Hordern et al., 

2008 ; Togola et Budzinski, 2008). Lorsque des analyses des phases solides en suspension ont pu être 

conduites (Rade de Marseille), les valeurs obtenues indiquent que, bien que les teneurs en matières en 

suspension soient faibles, ces phases sont, d’une part, des réservoirs pour ces 2 classes de molécules 

et, d’autre part, qu’elles participent à leur dispersion dans l’environnement. 
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Figure 90 : Les APEO et leurs métabolites de dégradation.  Contaminants ubiquistes des systèmes dulçaquicoles Français.
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Figure 91 : LES APEO et leurs métabolites de dégradation. Contaminants ubiquistes des systèmes marins côtiers Français. 
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Figure 92: Les substances pharmaceutiques : Contaminants ubiquistes des systèmes marins côtiers Français. 
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V.4 Transferts aux organismes biologiques (Publication n°9) 
 

 

Figure 93 : Présence de 4-NP dans les biles de poissons Merluccius merluccius dans le Golfe du Lion 
(concentrations exprimées en µg.g-1 bile). 

 

Les résultats démontrent une contamination significative des biles par le 4-NP avec les 

concentrations totales mesurées (somme des formes libres et conjuguées) entre la centaine de ng.g-1 et 

plus de 5 µg.g-1. Une exposition chronique des espèces aquatiques dans le Golf du Lion est ainsi 

observée. Près de 75 % du 4-NP est présent sous forme conjuguée, ce qui est cohérent avec les 

données obtenues par Arukwe et al. (2000) sur le saumon atlantique. Une importante variabilité 

interindividuelle est observée. L'hypothèse d’une variabilité dans l'exposition et dans l'efficacité de la 

métabolisation peut être avancée (Martin-Skilton et al., 2006). En outre, une importante variabilité 

intersites est mise en évidence. Les concentrations maximales sont mesurées dans les sites III, XVII et 

I (concentration maximale supérieure au µg.g-1), ces sites sont situés près de l’embouchure du Rhône 

et sont sous pressions anthropiques directes. Les individus des sites localisés dans la partie centrale, 

profonde, du golf du Lion présentent des niveaux de contamination plus faibles. 
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Les principaux objectifs de ces travaux de thèse étaient, d’une part, de développer et valider 

des outils méthodologiques pour l’analyse de 3 classes de substances émergentes (les alkylphénol-

polyéthoxylés, le bisphénol A et les substances pharmaceutiques) dans les matrices 

environnementales, d’autre part, d’appliquer ces méthodologies à l’étude des sources, de la présence et 

du devenir de ces molécules dans les systèmes aquatiques. Bien que ces travaux de thèse aient porté 

sur 3 classes de substances émergentes, l’étude des APEO en représente l’axe fort. 

Ce travail de thèse a permis de poursuivre le développement et la validation de 

méthodologies analytiques pour l’analyse des APEO, BPA et substances pharmaceutiques dans les 

matrices environnementales complexes. Afin de satisfaire aux exigences liées à la mise en place de la 

Directive Loi Cadre sur l’Eau et la prise en compte de la Directive 2002-81-CE comme référence pour 

l’analyse des contaminants émergents dans les systèmes aquatiques, des démarches méthodologiques 

ont été entreprises. 

Tout d’abord, l’amélioration des techniques d’échantillonnages afin d’acquérir une meilleure 

représentativité par, en outre, le développement de nouveaux outils d’échantillonnages intégratifs 

POCIS a été conduite. Les développements en laboratoire ont permis de déterminer les taux 

d’échantillonnage des 27 molécules sélectionnées dans cette étude. Les différentes expositions in situ 

ont conduit à la validation de ces outils en tant qu’outils de screening et de pré-monitoring capables 

d’apporter des informations semi-quantitatives sur la présence des contaminants dans les systèmes 

étudiées. Pour l’heure, les POCIS apparaissent comme de puissants outils de diagnostics et de 

prioritarisation. 

D’importants efforts méthodologiques visant à améliorer l’assurance et le contrôle qualité des 

données générées dans le cadre de l’étude des perturbateurs endocriniens et les substances 

pharmaceutiques dans les systèmes aquatiques ont été conduits afin de lever certains verrous. 

Concernant les APEO, la mise en place d’une étape de purification supplémentaire ainsi que d’une 

méthode de quantification par étalonnage interne ont permis d’améliorer l’analyse en terme de 

sensibilité, sélectivité et robustesse. Concernant les substances pharmaceutiques, la transposition de la 

méthode d’analyse de la CG-SM-SM vers la (RR)CL-SM-SM a permis d’améliorer l’analyse en terme 

de sensibilité, de sélectivité et de robustesse. De plus, ces travaux ont permis d’apporter des éléments 

de réflexion d’importance notamment dans un contexte réglementaire. Les méthodologies répondent à 

des critères de validation et sont applicables pour la conduite d’études de monitoring dans les systèmes 

aquatiques. 

Les méthodologies analytiques développées ont été appliquées à l’étude des APEO dans les 

stations d’épuration. Les études menées, en France, de 2002 à 2008, permettent de conclure à 

l’ubiquité des métabolites d’APEO dans les sites étudiés. Les observations conduites permettent 

d’affirmer que les formes linéaires d’APEO ne sont présentes ni dans les entrées de STEP (preuve 

qu’elles ne sont pas présentes dans les mélanges initiaux), ni dans les sorties de STEP, ni dans les 
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boues. Au travers des processus mis en œuvre dans les STEP, on observe une diminution des 

concentrations de NPEO et la génération, au cours de certains processus, de nouveaux métabolites 

NPEC qui peuvent être majoritaires dans les effluents de station d’épuration. Les phases solides en 

suspension, bien que fortement diminuées durant les phases de traitement (que l’on s’intéresse à leur 

charge contaminante ou bien à leur concentration dans la phase aqueuse), peuvent apporter plus de 

50% de la charge contaminante finale pour les composés les plus hydrophobes, le 4-NP et le 4-

NP1EO, et apparaissent comme des stocks secondaires réfractaires à la dégradation et susceptibles de 

participer à la dispersion des APEO vers les systèmes aquatiques récepteurs. 

La considération seule du 4-NP pour estimer les risques induits par la présence des APEO 

dans les systèmes aquatiques apparaît comme insuffisante. Par comparaison à d’autres pays européens, 

notamment l’Allemagne, les données générées ne semblent pas mettre en évidence de diminution de la 

contamination des systèmes par les APEO en conséquence de leurs restrictions d’usages. 

Cinq années de monitoring, de 2002 à 2006, de l’estuaire de la Seine permettent de conclure 

en une contamination chronique de l’estuaire par les APEO et leurs métabolites de dégradation. La 

phase dissoute apparaît dominée par les NPEC, les phases particulaires par le NP et le NP1EO. La 

distribution relative apparaît similaire dans l’estuaire à celles des effluents de stations d’épuration. 

Dans la phase dissoute, des phénomènes de dilution sont mis en évidence dès lors que l’influence 

marine est présente ; au contraire des phases particulaires pour lesquelles des phénomènes de dilution 

(en µg.g-1) apparaissent tout au long de l’estuaire en conséquence du bouchon vaseux. Ces dernières 

apparaissent comme des stocks secondaires, réfractaires à la dégradation, participant à la dispersion 

des APEO vers le milieu marin. L’étude des sources a permis de mettre en évidence que la mégapole 

parisienne, via ses constants apports industriels et domestiques, est la source principale de 

contamination de l’estuaire. Une étude du bassin versant (Seine aval) montre également une 

contamination chronique des principaux affluents de l’estuaire aval. La distribution et l’abondance des 

métabolites semblent liées au degré d’anthropisation de leurs bassins versants. Les études entreprises 

permettent de conclure que le système présente une dynamique propre et que la considération seule 

des concentrations pour évaluer son état de contamination chimique peut conduire à des interprétations 

erronées. Ainsi, la prise en compte des flux de polluants entrants dans l’estuaire semble mettre en 

évidence qu’il n’existe pas de dynamique saisonnière dans la distribution et l’abondance des APEO.  

L’estuaire de la Seine apparaît significativement plus impacté par comparaison à l’ensemble 

des autres sites étudiés que ce soit les estuaires macrotidaux de la façade ouest: les estuaires de la 

Gironde et de l’Adour, les Baies de la Vilaine et de l’Authie ou la Rade de Marseille. Ainsi, une 

contamination généralisée des systèmes dulçaquicoles, estuariens et marins par les métabolites 

d’APEO est mise en évidence. Quel que soit le système considéré, les phases en suspension semblent 

jouer un rôle important, de puits et de vecteurs, dans le cycle biogéochimique des substances étudiées. 

De plus, lorsque des organismes biologiques (poissons et mollusques) ont pu être échantillonnés et 

analysés, des phénomènes de transferts ont été mis en évidence. Ils confirment un faible potentiel de 
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bioaccumulation et de bioamplification dans les chaînes trophiques ainsi qu’un fort potentiel de 

métabolisation comme suggéré par les fortes concentrations en métabolites d’APEO, à l’exception du 

NP1EC, mesurées dans la bile (siège de la métabolisation) des poissons échantillonnés. 

La présence des métabolites d’APEO, notamment le NP, dans des concentrations susceptibles 

d’engendrer des effets toxiques dans les systèmes aquatiques confirme le risque posé par cette classe 

de molécules. Et ce d’autant plus si l’on considère que, comme ont pu le mettre en évidence ces 

travaux et d’autres publiées antérieurement, les APEO sont présents en mélange, des effets additifs et 

synergiques sont ainsi susceptibles de se dérouler. 

Concernant les substances pharmaceutiques, les travaux entrepris ont permis de mettre en 

évidence une contamination significative des systèmes aquatiques, dulçaquicoles et marins par les 21 

molécules pharmaceutiques sélectionnées dans cette étude en lien avec des rejets chroniques des 

stations d’épuration. Ces dernières présentent une efficacité extrêmement variable quant à l’abattement 

des molécules, certaines molécules apparaissant comme réfractaires, notamment la carbamazépine, le 

diclofénac et les antidépresseurs (le diazépam, la fluoxétine, le nordiazépam). Même si les 

concentrations mesurées dans les phases solides sont modérées, elles peuvent néanmoins présenter un 

rôle significatif dans la contamination des phases aqueuses et participer à la dispersion des molécules 

dans l’environnement. Même si les concentrations mesurées dans l’environnement sont largement 

inférieures aux valeurs susceptibles d’engendrer des effets toxiques, il n’en demeure pas moins qu’un 

risque chimique lié à leur présence existe. 

 

Les perspectives sont nombreuses : 

 

1)  Il conviendra de poursuivre les développements analytiques afin d’améliorer la fiabilité 

des données générées. Pour les APEO et le BPA, la transposition vers des méthodologies reposant sur 

la spectrométrie de masse en tandem permettra d’améliorer la spécificité et la sensibilité des 

méthodologies analytiques. La participation à des exercices d’inter-calibration dans l’attente d’une 

matrice certifiée qui apparaît plus que jamais nécessaire, notamment dans un contexte réglementaire, 

permettra d’améliorer la robustesse des méthodologies existantes. 

2) Les premiers développements sur les échantillonneurs intégratifs apparaissent comme 

prometteurs. Néanmoins il apparaît essentiel de poursuivre les investigations concernant la calibration 

des échantillonneurs, notamment la détermination des facteurs affectant de manière significative les 

taux d’échantillonnage et l’affinage des Rs par des déploiements dans des milieux artificiels 

(mésocosmes) plus complexes que des unités expérimentales de laboratoire afin d’obtenir un outil 

quantitatif. Il conviendra également d’étudier la capacité d’autres échantillonneurs intégratifs (SPMD, 

Chemcatcher®) à échantillonner les 3 classes de molécules retenues. Enfin si certains verrous 

apparaissent comme persistants, il conviendra de réfléchir à une autre manière de déployer ces outils, 

notamment par des déploiements ex situ. 
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3)  L’interprétation statistique des données générées dans le cadre du programme 

AMPERES devra permettre d’évaluer les différentes filières d’assainissement présentes sur le 

territoire quant à leur efficacité à abattre la contamination par les APEO et les substances 

pharmaceutiques, dans un premier temps. De plus, elle permettra d’évaluer les futurs processus et 

notamment les traitements tertiaires quant à leur efficacité à abattre les molécules. Dans un plus large 

contexte, un travail d’identification des produits issus de la dégradation (formes bromées, formes 

chlorées, CAPEC pour les APEO ; formes bromées, formes chlorées, métabolites de biodégradation 

pour les substances pharmaceutiques) devra être conduit, au regard du risque écotoxicologique qu’ils 

peuvent représenter.  

4) Il conviendra également de poursuivre les études de surveillance du milieu entreprises au 

cours de ces travaux, notamment au niveau de l’estuaire de Seine et de la Calanque de Cortiou, afin 

d’évaluer l’état de contamination chimique des eaux à la suite des évolutions des processus de 

traitements des eaux usées entrepris sur les bassins versants respectifs (mise en place de Géolide, 

évolution de la station d’Achères). 

5) La poursuite de travaux de recherche interdisciplinaires permettant de relier la présence 

de ces contaminants seuls ou en mélange à des effets toxiques dans les milieux naturels demeure un 

enjeu majeur. Le développement d’approches de type «Evaluation Direct Analysis» qui repose sur la 

combinaison d’un fractionnement associé à des bioessais (permettant de mettre en évidence les 

molécules ou mélanges de molécules responsables d’effets observés) et d’une approche analytique par 

des techniques de masse de haute résolution (spectrométrie de masse en tandem, temps de vol, trappes 

à ions ou association de ces différentes techniques) apparaît comme pertinente.  
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Agence de l’eau Rhône Méditerranée Corse: http://www.eaurmc.fr/ 
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Institut français de recherche sur la mer IFREMER: http://www.ifremer.fr/ 
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Ministère écologie et du développement durable MEDAD: http://www.developpement-
durable.gouv.fr/ 

Portail des substances chimiques: http://chimie.ineris.fr/fr/index.php 

 
����Sites divers  

BIAM: http://www.biam2.org/accueil.html 

COMMISSION DECISION of 12 August 2002 implementing Council Directive 96/23/EC concerning 
the performance of analytical methods and the interpretation of results (notified under document 
number C (2002) 3044) 
 http://eur-lex.europa.eu/pri/en/oj/dat/2002/l_221/l_22120020817en00080036.pdf 

EAWAG Micropollunats- Le traitement des eaux usées face à un nouveau défi (par H.Siegrist) 
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Projet KNAPPE : http://www.knappe-eu.org/ 

Projet NORMAN : http://www.norman-network.net/index_php.php 

Projet SWIFT : http://www.swift-wfd.com/ 
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Liste des publications 

 

PUBLICATION n°1 : Analyses des alkylphénol (C8 et C9)-polyéthoxylés et de leurs métabolites 

dans les matrices environnementales. Une synthèse. 

PUBLICATION n°2 : Détermination des métabolites de nonylphénol-éthoxylés dans les eaux de 

rivière et les effluents de stations d’épuration par extraction en phase solide, chromatographie en phase 

liquide couplée à la spectrométrie de masse (electrospray). 

PUBLICATION n°3 : Analyse des métabolites d'alkylphénol-polyéthoxylés dans les matières en 

suspension de l'estuaire de Seine par le développement d’une méthode d’extraction assistée par micro-

ondes, extraction en phase solide et chromatographie en phase liquide-electrospray- spectrométrie de 

masse. 

PUBLICATION n°4 : Méthodologies analytiques pour l’analyse des APEO et de leurs métabolites 

dans les matrices complexes. Une application aux stations d’épuration françaises. 

PUBLICATION n°5 : Les POCIS comme nouvel outil de monitoring. Que peut-on vraiment en 
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Cette partie s’attache à présenter les dix publications issues de ces travaux de thèse. Elles 

peuvent être organisées comme suit. La première publication (publication n°1) est issue d’un travail de 

synthèse bibliographique portant sur les méthodologies d’analyse des alkylphénols-polyéthoxylés dans 

les matrices environnementales et analyse les principaux verrous qui demeurent dans les méthodes 

analytiques. Les trois publications suivantes sont des publications analytiques ayant pour objets les  

développements méthodologiques et analytiques mis en œuvre pour conduire ces travaux de 

recherche : analyse des matrices aqueuses (publication N°2), analyse des matrices solides (publication 

n°3) et analyse des matrices de stations d’épuration (publication n°4). La cinquième  publication 

présente les premiers résultats relatifs au développement de nouvelles approches d’échantillonnage 

POCIS. Les deux publications suivantes résument les résultats marquants obtenus à l’issue des 5 

années de suivi sur l’estuaire de Seine : étude de la présence et devenir des alkylphénol-polyéthoxylés 

(Publication n°6), étude des sources (publication n°7). Enfin les trois publications suivantes permettent 

de fournir des éléments quant à l’état de contamination des systèmes littoraux par les alkylphénol-

polyéthoxylés (Ppublications n°8 et 9) et les substances pharmaceutiques (publication n°10). 
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Publication n°1 

 

Analyse des alkylphénol-polyéthoxylés en C8 et C9 et de leurs métabolites dans les matrices 

environnementales - une revue 

 

Sophie Lardeux-Fontan, Hélène Budzinski* 

 

Université Bordeaux 1, ISM-LPTC UMR 5255 CNRS 

351 crs de la libération 33405 Talence Cedex 

 

Auteur Correspondant* : h.budzinski@ism.u-bordeaux1.fr 

 

Résumé : 

 Depuis les années 90, un intérêt croissant a été porté à l’étude de la présence et du devenir 

des alkylphénol-polyéthoxylés et de leurs métabolites dans l'environnement, conduisant à la 

publication de plusieurs centaines de travaux de recherche. Cet article passe en revue les méthodes 

analytiques couramment employées pour surveiller ces composés dans les systèmes aquatiques et 

présente les nouvelles tendances dans les développements analytiques conduits dans les laboratoires. Il 

couvre l’ensemble des protocoles analytiques depuis l'échantillonnage jusqu’à l'analyse finale et 

souligne les manques dans les démarches de validation analytique qui peuvent conduire à la 

production de données quantitatives incorrectes.  

 

 Mots-clés : alkylphénols, alkylphénol-polyéthoxylés, acide alkylphénoxyacétique, matrices 

environnementales, méthodologies analytiques, validation. 
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Analysis of C8 and C9 alkylphenol-polyethoxylates and metabolites in environmental matrices - 

A review 

Sophie Lardy-Fontan, Hélène Budzinski* 

 

Université Bordeaux 1, ISM-LPTC UMR 5255 CNRS 

351 crs de la libération 33405 Talence Cedex 

 *Corresponding author: h.budzinski@ism.u-bordeaux1.fr 

Abstract  

A growing interest has been taken in the occurrence and fate of APEOs and their metabolites 

in the environment since the 90’s leading to hundreds of publications. This paper reviews the state-of-

the-art analytical methods currently used to monitor these compounds in aquatic systems and 

highlights some new trends in laboratory development. It covers all the analytical protocols from 

sampling to final analysis and is emphasize failures in analytical validation which can lead to 

erroneous quantitative data.  

 

Keywords: alkylphenols, alkylphenol-polyethoxylates, alkylphenoxyacetic acid, environmental 

matrices, analytical methodologies, validation. 

 

1-Introduction 

The occurence and fate of alkylphenol-polyethoxylates (APEOs) and their metabolites have 

been largely documented for the last ten years, worlwide. It can now be assumed that they are 

ubiquitous contaminants of the environment, especially the persistant, ultimate biodegradation 

products: shorter chain APEOs, alkylphenols (APs), alkylphenoxypolyethoxyacetic acids (APECs), 

carboxyalkylphenoxypolyethoxyacetic acids (CAPECs) (Ying et al., 2002; Vazquez-Duhalt et al., 

2006; Soares et al., 2008). Moreover, the main environmental concern is that they display oestrogenic 

capabilities at measured environmental concentrations (see review by Ying et al., 2002; Vazquez-

Duhalt et al., 2006; Soares et al., 2008). Following their inscription as priority dangerous substances in 

Europe, the nonylphenols (NPs) and the nonylphenol polyethoxylates (NPEOs); the octylphenols (OP) 

and octylphenol polyethoxylates (OPEOs) have been the subject of prohibition of use and marketing 

for large fields of uses (Soares et al., 2008). More recently, Environmental Quality Standards 

expressed as an annual average value (EQS-AA) for NPs and OPs have been published by the 

commission of the European Communities (Loos et al., 2008). The values are as low as 0.3 µg.l-1 and 

0.1 µg.l-1, respectively. Some reviews have been published covering general analytical aspects (Lee, 

1999), sample preparation aspects (Petrovic and Barcelo, 2002) and mass spectrometry aspects 
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(Petrovic and Barcelo, 2001; Lopez De Alda et al., 2003). Some raised questions about the validity of 

environmental data, due to the absence of strict quality assurance procedures or proficiency testing 

Loos et al. (2008). In fact, regarding the heterogeneity of published data (Soares et al., 2008), one 

needs to be contious that some of these data may suffer from failures in global analytical strategies as 

highlighted by the first European intercomparison study for the analysis of NPs and OPs in surface 

waters (Loos et al., 2008).  

Even if APEOs and metabolites in environmental matrices have been studied for a long 

time, it is still striking to find such heterogeneity of terms and nomenclatures. By consequence, it 

might be necessary to specify what we are talking about. 

 

Table 1: General chemical structure of the investigated compounds 
 Abbreviations Molecular weight (g.mol-1) 

 

 
para-Alkylphenol 

4-AP 
p-AP 

 

R: C8H17 4-OP (p-OP) 206 
R: C9H21 4-NP (p-NP) 220 

 

 
para-Alkylphenol-monoethoxylate 

 
4-AP1EO 
p-AP1EO 

 

R: C8H17    4-OP1EO (p-OP) 250 
R: C9H21       4-NP1EO (p-NP) 264 

 

 
para-Alkylphenol-polyethoxylate 

4-APnEO 
p-APnEO 

 

m= 1 ethoxy units CH2-CH2-O = 44 
0<m<100, typical 0<m<15 

 

 
para-Nonylphenoxyacetic acid 

4-AP1EC 
p-AP1EC 

R: C8H17       4-OP1EC (p-OP) 264 
R: C9H21          4-NP1EC (p-NP) 278 

 

 

 
para-Nonylphenoxypolyethoxyacetic acid 

4-APnEC 
m= 1 ethoxy units CH2-CH2-O = 44 

0<m<100, typical 0<m<15 

 
NP is manufactured by the alkylation of phenol with nonene isomers. Therefore, it is 

expected that commercial NPs would be a mixture of para substituted monoalkylphenols with various 

isomeric and branched nonyl groups. Technical nonylphenol (usually CAS 84852-15-3), which is a 

complex mixture of isomers (Ieda et al., 2005), oligomers (Wheeler et al., 1997), chiral nonyl groups 

(Zhang and Chen, 2006) and contain traces of octylphenols and decylphenols (Ieda et al., 2005), is 

usually referred to as 4-NP or p-NP. It can countain theoretically 211 kinds of isomers. Ieda et al. 

(2005) reported that bidimensional gas chromatography coupled to mass spectrometry enabled the 

m 

m 



 

 
 

identification of 102 components of 4

p-n-NP), exhibits different physicochemical properties and toxicological properties (

et al., 2006) and is not found in the technical mixture (

considerations can be taken for OP which present two isomers: the

para-tert-octylphenol (4-t-OP, p

(p-n-OP or 4-n-OP; CAS 1806-

Figure1 adapted from Loos et al., 2008)

Figure 1: Alkylphenol chromatograms from Loos et al. (2008) 
 

First, this paper aims to describe state

of C8-C9-APEOs and metabolites in environmental matrices. As previously mentionned, reviews have 

been made in the past. As a consequence this paper covering the last decade will focus on papers from 

the period 2004-2008. Secondly, this paper will emphasize new tre

try to highlight the failures regarding methodological aspects and validation processes that still need to 

be overcomed to face up to the next challenges of regulatory environmental surveys. 

 

2-Analytical methodologies 

In order to detect, identify and quantify APEOs and metabolites in environmental matrices, 

analytes need to be isolated from the sample matrix and concentrated to some extent. 

 

2-1-Aqueous matrix 

2-1-1 Sample treatment from sampling to extraction

a) Sampling 

As Petrovic and Barcelo (2002)

importance in any analytical procedure. Faced with the ubiquity of APs in the environment, one needs 

identification of 102 components of 4-NP. Among possible isomeric forms, the linear one (4

NP), exhibits different physicochemical properties and toxicological properties (

and is not found in the technical mixture (Wheeler et al., 1997)

considerations can be taken for OP which present two isomers: the technical one which is the branched 

p-t-OP; CAS (140-66-9)) and the linear one which is the octylphenol 

-26-4); the linear form should not be found in the environment (see 

Loos et al., 2008). 

Alkylphenol chromatograms from Loos et al. (2008) 

First, this paper aims to describe state-of-the-art techniques commonly used in the analysis 

APEOs and metabolites in environmental matrices. As previously mentionned, reviews have 

been made in the past. As a consequence this paper covering the last decade will focus on papers from 

2008. Secondly, this paper will emphasize new trends in environmental surveys and 

try to highlight the failures regarding methodological aspects and validation processes that still need to 

be overcomed to face up to the next challenges of regulatory environmental surveys. 

In order to detect, identify and quantify APEOs and metabolites in environmental matrices, 

analytes need to be isolated from the sample matrix and concentrated to some extent. 

1 Sample treatment from sampling to extraction 

 

Petrovic and Barcelo (2002) noted, sampling and sample preservation are of great 

importance in any analytical procedure. Faced with the ubiquity of APs in the environment, one needs 
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analytes need to be isolated from the sample matrix and concentrated to some extent.  
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importance in any analytical procedure. Faced with the ubiquity of APs in the environment, one needs 
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to keep in mind the respect of the representativity and the integrity of the samples throughout 

analytical methodologies. Generally, samples are collected in amber glass bottles to prevent sorption 

and photodegradation phenomena; a wide range of pre-cleaning procedures exists: heating (450°C), 

solvents washings with acetone or methanol (Quintana et al., 2007; Céspedes et al., 2008). Samples 

are usually transported in a cooled portable refrigerator and stored at 4°C until treatment (Table 2). 

b) Filtration 

Most studies usually imply a filtration step. In fact, the consideration of total aqueous phase 

can lead to: - a partial extraction of compounds sorbed to suspended solids; - a filling during the solid 

phase extraction procedure which can affect the efficiency of extraction. The use of glass fibre filters 

is commonly reported but heterogeneity of pore sizes can be pointed out (1.6 µm: Fiedler et al., 2007; 

1.2 µm: Jahnke et al., 2004; Lagana et al., 2004; Lee et al., 2008; 0.7 µm: Céspedes et al., 2008; 0.45 

µm: Petrovic et al., 2003; Gonzalez et al., 2004; Li et al., 2008; 0.22 µm: Ballesteros et al., 2006a; 

Zafra-Gomez et al., 2008). Regarding the occurrence of APEO metabolites (APs, AP1-2EOs) in 

suspended solids (Ying et al., 2002; Vazquez-Duhalt et al., 2006; Soares et al., 2008), these disparities 

in procedures make comparisons difficult or impossible. 

c)  Conservation of samples 

As APEOs are readily biodegradable, the question of the conservation from the sampling 

time to the extraction time appears to be crucial. Preservatives such as formaldehyde (Lara-Martin et 

al., 2006), acidification (Baugros et al., 2008) have been used, prior or after filtration, to avoid 

biodegradation phenomenon. As their use can alter the chemical composition of the sample and need 

stronger evaluation (time and cost consuming), their uses are not so common. Consequently, in most 

cases, all the analytical procedure is conducted within the 24-48 hours following collection of the 

samples (Table 2). 

2-1-2 Sample extraction  

Since 2005, a standardised protocol (ISO 18857-1:2005) for the measurement of NPs in non 

filtered water has been published and has recommended liquid liquid extraction (LLE); a second 

methodologie, using solid phase extraction (SPE), has been developped and is under approval (ISO 

18857-2:2005). Classical extraction techniques: solvent sublation, steam distillation, LLE (Lee, 1999) 

have been supplanted by SPE which is nowadays the standard one. HLB® and C18 are by far the most 

commonly used sorbents for the extraction of both neutral and acidic alkylphenolic compounds (Table 

2). Typical extracted volumes are of 100-500 ml for wastewater treatment plant (WWTP), 500-

1,000ml for natural samples (river water, marine water, tap water). Desorption is generally achieved 

with methanol, acetone, dichlomethane or their mixtures (Table 2). Typical ranges of recovery are 

higher than 80% (Table 2).  
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Quintana et al. (2007) applied stir bar sorptive extraction (SBSE) coated with 

polydimethylsiloxane (PDMS) for the analysis of 46 acidic and polar organic polluants in river water, 

tap water and wastewater; the optimized methodology permitted an average recovery of 28% for 4-NP 

and 51% for 4-OP. Tan et al. (2008) reported recoveries of 110% for 4-NP and 35% for 4-t-OP for an 

optimized SBSE (PDMS) methodology applied to wastewater. Basheer et al. (2005) designed 

polymer-coated hollow fiber microextraction (PC-HFME) coated with hydroxylated polymer. PC-

HFME showed high extraction efficiency, sensitivity and selectivity and was successfully applied to 

the marine waters of Singapore. 
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Table 2: Global analytical methodologies for the study of APEOs, APs and APECs in aqueous matrices. 

Reference Compounds 
investigated 

Matrix Sample preparation Volume  
(ml) 

Extraction methodologie Purification methodologie Analytical methodologie 
Filtration Conservation 

Li et al. 
(2008) 

MRA 
river water 0.45µm 

T: 4°C; 
1,000ml LLE dichloromethane 

activated 
florisil 

hexane (7 ml) GC-MS (SIM) 
Derivatization: BSTFA 
(prior to purification) 4-t-OP acidication 

0,01M; (HCl) 4-NP 

Hohne et al. 
(2008) 

MRA 

wastewater 

inf: glass fiber 
filter 589/2 T: 4°C;                                               

< 1 week 
1,000ml 

Bondelut 
PPL 

methanol/dichloromethane 
(50/50; v/v) 

activated 
florisil 

hexane (7 ml) GC-MS (Full scan) 
4-t-OP inf, eff: fluted 

filter 597.5 4-NP 

Lee et al. 
(2008) 

MRA 
water 1.2µm 

T: 4°C;                                                          
dark                                                   

< 72 hours 

1,000ml 
SepPack 
Vac, C18 

dichloromethane 
activated 
florisil+ 
Na2SO4 

hexane (15 ml) GC-MS (SIM) 
Derivatization: 

MSTFA (prior to 
purification) 

4-t-OP 

4-NP 

Fiedler et al. 
(2007) 

MRA 
water 1.6µm 

T: -20°C;                                      
before filtration 

 
JT baker  C18 

methanol/dichloromethane 
(50/50; v/v) 

Na2SO4 
dichloromethane  

(50 ml) 
GC-MS (SIM) Derivatization: BSTFA 

4-t-OP 

4-NP 

Tan et al. 
(2008) 

MRA 
wastewater NR 10ml SBSE (PDMS) NR TD-GC-MS (SIM) 

4-t-OP 

4-NP 

Tan et al. 
(2007) 

MRA 
wastewater 

centrifugation 
3,000g; 4°C; 30 

min 
 

1,000ml OASIS HLB 
methanol; 

n-hexane/acetone (50/50; v/v) 

NR GC-MS (SIM) Derivatization: BSTFA 
4-t-OP 

4-NP 

Quintana et 
al. (2007) 

MRA wastewater,                  
river water 

NR 

  
SBSE (PDMS) NR 

LD-GC-MS 
(SIM) 

Derivatization: 
MTBSTFA 4-t-OP 

4-NP 

Ballesteros 
et al. (2006) 

4-t-OP wastewater centrifugation 
3000 rpm, 10 min 

T: 4°C; dark 500ml Lichrolut RP 
C18 

diethylether/methanol (90/10; 
v/v) 

NR GC-MS (SIM) Derivatization: 
BSTFA/ TMCS 4-NP 0.22µm < 48 hours 

Basheer et 
al.(2005) 

MRA 
sea water NR 

 
PC-HFME NR GC-MS (SIM) Derivatization: BSTFA 

4-t-OP 

4-NP 

Kawagushi 
et al. (2005) 

MRA 
river water NR T: 4°C 2ml SBSE NR 

TD-GC-MS 
(SIM) 

Derivatization: In tube 
silylation BSTFA 4-t-OP 

4-NP 

Baugros et 
al. (2008) 

MRA 

wastewater 
Millipore YT30 

142 HW 

acidification 
pH 3 <24 

hours 
300ml Strata C18 ethylacetate/acetone Silica 

ethylacetate; 

acetone 
RPLC-ESI-MS-MS (MRM) 

4-NP 

4-n-NP 

4-NP1EO 

4-NP2EO 
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4-OP 

4-t-OP 

4-OP1EO 

4-OP2EO 

Zafra-
Gomez et al. 

(2008) 

MRA 

wastewater 

centrifugation 
4500rpm, 10min T: 4°C;                                            

< 48 hours 
 

Lichrolut RP 
C18 

diethylether/methanol (90/10; 
v/v) 

NR RPLC-APCI-IT-MS 4-OP 

4-t-OP 0.22µm 
4-n-NP 

Loos et al. 
(2007) 

MRA 

wastewater,          
marine water 

decantation 
T: 5°C;                                             

< one week 
400ml OASIS HLB 

methanol/acetone/ethylacetate 
(2/2/1;v/v/v) 0,1 % formic 

acid 
NR RPLC-ESI-MS-MS (MRM) 

4-NPnEO 

4-NP1EO 

4-NP3EO 

4-NP2EO 

4-NP1EC 

4-NP2EC 

4-NP3EC 

4-OP1EO 

4-OP2EO 

4-OP1EC 

4-OP2EC 

4-t-OP 

4-NP 

Cespedes et 
al. (2007) 

4-NP1EO 

wastewater,        
river water 

successive 
filtration: 1.0µm, 

0.7µm and 0.45µm T: 4°C;                                             
Overnight 

influent: 
100ml 

effluent: 
200ml 

Lichrolut RP 
C18 

methanol/dichloromethane 
(90/10; v/v) 

NR RPLC-ESI-MS (SIM) 

4-NP2EO 

4-NPnEO 

4-t-OP 0.45µm 500 ml 
4-NP 

Lara martin 
et al. (2006) 

MRA 
sea water;                
river water 

NR 

addition of 
4% 

formadehyde; 
T: 4°C; 

100ml 
BondElut 

C18 

acetone/methanol (50/50; 
v/v); 

dichloromethane/ethylacetate 
(50/50; v/v) 

NR RPLC-ESI-IT-MS NP1-17EO 

OP1EC 

NP1EC 

Jahnke et al. 
(2004) 

4-NP1EO 

wastewater 1.2µm 
T: 4°C;                                             

Overnight 
1,000ml OASIS HLB 

methanol                     
dichloromethane 

NR RPLC-ESI-MS-MS (MRM) 

4-NP2EO 

4-NP1EC 

4-OP1EO 

4-OP2EO 

4-OP1EC 

4-t-OP 
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4-NP 
Lagana et al. 

(2004) 
MRA wastewater,                         

river water 
1.2µm T: 4°C;                       

<36hours 
Influent: 
100ml; 

OASIS HLB methanol/dichloromethane 
(50/50; v/v) 

NR RPLC-ESI-MS-MS (MRM) 
4-NP 1,000ml 

Gonzalez et 
al (2004) 

4-NP1EO 

wastewater,          
marine water 

0.45µm 
T: 4°C;                                             

< 48 hours 

Influent: 
100ml; 

Effluent: 
200ml IST C18 methanol NR RPLC-ESI-MS (SIM) 

4-NP2EO 

4-NPnEO  
n:3-15 

4-NP1EC 
500ml 

4-t-OP 

4-NP 

Petrovic et 
al. (2003) 

4-NP 

wastewater 0.45µm 
T: 4°C;                          

< 24 hours 
500ml 

Accubond 
C18 

methanol NR 
RPLC-ESI-MS  (SIR) 

RPLC-ESI-MS-MS (MRM) 

4-NPBr 

4-NPCl 

4-NP1EC 

4-NP1ECBr 

4-NP1ECCl 

4-NP2EC 

4-NP2ECBr 

4-NP2ECCl 

MRA Multi Residu Analysis; NR Not Reffered 
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2-1-3 Sample purification  

Purification of the aqueous matrix extracts can be complex to achieve depending on the 

studied compounds. It did not appear as a limiting step when considering APs and short chain APEOs 

which display similar physichochemical properties and for which purification can be achieved on 

silica gel and elution performed with hexane or dichloromethane (Fiedler et al., 2007; Lee et al., 2008; 

Li et al., 2008; Hohne and Puttmann, 2008). On the contrary, things appear tricky should you consider 

both APEOs and APECs; in fact APECs, due to their functionnal group, are trapped during the 

purification step on silica gel or amino propyl phase. To the best of our knowledge, until now no 

purification methodologies exist for both APEOs and APECs. 

 

2-1-4 New trends  

The monitoring survey displays the objectives of identifying and quantifying numerous 

molecules with a wide range of physicochemical properties. Although it provides many environmental 

data, it relies on sacrificing specificity, which can generate numerous erroneous data. To perform very 

heavy environmental monitoring surveys and to perform ecological risk assessment analysis, a need 

for new tools has emerged. In this context, uses of passive sampling techniques should be mentioned 

as being a powerful tool. When looking at the state of the art occurrence of APEOs in aquatic systems, 

worldwide, one should be aware of the heterogeneity of published data raising the question of 

representativeness and reliability of data. To overcome those limitations, at a realistic cost, passive 

sampling devices, able to provide time weighted average (TWA) concentrations, have been designed 

and are commercially available. Polar Organic Compounds Integrative Sampler (POCIS) have been 

designed to trap hydrophilic to mid polar compounds and have been successfully calibrated and 

applied to APEO metabolites (Arditsoglou and Voutsa, 2008). Because they concentrate more or less 

specifically pollutants, but not macromolecules they provide cleaner extracts from an analytical point 

of view by “on line purification” (steric exclusion, affinity of compounds for the sorbent), they are 

quite easy to manage (Facility in terms of storage, transport, conservation thanks to their compactness 

and their stability); POCIS are under extensive evaluation. 

New trends in analyte extraction include less solvent consumption, improvement of 

extraction recovery, reproducibility and speed of execution, automation. The on-line coupled SPE 

procedure, using C18 cartridges, enables an approximately 300-fold reconcentration of analytes, which 

could be further enhanced by increasing the volume of sample. NP and OP were analysed by on-line 

SPE–LC–fluorescence detection (Rodriguez-Mozaz et al., 2007). Three types of on-line cartridges (C18 

and the styrene divinylbenzene polymer cartridges) were tested, achieving LOD of 20 to 50 ng.l-1. A 

river water sample spiked with these chemicals was analysed and no interference with the peaks of the 

selected analytes was observed (Rodriguez-Mozaz et al., 2007). 
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Molecular Imprinted Polymers (MIP) are synthetic polymer materials with specific 

recognition sites complementary in shape, size and functional groups to the template molecule, 

involving an interaction mechanism based on molecular recognition. Because of their stability, 

easiness of application and low cost, they appear as an attractive analytical alternative (Pichon and 

Chapuis-Hugon, 2008). Guerreiro et al. (2008) recently designed a MISPE technology for NP with 

99% efficiency of recovery, it can be a powerful tool for sample pre-concentration and environmental 

analysis of this class of compounds. As Pichon and Chapuis-Hugon (2008) reported such tools can 

also be powerful for purification purposes. 

 

2-2-Solid matrix 

2-2-1 Sample pre treatment  

As mentioned previously, care has to be taken to ensure the representativity and integrity of 

the samples; Petrovic and Barcelo (2002) higlighted some key points. The common approach is to 

freeze-dry samples (in order to remove water) prior to extraction (Petrovic and Barcelo, 2002; Liu et 

al., 2004) (Table 3). After freeze-drying, solid samples are then homogenized, grounded to powder, 

sieved (various sizes of exclusion: 100 µm Aparicio et al. (2007), <0.63 µm Lara martin et al. (2006), 

120 µm Cespedes et al. (2007)) before storage (Table 3). 

 

2-2-2 Sample extraction  

Several extraction techniques are currently used: sonication (Aparicio et al., 2007; Nunez et 

al., 2007; Pojana et al.,2007), Soxhlet (Li et al., 2008), Microwave Assisted Extraction (MAE) (Liu et 

al., 2004), Pressurized Liquid Extraction (PLE) (Petrovic et al., 2003; Gonzalez et al., 2004; Lara-

Martin et al., 2006; Andreu et al., 2007; Céspedes et al., 2008). “Old” generation extraction 

methodologies, sonication and Soxhlet are time and solvent consuming but still largely used nowadays 

(Table 3). The extraction step is usually carried out with dichloromethane, methanol, hexane, acetone, 

methyl tert-butyl ether or their mixtures (Table 3). Generally, recoveries are more variable than for the 

liquid phase, comprised between 20 to 120%, depending on the compound and the matrix (Table 3). 

 

2-2-3 Sample purification 

Suspended solids, sediments, sludge or soils display various complexities (presence of 

variable levels and kind of organic materials, presence of polymers, biological contents, etc...) but in 

any case need strong purification steps before chromatographic analysis. As publications usually refer 

to both aqueous and solid surveys, purification is achieved with the extraction procedure developed for 

the aqueous phase (Table 3). 
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Table 3: Global analytical methodologies for the study of APEOs, APs and APECs in solid matrices. 

Reference Compounds 
investigated 

Matrix Sample preparation Quantity 
extracted 

(g) 

Extraction methodologie Purification methodologie Analytical methodologie 
Preparation Conservation 

Tan et al. 
(2008) 

MRA 
sludge centrifugation NR 1g SBSE (PDMS) NR TD-GC-MS (SIM) 

4-t-OP 

4-NP 

Li et al. 
(2008) 

MRA 
sediment freeze drying T: -20°C NR Soxhlet dichloromethane 

copper 
activated+ 
Na2SO4 

acetone GC-MS 
(SIM) 

derivatization: 
BSTFA (prior 
to purification) 

4-t-OP 

4-NP activated 
florisil  

hexane 

Nunez et al. 
(2007) 

4-NP soil. 
sediment. 
compost 

and sludge 

NR 2g 

sonication-
assisted 

extraction in 
small columns 

water/methanol 

(30/70; v/v) 
DSC-18 methanol; acetonitrile 

NPLC-Fluo                                               
RPLC-Fluo 

4-NP1-2EO 

4-NP3-13EO 

Gatidou et al. 
(2007) 

MRA sludge; 
suspended 

solids 

sludge: oven 
dried at 40°C . 
grinded using a 

mortar and pestle 

T: -18°C                                                               
T: <5 days 

sludge: 
0.01-0.03g 

sonication 
water/methanol (3/5; 

v/v) 
Sep-pack 

C18 
dichloromethane/hexane (4:1; 

v/v) 
GC-MS 
(SIM) 

derivatization: 
BSTFA 

4-n-NP 

4-NP1EO 

4-NP2EO 

Aparicio et 
al. (2007) 

MRA 

sludge 
freeze drying and 
sieve <100 µm 

NR 0.5g 
shaking. 

sonication 
(twice) 

hexane NR GC-MS (SIM) 4-NP 

4-NP1EO 

4-NP2EO 

Cespedes et 
al. (2007) 

4-NP1EO 

sludge 
freeze drying. 
homogenized; 
sieve 120µm 

T: -20°C; 2g 
assisted solvent 

extraction 
acetone/methanol 

(50/50; v/v) 
Lichrolut 
RP C18 

methanol/dichloromethane           
(90/10; v/v) 

RPLC-ESI-MS (SIM) 
4-NP2EO 

4-NPnEO 

4-t-OP 

4-NP 

Andreu et al. 
(2007) 

4-t-OP 

sludge. soil 

left to dry at room 
T°C. during 24 

hours;                            
2mm sieve and 
homogenized 

polyethylene 
boxes scaled 

5g 
assisted solvent 

extraction 
acetone/hexane 

(50/50; v/v) 
C18 glass 
column 

methanol RPLC-APCI-MS (SIM) 

4-NP 

4-NP1EO 

4-NP1-5 EO 

4-OP1-5EO 

4-NP6-15EO 

4-OP6-15EO 

Lara martin 
et al. (2006) 

MRA 

sediment 

dried in a heater 
(75°C); milled 

and sieved 
0,63µm 

T: 4°C; 4g 
assisted solvent 

extraction 
methanol in presence 

of Na2SO4 
BondElut 

C18 

acetone/methanol (50/50; v/v); 
dichloromethane/ethylacetate 

(50/50; v/v) 
RPLC-ESI-IT-MS NP1-17EO 

OP1EC 

NP1EC 
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Gibson et al. 
(2005) 

MRA 

soils; 
biosolids 

partially air dried; 
sieved to 

<2.0mm; mixed 
with Na2SO4 (in a 

freezer for a 
night); grounded 

NR 
25g soil;       

0.75g 
sludge 

Soxhlet 
acetone/hexane 

(50/50; v/v)+ Na2SO4 
SPE (CN) hexane/ether (50:50; v/v) GC-MS (SIM) 

4-NP 

Patrolecco et 
al. (2005) 

MRA suspended 
solids. 

sediment 
freeze drying; 

-20°C until 
preparation; 
then stored at 
room T°C; 
brown glass 

sediment: 
5g 

tween 80 tween 80 SI C18 
 

RPLC-Fluo 4-NP 

4-NP1EO 

4-NP2EO 

Pojana et al. 
(2006) 

MRA 
sediment 

addition of 
HgCl2; Freeze 

drying 

T: -30°C 
sediment: 

20g 
sonication 

methanol/acetone 
(80/20; v/v) 

NR RPLC-ESI-IT-MS 
4-NP 

4-NP1EC 

Liu et al. 
(2004) 

MRA 
sediment 

drying. oven at 
100°C. 4 days 

NR 5g 
microwave 

assisted 
extraction 

methanol 
Silica gel+ 

Na2SO4 
ethylacetate/hexane (40/60; v/v) 

GC-MS 
(SIM) 

derivatization: 
BSTFA/ 
TMCS 

4-t-OP 

4-NP 

Cantero et al. 
(2004) 

OP9-10EO sludge freeze drying. 
ground <0.5 mm 

T: 4°C 0.1g coacervative 
extraction 

SDoS NR RPLC-APCI-IT-MS 
NP6EO 

Gonzalez et 
al 2004 

4-NP1EO 

sediment 
freeze drying. 
homogenized; 
sieve 120µm 

T: -20°C 5g 
assisted solvent 

extraction 
acetone/methanol 

(50/50; v/v) 
IST C18 methanol RPLC-ESI-MS (SIM) 

4-NP2EO 

4-NP3-15EO   

4-t-OP 

4-NP 

Petrovic et 
al. (2003) 

4-NP 

sludge 
centrifugation 

4500 rpm.             
freeze drying 

T: -20°C 1g 
assisted solvent 

extraction 
acetone/methanol 

(50/50; v/v) 
Lichrolut 
RP C18  

RPLC-ESI-MS (SIR)                                 
RPLC-ESI-MS-MS (MRM) 

4-NPBr 

4-NPCl 

4-NP1EC 

4-NP1ECBr 

4-NP1ECCl 

4-NP2EC 

4-NP2ECBr 

4-NP2ECCl 
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3-Analytical techniques  

Among the different analytical techniques used for the analysis of APEO metabolites in 

environmental matrices: liquid chromatography coupled to mass spectrometry (LC-MS), gas 

chromatography coupled to mass spectrometry (GC-MS) are the most widespread ones and have 

supplanted other ones. The choice of the technique usually depends on the metabolites selected 

regarding the ranges of physicochemical properties they display. 

 

3-1-Gas chromatography 

The low volatility of surfactants, APs and APEOs (n<6), limits the application of GC-MS for 

their analyses because a derivatization step is required. The advantages of better sensitivity (detection 

limits lower than ng.l-1 or ng.g-1, Table 4-5) reached by GC-MS are offset by loss of time due to 

sample preparation and possible loss of sample during the additional manipulation. Nevertheless, GC-

MS is still largely used for monitoring purposes aiming at 4-NP and 4-t-OP; especially because it is 

less susceptible to matrix effects than LC-MS (due to a stronger ionization process). Furthermore, its 

main advantage relies on its application with solid phase microextraction (SPME) and stir bar sorptive 

extraction (SBSE methodologies) (Table 2-3). Using various derivatization agents (N,O-

bis(trimethylsilyl)trifluoroacetamide (BSTFA), N-Methyl-N-(trimethylsilyl)trifluoroacetamide 

(MSTFA), pentafluoropyridine) APs, APEOs, APECs and CAPECs (Liu et al., 2004; Basheer et al., 

2005; Ballesteros et al., 2006b; Tan et al., 2007; Quintana et al., 2007; Bai-Juan et al., 2007; Fiedler et 

al., 2007; Li et al., 2008) have been extensively analyzed using by GC-MS.  

 

3-2-Liquid chromatography 

Separation of the APEOs according to the increase of the number of ethoxy group can be 

achieved by normal phase liquid chromatography (NP-LC); thus it leads to the co-elution of 

homologues with the same number of ethoxy groups but different alkyl chains (e.g. 4-NP1EO and 4-

OP1EO) (Zwiener and Frimmel, 2004). On the contrary, reversed phase liquid chromatography (RP-

LC), which is by far the more widespread separation technique, separates compounds according to 

their hydrophobic parts (alkyl chains); thus homologues with different numbers of ethoxy units co-

elute (4-NP1EO and 4-NP2EO). Moreover, it is sufficiently resolutive to separate linear forms of 

APEOs from branched ones (e.g., 4-NP mixtures and 4-n-NP; 4-t-OP and 4-n-OP). In any case, the 

association of NP-LC and RP-LC to mass spectrometry allows to overpass co-elution phenomena and 

allows the identification and quantification of APEOs and metabolites. Electrospray (ESI), in both 

ionization modes (negative and positive), is generally used because it is more sensitive than 

atmospheric pressure chemical ionization (APCI). Under ESI, APEOs show a high affinity for alkali 

metal ions, resulting in the formation of alkali adducts [M+Na] in spite of protonated form [M+H]. 
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Major limitations are linked with the decreasing affinity of APEOs for alkali ions when decreasing 

number of ethoxy units and the fact that adducts ([M+Na]) are poorly fragmentable (Zwiener and 

Frimmel, 2004); thus the use of quaternary ammonium is currently mentioned (Zwiener and Frimmel, 

2004). It leads to the formation of ammonium adducts [M+NH4]. Jonkers et al. (2005) investigated the 

occurence and formation of various types of adducts of NPEOs under LC-ESI-MS analysis. Although 

they highlighted some problems in adduct formation, they finally concluded that a correct 

quantification of 4-NP1EO and 4-NP2EO could be achieved; for longer chain oligomers they 

mentioned that a molar calibration followed by a correction of the average molar weight was needded. 

The analysis of alkylphenolic compounds is complex because of the existence of different 

ethoxylate oligomers and alkyl-chain isomers. LC–MS has increasingly been used for the 

determination of a full range of APs, APEOs, APECs, CAPECs and WWTPs by-products 

(chlorinated, brominated forms) (Petrovic and Barcelo, 2002; Lopez De Alda et al., 2003; Jonkers et 

al., 2005; Lara-Martin et al., 2006; Gonzalez et al., 2007). Several LC-MS-MS methods have been 

recently reported for these compounds (Lopez De Alda et al., 2003; Jahnke et al., 2004; Loos et al., 

2007; Loyo-Rosales et al., 2007); LC-IT-MS (Cantero et al., 2006); UPLC-Q-ToF MS (Gonzalez et 

al., 2008). They allow reliable quantification of APEOs combined with a high accuracy; furthermore a 

significant improvement of method detection limit was achieved (typical range under ng.l-1). 

 

3-3-Matrix effects  

Matrix effects are the weak point of LC-ESI-MS, especially LC-ESI-MS-MS (Taylor, 2005). 

They occur when molecules co-elute with the compounds of interest and affect ionization efficiency of 

the electrospray interface resulting in signal enhancement and/or ion suppression. When occurring, 

matrix effects affect both the precision and accuracy of the method; ion suppression, for its part, leads 

to a decrease in sensitivity and higher limits of quantification (Taylor, 2005). To overcome such 

phenomena, further methodological strategies can be applied: extract dilution; more additional 

purification steps; use of multiple and appropriate internal standards; improvement of separation 

methodologies. By looking at the bibliography, it appears that investigations to assess matrix effects 

are usually absent from the validation criteria (Table 5). Baugros et al. (2008) investigated matrix 

effects on a wide range of polar pollutants (among them; 4-NP, 4-t-OP, 4-NP1EO, 4-NP2EO, 4-OP1EO 

and 4-OP2EO) analyzed by LC-ESI-MS-MS and observed significant matrix effects. They concluded 

that the methodology of standard addition would be the most reliable method for accurate 

quantification, despite its costs and additional time needed. 
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3-4-Trends  

In Europe, the implementation of the WFD needs an improvement of analytical 

methodologies. The European commission decision (2002/657/EC) Communities (2002) has specified 

that for the confirmation of the identity of compounds a minimum of 3 identification points is 

required. Consequently, it appears that classical approaches are not sufficient to provide quality 

assurance. Thus, a need to develop new analytical methodologies is required. LC-MS-MS, which has 

become the most widely used analytical tool in environmental analysis, has been applied to the 

determination of target analytes using MRM and achieving high sensitivity and selectivity (Barcelo 

and Petrovic, 2007). Its advantages are strengthened by a recent enhancement in LC technologies and 

implementation of ultra fast chromatography technologies (UPLC® from Waters, RRLC® from 

Agilent) which are assumed to decrease analytical time, to enhance sensitivity (by improving 

resolution) and to decrease matrix effects. Gonzalez et al. (2008) developed a UPLC-Q-ToFMS 

methodology (Acquity C18; 100mm; 2.1mm; 2.1µm) for the study of various classes of surfactants 

among which APEOs (1 to 15 units), APECs and APs in textile effluents; by comparing this new 

methodology to previous ones (referring to LC (reverse phase C18; 100-250mm; 2.1-4.6mm; 3-5µm) 

separation) they achieved a 2 to 3-fold reduction in analytical times. Furthermore, the identification of 

degradation by products (Petrovic et al., 2003; Gonzalez et al., 2007), that may be toxics and of 

environmental concerns, will rely on the use of new hybrid mass spectrometric detector: hybrid 

quadrupole time of flight mass spectrometer with MS/MS capability (Q-ToF) , hybrid quadrupole ion 

trap mass spectrometer with MS/MS capability (Q-IT) (Gonzalez et al., 2007; Barcelo and Petrovic, 

2007).  
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Table 4: Validation procedure for the study of APEOs, APs, APECs in aqueous matrices. 

Reference Compounds 
investigated 

Matrix Sensitivity Recovery Quantitation Investigation 
matrix effects 

Tan et al. 
(2008) 

MRA 
wastewater 

LOD (ng.l-
1) S/N=3 

LOQ (ng.l-1) 
S/N=10  

grab water spiked 500 ng.l-1(n=3) 
  

4-t-OP 2 5 
 

35±15% 
    

internal standard: 4-n-
NP 

NR 
4-NP 2 5 

 
110±15% 

    
Tan et al. 
(2007) 

MRA 
wastewater 

LOD (ng.l-1) S/N=3 
 

recovery 
       

4-t-OP 1.0-5.0 
 

63.5 
     

internal standard: 4-n-
NP 

NR 
4-NP 

 
77.9 

     

Quintana et 
al. (2007) 

MRA 

wastewater,                       
river water 

LOD (ng.l-1)  

blank±3 SDblank.  
recovery 

accuracy 
tap water 
(500ng.l-1; 

n=4) 

accuracy 
river water 
(500ng.l-1; 

n=4) 

accuracy 
well water 
(500ng.l-1; 

n=4) 

accuracy 
treated water 
(2,000ng.l-1; 

n=4) 

accuracy 
untreated water 

(2,000ng.l-1; n=4)   

4-t-OP 750 
 

51±17% 112±9% 113±13% 94±13% 82±11% 125±15% internal standard: 
pentachlorophenol-

13C6 
NR 4-OP 21 

 
24±15% 86±12% 81 ± 12 % 80±8 % 59±3% 52 ± 7% 

4-n-NP 6 
 

11±20% 73±7% 53±8% 47±6% 30±9% 47±8% 

4-NP 310 
 

28±18% 101±6% 103±9% 89±5% 84±8% 123±11% 

Ballesteros 
et al. (2006) 

MRA 

wastewater 

LOQ (ng.l-1) directive 
96/23/EC 

 

spiked WWTP 0.05 
µg.l-1 (n=5) 

spiked WWTP 0.250 
µg.l-1     (n=5) 

spiked WWTP 0.5 µg.l-1 (n=5) 
  

4-OP 30 
 

98.0±4.1% 96.4±3.7% 97.4±4.3% surrogate standard: 
bisphenol F 

no matrix effects 
4-t-OP 20 

 
104.0±3.8% 96.8±5.0% 103.4±4.1% 

4-NP 20 
 

96.0±4.2% 104.8±4.2% 100.6±3.8% 

Kawagushi 
et al.(2005) 

MRA 

river water 

LOD (pg.ml-
1) S/N=3 

LOQ 
(pg.ml-1) 
S/N=10 

 

river water spiked 
100pg.ml-1 (n=6) 

river water spiked 1000 
pg.ml-1 (n=6)     

4-t-OP 2 10 
 

93.3±11.3% 96.4±7.7% 
  

external calibration NR 

4-NP 10 50 
 

94.7±14.8% 93.3±11.0% 
   

Baugros et 
al . (2008 

MRA 

wastewater 

LOD (ng.l-1) 
S/N=3 

LOQ (ng.l-
1) S/N=10  

spiked WWTP 500 
ng.l-1 (n=6)       

4-NP 7.5 25 
 

99±1.5% 
    

standard addition 
Yes, standard 
Addition to 
compensate 

4-n-NP 67 223 
 

91±6.8% 
    

4-NP1EO 4.9 16 
 

100±6.2% 
    

4-NP2EO 0.7 2,3 
 

102±1.3% 
    

4-OP 220 734 
 

91±3.8 % 
    

4-t-OP 19.2 64 
 

91±5.1% 
    

4-OP1EO 7.6 25 
 

107±3.6% 
    

4-OP2EO 38.8 129 
 

109±9.9 % 
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Zafra-
Gomez et 
al.( 2008) 

MRA 

wastewater 

LOQ (ng.l-1) directive 
96/23/EC  

spiked WWTP 0.1 
µg.l1 (n=6) 

spiked WWTP 0.5 µg.l-1 

(n=6) 
spiked WWTP 1 µg.l-1 (n=6) 

  
4-OP 59 

 
104.2±4.8% 97.2±3.3% 102.4±2.9% surrogate 

standard:bisphenol F 
NR 

4-t-OP 69 
 

95±3.3% 101.2±3.7% 97.8±2.8% 

4-n-NP 51 
 

97.5±4.1% 97.6±2.5% 102.0±3.5% 

Loos et al. 
2007 

MRA 

wastewater,          
marine water 

IDL (pg) 
v= 5µl S/N 

MDL (ng.l-1) 
S/N =3  

spiked Milli Q water 
0.1 to 1 µg.l-1       

4-NP1EO 5 100 
 

50-90% 

    
external calibration 

not investigated 
too diificult 

4-NP2EO 50 10 
     

external calibration 

4-NP3EO 20 5 
     

external calibration 

4-NP1EC 2 1 
     

external calibration 

4-NP2EC na na 
     

4-NP1EC 

4-NP3EC na na 
     

4-NP1EC 

4-OP1EO 5000 100 
     

external calibration 

4-OP2EO 50 10 
     

external calibration 

4-OP1EC 2 1 
     

external calibration 

4-OP2EC na na 
     

external calibration 

4-t-OP 50 5 
     

external calibration 

4-NP 50 10 
     

external calibration + 
internal standard 4-n-

NP 

Cespedes et 
al. (2007) 

 

wastewater,        
river water 

IDL (ng) 
v= 25µl; 
S/N =3 

LOD water 
(µg.l-1)S/N 

=3 
 

distilled water spiked 
1µg.l-1 (n=6) 

surface water spiked 
1µg.l-1(n=6) 

surface water spiked 10µg.l-1 
(n=6) 

  

4-NP1EO 0.9 0.12 
 

80-102% 87-105 % 79-113% 
internal standards: 

heptylphenol; DEHPd4 
NR 

4-NP2EO 0.3 0.06 
 

4-N3-15EO 0.2 0.06 
 

4-t-OP 0.1 0.06 
 

4-NP 0.2 0.07 
 

Lara martin 
et al. (2006) 

MRA 

marine water,        
river water 

MDL (ng.ml-1) S/N =3 
 

recoveries (n=5) spiked 
reconstituted sea water       

NP1-17EO 
0.05-0.5  

72± 4% 
    

external standards 
addition + internal 

standard (C16 LAS) 

negligible in 
surface water OP1EC 

 
72±14% 

    
NP1EC 

 
71±17% 

    

Jahnke et al. 
(2004) 

 

wastewater 

LOD water (ng.l-1) S/N =3 
 

recovery of non diluted 
extracts (spike 100-

1,000ng.l-1) 

recovery of four fold 
diluted extracts (spike 

100-1,000ng.l-1)    

ion suppression 
from 39 % to 72 

% dilution of 
extracts decrease 
ion suppression 

effects 

4-NP1EO 10 
 

25-47% 50-75% 
  

external calibration 4-NP2EO 0.2 
   

4-NP1EC 0.1 
   

4-OP1EO 12 
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4-OP2EO 0.1 
   

4-OP1EC 0.04 
   

4-t-OP 4 
   

4-NP 2 
   

Lagana et al. 
2004 

MRA wastewater,                         
river water 

LOD 
influent 

(ng.l-1) S/N 
=3 

LOD effluent 
(ng.l-1) S/N 

=3 

LOD 
river 
water 
(ng.l-1) 

spiked influent                              
(n=5) 

spiked effluent                                         
(n=5) 

spiked river water                 (n=5) 
  

4-n-NP 182 55 36 80±5% 86±7% 87±4% internal standard NR 

Gonzalez et 
al 2004 

 

wastewater,          
marine water 

LOD water (ng.l-1) S/N =3 
 

spiked water (100µg.l-

1)                  (n=3) 
      

4-NP1EO 50 
 

86±3.8% 
    

internal standard if ion 
suppression > 20 
%, dilution of the 
extracts before a 
second analysis 

4-NP2EO 50 
 

81±2.4% 
    

internal standard 

4-NPnEO  n:3-
15 

5 
 

98±4% 
    

internal standard 

4-NP1EC 100 
 

83±1.3% 
    

internal standard 

4-t-OP 50 
 

85±4.7% 
    

internal standard 

4-NP 50 
 

88±7% 
    

internal standard 

Petrovic et 
al. (2003) 

 

wastewater 

IDL (pg )        
LC-MS-
MS (LC-
MS) S/N 

MDL (ng.l-1)      
LC-MS-MS        

S/N =3  

spiked water                             
(n=3) 

      

4-NP 10 (60) 1 
 

85±5% 
    

external calibration 

ion suppression 
negligible 

4-NPBr 15 (50) 2 
 

73±7% 
    

external calibration 

4-NPCl 
 

73±7% 
    

external calibration 

4-NP1EC 30 (150) 2 
 

98±5% 
    

external calibration 

4-NP1ECBr 50 (150) 2 
 

92±7% 
    

external Calibration 

4-NP1ECCl 
 

90±6% 
    

external calibration 

4-NP2EC 30 (100) 2 
 

88±4% 
    

external calibration 

4-NP2ECBr 50 (200) 2 
 

79±7% 
    

external calibration 

4-NP2ECCl 
 

87±6% 
    

external calibration 
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Table 5: Validation procedure for the study of APEOs, APs, APECs in solid matrices. 

Reference 
Compounds 
investigated 

Matrix  Sensitivity Recovery  Quantitation 
Investigation 

 matrix effects 

Tan et al. (2008) 

MRA 

sludge 

LOD (ng.g-1) 
S/N=3 

LOQ (ng.g-1) 
S/N=10 

spiked sludge                       
(10; 25; 500 ng.g-1) 

          

4-t-OP 0.02 0.06 15%       internal standard: 4-n-NP   
4-NP 0.02 0.06 55%       

Nunez et al. 
(2007) 

  
soil. 

sediments. 
compost and 

sludge 

LOD (µg.g-1) 
S/N=3 

LOQ (µg.g-1) 
S/N=10 

spike level 1                              
(n=5) 

spike level 2                                
(n=5) 

        

4-NP 0.06 0,62 90.8±11.1% 78.3±15.6%     

external calibration 
 

4-NP1EO 0.06 0.15 90.6±10.1% 82.8±3.5%     

4-NP2EO 0.05 0.08 97.3±5.2% 90.4±5.0%     

4-NP3-13EO 0.52 1.72 90.8±11.1% 78.3±15.6%     

Gatidou et al. 
(2007) 

 sludge; 
suspended 

solids 

LOD (µg.g-1) 
S/N=3 

LOQ (µg.g-1) 
3.3*LOD 

spiked sludge 50ng             
(n=5) 

spiked sludge 100ng             
(n=5) 

spiked sludge 200ng            
(n=5) 

    

4-n-NP 0.04  0.13 54.5±5.8% 62.7±8.1% 47.6±2.7% 
internal standard: BPA d16  NR 

4-NP1EO 0.49 1.61 99.5±6.4% 106± 2.1% 106±6.8% 

4-NP2EO 0.96  3.17 87.6±8.3% 101±7.9% 86.3±12.2% 

Aparicio et al. 
(2007) 

MRA 

sludge 

LOD (µg.kg-1) 
S/N=3 

LOQ (µg.kg-1) 
S/N=10 

spiked sludge           

4-NP 189.13 630.43 77.9±9.9%       internal standard: tert-
butylphenol 

  
4-NP1EO 751.19 2,503.96 88.6±7.2%       

4-NP2EO 420.68 1,402.28 61.4±9.1%       

Andreu et 
al.(2007) 

  

sludge. soil 

LOD (µg.kg-1)  

S/N=3  

spiked sludge   
(n=3; 3 days) 

          

4-t-OP 30  91±15%       

external calibration  NR 

4-NP 30  97±19%       

4-NP1EO 3  89±13%       

4-NP1-5 EO 1  89±15%-94±12%      

4-OP1-5EO 1  89±18%-97±11%      

4-NP6-15EO 0.3  89±15%-95±10%      

4-OP6-15EO 0.3  89±19%-102±11%      

Lara martin et 
al.(2006) 

MRA 

sediments 

LOD (ng.g-1) S/N=3  spiked reconstituted sediments         

NP1-17EO  
1.0-10.0 

70±3%      external standard 
addition+internal standard 

(C16 LAS) 

estimated to less 
than 10 % OP1EC 65±6%      

NP1EC 74± 0%      
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Gibson et al. 
(2005) 

MRA soils; 
biosolids 

LOD (µg.kg-1) S/N=3  
 spiked soils                        

(n=4; 2 operators; 
40 and 100µg.kg-1) 

 spiked soils                        
(n=4; 2 operators; 

2,000µg.kg-1) 

 spiked sludge                      
(n=4; 2 operators; 4,000 

and 20,000µg.kg-1) 

  

    

4-NP 10  75±16% 95±6% 91 ± 16% internal standard: 4-n-
heptylphenol 

 NR 

Pojana et al. 
(2006) 

MRA 

sediments 

MDL (µg.kg-1) S/N=3   spiked sediments                       
(n=3; 20µg.kg-1) 

 spiked sediments                       
(n=3; 100µg.kg-1) 

        

4-NP 0.2-5  84±6% 61±15%     internal standard: 4-n-NPd4  NR 
4-NP1EC 86±5% 67±14%     

Cantero et al. 
(2004) 

    LOD (mg.kg-1) S/N=3  spiked sludge           

OP9-10EO sludge 0.09-0.38  85±7%       internal standard:  NR  

  
NP6EO 87±7%       

Cespedes et al. 
(2007) 

  

sludge 

IDL (ng) v= 
25µl S/N =3 

LOD (µg.kg-1) 
S/N =3 

suspended solids            

4-NP1EO 0.9 

5 to 23 47-76% 

      

internal standards: 
heptylphenol, DEHPd4 

NR  
4-NP2EO 0.3       

4-NP3-15EO  0.2       

4-t-OP 0.1       

4-NP 0.2       

Petrovic et al. 
(2003) 

  

wastewater 

IDL (pg )              
LC-MS-MS               
(LC-MS) 

MDL (ng.g-1)          
LC-MS-MS 

Spiked sludge                     
(n=3) 

          

4-NP 10 (60) 0.5 81±9%       

external calibration 

ion suppression 
checked  with 

surrogate standard 
4 -

nonyloxybenzoic 
acid 

4-NPBr 15 (50) 1 64±11%       

4-NPCl 60±14%       

4-NP1EC 30(150) 1.5 78±8%       

4-NP1ECBr 50 (150) 1.5 75±9%       

4-NP1ECCl 71±12%       

4-NP2EC 30 (100) 1.5 68±10%       

4-NP2ECBr 50 (200) 1.5 NR       

4-NP2ECCl NR       
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4-Validation of the analytical methodologies  

4-1-Stability 

It has been observed that an insufficient stability of the analyte or matrix constituents in the 

sample during storage or analysis may give rise to significant deviations in the outcome of the results of 

the analysis. Furthermore, the stability of the calibration standard in solution should be checked. As it 

has been first highlighted, this part of the validation is usually not mentioned. With the implementation 

of the WFD this specific point of the analytical procedure should be investigated to improve laboratory 

management faced with a growing number of samples and to ensure comparability of data on National 

and European scales. 

Loyo-Rosales et al. (2003) investigated the stability of APs and AP1-5EOs in solvents 

(MeOH/Water; 50/50; v/v) stored at -20°C over a 12 week period; analytes concentrations in the mixture 

were constant during 12 weeks and stability was  not concentration dependent (RSD comprised between 

4 to 13%). Similarly, they studied the stability of ENV+ cartridge stored at -20°C (previously spiked 

with analytes) and concluded at stability for APs and APEOs with less than 4 ethoxy. Finally, they 

studied stability of analytes in water (deionized water and stream water), stored at 4°C, over a 29 day 

period. By comparing different matrices (deionized water, groundwater, stream water and wastewater) 

they found analytes in deionized water and groundwater to be stable even without additives. On the 

contrary, streams and wastewater displayed significant alteration in their integrity even over short 

periods. Moreover, they also mentioned that the use of preservatives (acidification) might affect 

extraction depending on the interactions involved in sorption phenomena. To sum up, the investigation 

of stability should be experimentally plan and carefully investigated. 

 

4-2-Recovery/Trueness 

Trueness for an analyte means the closeness of agreement between the average value obtained 

from a large series of test results and an accepted reference value. Trueness is usually expressed as bias 

and can only be established by means of certified reference material (CRM). If no CRM is available, 

instead of trueness, recovery can be determined. Recovery is the percentage of the true concentration of 

a substance recovered during the analytical procedure. Most reported data mention recoveries using 

ultrapure water for aqueous samples or organic solvent for solid samples. Faced with the ubiquity and 

occurrence of APEOs, the determination of recovery in natural matrix is tricky. Thus, a minority of 

works reported recoveries on natural matrix (especially wastewater, sludge) and its representativeness 

should be pointed out, especially for solid samples. In fact, spiking is not considered as an ideal method, 

because the sorption of analytes cannot be ensured.  

 Quintana et al. (2007) studied the recoveries of their SBSE-liquid desorption-GC-MS 

methodologies on different matrices (n=4): 86% in tap water, 81% in river water; 59% in effluent and 
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52% in influent for 4-OP, highlighting that matrix components can affect recovery. Similarly, Jahnke et 

al. (2004) studied recovery on WWTP effluent, using SPE-LC-MS-MS procedure, spiked from 100 to 

1,000 ng.l-1. First, they reported typical recoveries between 25 to 47%; after a four-fold dilution of the 

extracts, they reported an increase of recoveries from 50 to 75%. Those results highlight that a true 

evaluation of recovery in natural matrix relies on the knowledge of matrix effects which can lead to both 

enhancement or suppression of signal and consequently to over or underestimation of recoveries. 

Tan et al. (2008) designed a SBSE-ThermoDesorption-GC-MS methodology for the study of 

endocrine disruptors in WWTP; they reported recoveries of 110% for 4-NP and 45% for 4-t-OP in water, 

only 55% and 15% in sludge. 

To sum up, it is important to determine recoveries for each type of matrix, and for different 

levels of spiking (representative of investigated levels). That it is for aqueous or solid matrix, even if 

things are worse for solids, these approaches are unsatisfactory especially because none of the natural 

matrix is free from compounds; CRM to validate the trueness of the analytical methodology is clearly 

needed. 

 

4-3-Sensitivity of the analytical methods: limit of detection (LOD) and limit of detection (LOQ) 

Different methodologies exist to determine the sensitivity of an overall methodology. Limit of 

detection (LOD) is usually determined as the lowest concentration on analyte with signal to noise of 

three; limit of quantification (LOQ) as lowest concentration of analyte with signal to noise of 10. Some 

authors report instrumental detection limit (IDL) and method detection limit (MDL) (generally obtained 

by spiking laboratory waters with solvents). Because matrix components can affect both LOD and LOQ 

(increase of the analytical noise; matrix effects), it is important to note that it should be determined in 

real samples. 

IDL are usually in the range of tens to thousands pg injected. Petrovic et al. (2003) reported 

IDL for both LC-MS and LC-MS-MS methodologies of 60 pg and 10 pg for 4-NP, 100 pg and 30 pg for 

4-NP2EC, highlighting the strong interest of developing LC-MS-MS methodologies to increase both 

sensitivity and selectivity. MDL was between 1-2 ng.l-1 for all investigated compounds.  

Depending on the compounds (oligomers and isomers), the analytical methodologies, the 

extracted volume or quantity, the reconcentration factor, LOD is between low ng.l-1 to hundreds ng.l-1 for 

the aqueous phase, tens to hundreds ng.g-1 for solids (Table 4-5).  

 

4-4-Accuracy 

Accuracy is the degree of conformity of a measured quantity to its actual value (true value). It 

is determined by delimiting trueness and precision. The evaluation of accuracy relies on multiple quality 
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controls and method validation. As no CRM is currently available, the evaluation of accuracy cannot be 

fully made.  

Precision means the closeness of agreement between independent test results obtained under 

stipulated conditions. The measure of precision usually is expressed in terms of imprecision. 

Repeatability and reproducibility are the main components of precision, and should be determined in real 

appropriate samples. Repeatability conditions mean conditions where independent test results are 

obtained with the same method on identical test items in the same laboratory by the same operator using 

the same equipment. Andreu et al. (2007) conducted three sets of tests on three replicated samples which 

were extracted on three different days and subsequently analyzed on different days. Satisfactory 

recoveries were achieved for all target analytes ranging from 89 to 102% with RSD≤20%. In the same 

manner, Gatidou et al. (2007) investigated repeatability and reproducibility for both wastewater and 

sludge. Repeatability was achieved on six replicates of wastewater and sludge, spiked with 100ng of the 

target compounds and analyzed for 1 day. Reproducibility was achieved on three replicates of 

wastewater and sludge samples spiked with 100ng of the target compound and analyzed on 3 different 

days over a period of 1 week. RSD were less than 12%; the authors concluded the methodology offered 

good precision. 

The first European interlaboratory comparison study for the analysis of APs in water was held 

in 2006. Loos et al. (2008) summed up the principal lessons: all the laboratory did not work on the same 

isomers (4-tert-OP; 4-n-OP); LC-MS-MS and GC-MS proved to be comparable methods for the analysis 

of APs; analysis of 4-NP at concentrations <100 ng.l-1 is difficult, due to the contamination of laboratory 

blanks.  

 

5-Conclusion 

Nowadays, hundreds of publications have referred to the study of APEOs, APs, APECs in the 

aquatic environment. Analytical methodologies are generally designed according to the investigated 

compounds and the matrix; LC-MS, LC-MS-MS and GC-MS are by far the most commonly used 

technologies; leading to LOD (ng.l-1 for aqueous sample, hundreds ng.g-1 for solid samples) which can 

be insufficient to conduct environmental surveys, especially in a restriction context. Furthermore, 

analytical methodologies suffer from failures in their analytical validation with a misuse of terminology. 

To succeed in correct validation procedure (as required in a regulatory context), analytical 

methodologies will have to focus on: 

- The presence of laboratory blank to ensure trueness of data,  

- The study of the stability of analytes in a natural matrix, 

- The use of appropriate internal standards (labeled compounds, linear forms of APEOs), 

- The improvement of specificity, 

- The determination of sensitivity in a natural matrix, 
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- The investigation of matrix effects, especially when LC-ESI-MS-(MS) is used, 

- The participation to intercomparison laboratory studies to improve precision and thus accuracy. 
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Résumé: 

Une méthode analytique complète basée sur la chromatographie liquide en phase inverse et la 

spectrométrie de masse en mode d'ionisation électrospray (LC-ESI-MS) a été développée pour la 

détermination quantitative simultanée des métabolites d’alkylphénol-éthoxylés dans les matrices 

environnementales complexes. L’extraction et la purification des échantillons d'eau a été exécutée par 

extraction en phase solide sur cartouche C18. Le nonylphénol (4-NP technique), l’octylphénol (4-t-OP), 

et l’acide nonylphénoxyacétique (4-NP1EC) ont été analysés par CL (phase inverse)-ESI-SM en mode 

d'ionisation négative (NI), alors que le nonylphénol-éthoxylés (4-NP1EO, 4-NP2EO) ont été analysés 

par CL (phase inverse)-ESI-SM en mode d'ionisation positive (PI). La méthode a été validée et appliquée 

avec succès à la détermination des niveaux de contamination par les métabolites de NPEO dans les 

effluents de stations d’épuration et les eaux de surface en estuaire de Seine.  
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Abstract 

A comprehensive analytical method based on reversed-phase liquid chromatography - 

electrospray ionization mass spectrometry (LC-ESI-MS) has been developed for the simultaneous 

quantitative determination of nonylphenol ethoxylate metabolites in complex environmental matrix. 

Preconcentration and clean up of water samples was performed on C18 solid-phase extraction cartridges. 

Nonylphenol (technical 4-NP), octylphenol (4-t-OP), and nonylphenolcarboxylate (4-NP1EC) were 

analyzed by reversed-phase LC-ESI-MS in negative ionization (NI) mode, while nonylphenol 

ethoxylates (4-NP1EO, 4-NP2EO) were analyzed by reversed-phase LC-ESI-MS in positive ionization 

(PI) mode. The validated method was successfully applied to the determination of levels of nonylphenol 

ethoxylate metabolites in river water and sewage treatment plant (STP) effluent in the Seine estuary. 

Keywords: nonylphenol; nonylphenol ethoxylates; nonylphenolcarboxylates; alkylphenols; mass 

spectrometry; electrospray ionization; water analysis; estuary; STP effluent. 

 

1-Introduction 

Alkylphenol ethoxylates (APnEOs) are one of the most widely used classes of effective non-

ionic surfactants. They have been used in various domestic detergents, paints, herbicides, pulp and paper 

production, textile manufacturing, pesticide formulations and industrial cleaning agents and wherever 

their interfacial effects of detergency, (de)foaming, (de)emulsification, dispersion or solubilization can 

enhance product or process performance. Nonylphenol ethoxylates (NPnEOs) and octylphenol 

ethoxylates (OPnEOs) are two of the most common surfactants in the marketplace. APnEOs are 

discharged to wastewater treatment facilities or directly released into the environment. 

Biotransformation occurs when APnEO surfactants are exposed to secondary wastewater treatment 

Giger et al. (1984), and a complex mixture of metabolites is released to the aquatic environment via 

discharge of the treated sewage. Primary degradation of APnEOs in wastewater treatment plants or in the 
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environment generates more persistent shorter-chain APnEOs and alkylphenols (APs) such as 

nonylphenol (4-NP), octylphenol (4-t-OP), nonylphenol mono- or diethoxylates (4-NP1EO, 4-NP2EO), 

and nonylphenolcarboxylates (4-NP1EC, 4-NP2EC) in aerobic or anaerobic conditions (Thiele et al., 

1997). Furthermore, the ultimate biodegradation products: nonylphenol (4-NP) in the case of NPnEO 

and octylphenol (4-t-OP) in the case OPnEO are persistent (Ekelund et al., 1993;Ejlertsson et al., 1999; 

Staples et al., 1999; Heinis, 1999; Vazquez-Duhalt et al., 2006; Soares et al., 2008) and toxic (Servos, 

1999; Soares et al., 2008) at environmental measured concentrations. In fact, APnEO metabolites are 

weak endocrine disruptors ( R M Harrison, 1999; Lintelmann et al., 2003; Mills and Chichester, 2005; 

Soares et al., 2008) they have been shown to be oestrogeno-mimetic with an agonist action of the natural 

hormone: 17-β-oestradiol (White R, 1994; Jobling S., 1996). Vethaak et al. (2005) showed, in a multi 

parameter monitoring study, that 4-NP was the principle contributor to endocrine disruption activity in 

Dutch aquatic systems. 

Since the last ten years, high-performance liquid chromatography coupled to mass 

spectrometry has become the prevalent analytical technique to study polar organic compounds in 

environmental media. The occurrence of alkylphenol ethoxylate metabolites at low concentration 

together with the complex matrix interference often present in environmental media means that highly 

sensitive and specific analytical methods are needed for their determination. As shown in Table 1, 

APnEOs as well as their degradation metabolites have been reported in different aquatic ecosystems: 

marine, estuarine and river, worldwide. Measured concentrations vary from lower than ten ng.l-1 to more 

than ten µg.l-1 depending of the systems and the compounds. Although alkylphenols (4-NP and 4-OP) 

are suitably documented as well as the anaerobic biodegradation metabolites (NPnEOs, specially 4-

NP1EO and 4-NP2EO), it can be pointed out the lack of data about the environmental occurrence of the 

aerobic biodegradation metabolites (APnEC). A highly specific and sensitive analytical method, which 

can provide accurate and precise data for the determination of alkylphenol ethoxylate metabolites, is 

required. HPLC with mass spectrometry detection has been used frequently to analyze alkylphenol 

ethoxylates, their metabolites, and other nonionic surfactants in the environment (Table1). 
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Table 1: A non exhaustive view of the state of knowledge on APnEO metabolites: environmental levels (ng.l-1) and analytical tools 

Location Environment type [4-NP] [4-NP1EO] [4-NP2EO] [4-NPnEO] [4-NP1EC] [4-NP2EC] [4-t-OP] Analytical methods Reference 
Laurentian great lakes Freshwater <10-920 <20-7,800 <20-10,000 - - - <5-470 In situ acetylation, Bennie et al. 

Gualdalquivir river Freshwater 900-1,100 - - - 1,000-4,000 - 800-9,000 SDS helimicelles- Cantero et al. 

Taiwan rivers Freshwater <10-2,600 <10-500 - - <10-63,600 - SPE (GCB or ENVI- Cheng et al. 

Hudson river Freshwater 12-95 - - - - - - XAD2 adsorbent ; Dachs et al. 

Elbe river Freshwater 13-87 <0.5-120 - - <0.5-5 LLE; Stachel et al. 

Santa ana river Freshwater 0-6,200 - - - - - - SPE ( C 18, ); Gross et al. 

Back river Freshwater 140-200 <9-67 12-54 - - - <9 SPE (ENV+); Loyo-Rosales et 

Netherlands river Freshwater <LOD-140 <LOD - - - - <LOD SPE (C18); Voogt et al. 

(2000) Yellow river Freshwater 50-170 50-140 50-450 700-1,500 30-100 - SPE (HLB); Wang et al. 

Tokyo Freshwater <LOD-2,870 <LOD-3,380 - - 470-2820 180-1770 <LOD-118 SPE (C18) ; Isobe and 

Takada (2004) 
Detroit river Freshwater <LOD-

37,000 

<LOD-332,000 - - <LOD-670 Empore disk ; Snyder et al. 

(1999) 
Cuyahoga river Freshwater 130-1,000 - - - SPE (ENV+); Rice et al. (2003) 

Tokyo metropolitan Freshwater 50-1,080 40-810 - - - - 10-180 SPE (SEP-PAK Isobe et al. 

Italian and Belgian Freshwater 320-2,500 300-1,300 60-3,600 3770-19900 280-2200  12-111 SPE(C18) LC-ESI- Loos et al. 

Lyon area Freshwater, 

Groundwater 

<LOD <LOD – 

1,009 

<LOD – 

1,4141 

   <LOD SPE(Strata)LC-ESI-

MS-MS 

Baugros et al. 

(2008) 

Jamaica bay Brackish water 201 157 320 - - - 3.27 SPE (Bondesil); Ferguson et al. 

Rhine estuary Brackish water 12-88 <15-32 <6-64 <30-225 60-322 <13-247 - SPE(C18) ; Jonkers et al. 

Sheldt estuary Brackish water 50-962 <15-443 6.8-234 <30-447 37-1,030 <13-2,339 - SPE(C18) ; Jonkers et al. 

Venice lagoon Brackish water 300 800 900 - - - - SPE (C18); Marcomini et al. 

North sea Saltwater 0.09-1.4 0.017-1.66 - - - - 0.013-0.3 GC-EI-MS Xie et al. (2006) 

Catalonian area and Saltwater <150-4100 - - <200-11,000 - - - SPE (C18) ; Petrovic et al. 

Catalonian area Saltwater <LOD-0.21 <LOD-9.2 <LOD-160 - <LOD-200 - <LOD-70 SPE (C18); Cespedes et al. 

Catalonian area Saltwater <50-210 <50-9,200 <50-160 - <100-220 - <50-71 SPE (C18); González et al. 

Pearl river delta Saltwater <20-628 - - - - - <2-68 SPE (SEP-PAK Chen et al. 

Jiaozhou Bay,adjacent Saltwater, Freshwater 24.7-28,600      1.2-16.1 LLE-GC-EI-MS Fu et al. (2007) 

Cadiz Bay, Guadalate 

River 

Saltwater    <LOD-5,000 <LOD-3,900   SPE(C18) LC-IT-

MS 

Lara-Martín et 

al. (2006) Lagoon Venice Saltwater 0.5-211    0.1-82   SPE LC-ESI-MS Pojana et al. 

(2007) 

Masan Bay Creek water, 

Saltwater 

23-928 0.5-1,210 85-1,840     GC-EI-MS (BSTFA) Li et al. (2008) 
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The objective of this study was to develop a very simple as well as reliable method that could analyze the 

most important APnEO metabolite byproducts of the anaerobic pathway as well as the aerobic pathway that always 

occur in aquatic environment. Solid-phase extraction and reversed-phase HPLC-ESI-MS were optimized for 

specific and sensitive analysis of the APnEO metabolites. The protocol was validated with environmental samples 

from river water and sewage treatment plant (STP) effluent near Seine estuary (France). 

 

2-Experimental 

2-1-Quantitation standards 

Unlabeled p-n-nonylphenol (98%+, 4-n-NP), p-n-nonylphenol monoethoxylate (95%+, 4-n-NP1EO), p-n-

nonylphenol diethoxylate (p-n-NP2EO), 4-nonylphenoxyacetic acid (ring chain isomers) (98%+, 4-NP1EC) -

nonylphenoxyethoxyacetic acid (ring chain isomers) (98%+, p-n-NP2EC) (100 µg/ml in nonane, respectively) were 

purchased from Promochem (Molsheim, France). Labeled p-n-nonylphenol (98%+, p-n-NPc13), 4-n-nonylphenol 

monoethoxylate (95%+, 4-n-NP1EOc13) were purchased from Promochem (Molsheim, France).4-nonylphenol 

(100%, 4-NP, Technical), 4-octylphenol (99.5%, 4-OP), 4-nonylphenol-mono-ethoxylate (99.5%, 4-NP1EO) and 4-

nonylphenol-di-ethoxylate (99.5%, 4-NP2EO) were purchased from labor Dr. Ehrenstorfer-Schäfers (Augsburg, 

Germany). Internal standard 2,4,6-Trimethylphenol (97%, 2,4,6-TMP) was purchased from ALDRICH (St Quentin 

Fallavier, France). Except unlabeled p-n-NP, p-n-NP1EO, p-n-NP2EO, 4-NP1EC, p-n-NP2EC all others compounds 

stock solutions were prepared in acetonitrile (ACN) at a concentration of 1 mg.ml-1 respectively. The spiked 

solutions were prepared in acetonitrile (LC-FLUO) or methanol (LC-MS) at concentration of 1 µg.ml-1 of each 

compound. 

 

2-2-Reagents and chemicals 

Acetonitrile was ultra gradient HPLC grade from J.T.Baker (Atlantic Labo, Bruges, France). Methanol 

(MeOH) used for LC/MS analysis was for analysis of pesticides residues from PESTINORM, PROLABO 

(France). Methanol for other uses was HPLC grade from SDS (Peypin, France). Dichloromethane (DCM) was for 

organic residue analysis from J.T.Baker (Eysines, France). All the above solvents were used without further 

purification. Water used for LC/MS analysis was sterilized water for injections from LABORATOIRE 

AGUETTANT (Lyon, France). Hydrochloric acid (37%) was purchased from VWR (Strasbourg, France). 

Ammonium acetate (minimum purity 98%) was purchased from SIGMA (St Quentin Fallavier, France). All 

chemicals were tested for background levels for the compounds of interest. 
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Due to the ubiquitous occurrence of alkylphenols and alkylphenol ethoxylates in plastics and detergents, 

glassware and sampling apparatus required special treatment prior to use. All the glassware was washed and then 

heated at 450oC for 6 h prior to use. Glass microfiber filter (GF/F, 0.7 µm nominal, Whatman, VWR, Strasbourg, 

France) were also heated at 450oC for 6 h prior to use. 

 

2-3-Sample collection 

River water and STP effluent in the Seine estuary were collected in 4l glass bottles, which were 

previously washed and heated at 450oC for 6 h. All aqueous samples were filtered through glass microfiber filters 

(GF/F) and acidified with 3.5M hydrochloric acid to pH2 before solid-phase extraction. Water samples were 

preconcentrated and cleaned up on C18 (Bond Elut, Varian, Courtabœuf, France) SPE cartridges within 24 h in 

order to avoid any degradation of target compounds. 

 

2-4-Solid-phase extraction preconcentration and clean-up 

Disposable 3 ml cartridges were activated first with 5 ml of methanol, and then conditioned with 5 ml of 

M.Q. water (adjusted to pH 2) at a flow rate of 1 ml.min-1. Water samples were loaded at a flow rate of 8-10 

ml.min-1 under vacuum. Different volumes of samples were loaded, depending on the type of water (spiked M.Q. 

water, 100 ml; STP effluent, 0.4 l; river water, 1 l). After preconcentration, 2 ml of pH 2 M.Q. water was passed 

through the sorbent to elute impurities in water samples which cannot be absorbed by the sorbent. Different 

solvents were used for cleaning up the sorbent after loading the water samples. When 10% methanol in M.Q. water 

(pH 2) was used, most of the pigments cannot be eluted out, but when 100% methanol was used, most of the 

interesting compounds were also eluted out together with pigments. So 50% methanol in M.Q. water (pH 2) was 

chosen for clean up; most of the pigments were eluted out but the target compounds still remain on to the sorbent. 

The cartridges were then completely dried under vacuum (about 50 min) to avoid hydrolysis using a SUPELCO 

(VISIPREP) SPE apparatus connected to a vacuum system set at –10 psi. After drying, the SPE cartridges were 

eluted with 5 ml (twice, first 3 ml, second 2 ml) mixture of MeOH: DCM (1/1, v/v). The eluates were evaporated to 

dryness with a gentle stream of nitrogen and reconstituted with acetonitrile (spiked M.Q. water for development of 

SPE protocol, LC-FLUO) or methanol (environmental sample, LC-MS) to a final volume of 100 µl. The eluate is 

clear and fits for LC-MS injection directly. 
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2-5-HPLC-Fluorescence (LC-FLUO) 

For reversed-phase HPLC-Fluorescence analysis, HEWLETT PACKARD 1100 series HPLC equipment 

was used. The separation was achieved on reverse phase C18 guard column and C18 analysis column (VYDAC 

201TP54, 5 µm, 250× 4.6 mm i.d., MI, USA), was eluted with acetonitrile-water (92.5/7.5, v/v) at a flow rate of 1 

ml.ml-1. The injection volume was set at 10 µl. The fluorescence detector was with an excitation wavelength of 225 

nm, and an emission wavelength of 301 nm. 

 

2-6-HPLC-ESI-MS (LC-MS) 

The HPLC system consisted of an Agilent Technologies 1100 series (Massy, France). The HPLC 

separation was achieved on a 3.5 µm, 150× 2.1 mm i.d. C18 reversed-phase column (Zorbax-SB, Agilent, Massy, 

France) and the same kind of guard column. The injection volume was set at 5 µl, and the flow rate was 0.15 

ml.min-1. 

Detection was carried out using an Agilent 1100 UV detector coupled in series with an Agilent MSD 

mass selective detector (G1946 VL) equipped with an electrospray interface. 

 

Table 2: HPLC and ESI-MS conditions 

Parameter Negative ionization (NI) Positive ionization (PI) 
 Reversed phase HPLC Separation 

Solvent A Water:MeOH (3:1, v/v, 5 mmol.l-1 ammonium acetate) 

Solvent B MeOH 

Gradient elution 0 min, 60%B 

 2 min, 60%B 

 7 min, 80%B 

 32 min, 80%B 

 33 min, 60%B 

 50 min, 60%B 

 ESI-MS Detection 

Drying gas flow (l.min-1) 10.0 

Drying gas temperature (oC) 350 

Nebulizer pressure (psig) 15 30 

Capillary voltage (V) 3500 4000 

Negative ionization (NI) Positive ionization (PI) 
Time, min SIM, m/z Fragmentation voltage Time, min SIM, m/z Fragmentation voltage 

0 277 [NP1EC-H] - 70 0 265 [NP1EO+H]+ 30 
 278  (isotope)   266  (isotope)  

18 205   [OP-H] - 70  282 [NP1EO+NH4]+  
 206  (isotope)   283  (isotope)  
 219   [NP-H] -   287 [NP1EO+Na]+  
 220  (isotope)   288  (isotope)  
    309 [NP2EO+H]+  
    310  (isotope)  
    326 [NP2EO+NH4]+  
    327  (isotope)  
    331 [NP2EO+Na]+  
    332  (isotope)  
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To obtain maximum sensitivity for each target compound, the optimal detection parameters were obtained 

in series of flow injection sequences by direct injection 10µl of each target compound at a concentration of 1 µg.ml-

1 into the flow of the carrier solvent (70% solvent B) which was maintained at a flow-rate of 0.15 ml min-1. The 

detection parameter values were optimized evaluating the sensitivity, and fragmentation voltage of each analyte in 

the scan mode (m/z scan value, 100-500). The following operating parameters were optimized: drying gas flow and 

temperature, nebulizer pressure, capillary voltage, and fragmentation voltage. NP, OP, 4-NP1EC and p-n-NP2EC 

were detected under negative ionization (NI) conditions as [M-H]-, and NP1EO and NP2EO were detected under 

positive ionization (PI) conditions as [M+H]+, [M+NH4]
+ and [M+Na]+. The chromatographic conditions and 

mobile phases used were the same as optimal conditions of the MS detector that are given in Table 2. 

 

2-7-Quantitation 

Quantitative analysis was performed in selected ion monitoring (SIM) mode using external calibration. 

Initially, a series of injections of compounds in the concentration range from 0.2 ng.ml-1 to 6 µg.ml-1 was used to 

determination the linear concentration range and instrument detection limits. Calibration curves were generated 

using linear regression analysis and over the established concentration range gave good fits (typically R2 values 

>0.998) for each of the metabolites (See Table 3). For environmental samples, the extract concentration was 

converted into metabolites concentration in the sample by using the volume of sample extracted and the volume of 

the extract analyzed (controlled by gravimetrical mean). 

 

Table 3: Linear calibration range and instrument detection limits 

Compounds 
Linear injection 

amount range, ng 
R2 n 

Instrument detection limits, pg 

injected on to the column 

4-OP 
0.03-5.0 0.9996 9 30 

4-NP 
0.67-10.0 0.9978 9 30 

p-n-NP 
0.67-10.00 0.9926 9 30 

4-NP1EC 
2.0-30.0 0.9998 9 30 

4-NP1EO 
0.5-10.0 0.9983 7 20 

p-n-NP1EO 
0.25-5.0 0.9988 7 30 

4-NP2EO 
0.25-10.0 0.9985 8 10 

p-n-NP2EO 
0.12-5.0 0.9987 8 20 
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3-Results and discussion 

3-1-HPLC-FLUO 

4-NP1EC, 2,4,6-TMP, technical 4-NP, 4- OP, p-n-NP2EO and p-n-NP1EO are completely separated (see 

Figure 1). A good linear range from 0.2 to 2.0 ng injection amount is found (R2>0.990, n=10). The analytical 

operation can be completed in 15 min. This method is sensitive and accurate with good reproducibility; it can be 

used for solid-phase extraction (SPE) method development. 

Figure 1: Chromatogram of alkylphenol standards (conditions see above) 

 

3-2-Solid-phase extraction (SPE) 

Five kinds of solid-phase extraction (SPE) cartridges were used to preconcentrate and clean up the water 

samples (see Table 4). For the detailed protocol see above. The results in Table 4 show that all the kinds of 

cartridges used can receive almost the same average recovery of each compound, but Bond Elut C18 (200 mg, 

Varian) gives the best relative standard deviation (RSD) compared with other kinds of C18 and Water OASIS 

hydrophilic-lipophilic balance (HLB). So Bond Elut C18 has been used in processing environmental samples. 

 

Table 4: The results of solid-phase extraction 

Sorbent Zorbax C18 J.T.Baker C18 Alltech C18 Bond Elut C18 Waters OASIS 
Compounds Average RSD Average RSD Average RSD Average RSD Average RSD 

4-NP1EC 76.7 1.6 75.0 3.7 85.9 2.1 81.0 2.0 78.0 6.1 
4-NP 87.4 2.5 79.4 6.0 80.7 9.0 85.0 5.6 99.5 6.2 

4-OP 81.9 6.0 83.4 9.3 82.6 5.0 82.3 1.5 82.6 5.6 

p-n-NP 69.1 6.1 78.7 6.3 74.2 5.1 71.7 3.8 74.1 5.2 

p-n-NP1EO 59.1 3.0 66.8 4.0 65.1 4.7 61.3 2.5 66.9 6.0 

p-n-NP2EO 57.4 6.6 65.3 2.5 64.1 4.8 58.3 2.4 63.6 7.8 
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3-3-HPLC-ESI-MS 

With gradient elution (see Table 2) on a C18 reversed-phase column, 4-NP1EC, p-n-NP2EC, 4-NP and 4-

n-NP are completely separated. Distinct peaks are evident in the SIM chromatogram (Figure 2a) for those 

compounds in reverse-phase LC-ESI-MS negative mode. The separation of the 4-n-NP from the technical 4-NP 

analyte (a mixture of branched nonyl-phenol isomers, containing no detectable 4-n-NP) provides an advantage in 

SIM analysis. These compounds have the same molecular weight, therefore they can be monitored using a single 

m/z channel (m/z=219, 220 (isotope)) (Figure 2b-c), increasing the relative instrument dwell time and enhancing 

sensitivity. The 4-OP cannot be separated completely from technical 4-NP (Figure 2a), however these signals are 

easily resolved by using selective ions with the mass spectrometer (4-OP: m/z=205, 4-NP: m/z=219) (Figure 2b) 

and (4-OP: m/z=206, 4-NP: m/z=220) (isotope) (Fig 2c). 

 

 

Figure 2: LC/MS chromatograms obtained by injecting the composite standard solution containing target 

compounds with LC-ESI-MS detection in negative mode (conditions see above and Table 2). 

 A) SIM chromatogram obtained by injecting standard solution. B) Extract ion chromatogram of 4-NP1EC (m/z=277), p-n-

NP2EC (m/z=321), NP (m/z=219) and OP (m/z=205). C) Extract ion chromatogram of NP1EC (m/z=278), p-n-NP2EC 

(m/z=322), NP (m/z=220) and OP (m/z=206) (isotope). 
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Figure 3: SIM chromatogram obtained by injecting standard solution with LC-ESI-MS detection in positive mode. 

 

Like the alkylphenols, the nonylphenol ethoxylates are separated on the basis of alkyl chain length under 

gradient elution on a C18 reversed-phase column, however, the ethoxymers of given chain length co-elute (Figure 

3). This represents a problem for quantification of the individual ethoxymers when using reversed-phase HPLC 

spectroscopic detection. However, as shown in Figure 4 a-c, the co-eluting nonylphenol ethoxylates are resolved by 

the mass spectrometer in reversed-phase LC-ESI-MS positive mode due to their characteristic mass shift of 44 Da 

(mass of the ethoxylate moiety). The separation of the p-n-NP1EO from p-NP1EO analyte (a mixture of branched 

nonyl isomers, containing no detectable p-n-NP1EO), and p-n-NP2EO from 4-NP2EO analyte (a mixture of 

branched nonyl isomers, containing no detectable p-n-NP2EO) also provides an advantage in SIM analysis. These 

compounds have the same molecular weight; therefore they also can be monitored using two single m/z channels. 

Complete separation of all the non-fully resolved interested compounds is achieved by the mass spectrometer and 

all co-eluting impurities are discriminated by monitoring the m/z of the target analytes.  

 

 

Figure 4: LC/MS chromatograms obtained by injecting the composite standard solution containing target 

compounds with LC-ESI-MS detection in positive mode (conditions see above and Table 2). 
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 A) Extract ion (NH4
+ adduct) chromatogram of NP1EO (m/z=282) and NP2EO (m/z=326). B) Extract ion (Na+ adduct) 

chromatogram of NP1EO (m/z=287) and NP2EO (m/z=331). C) Extract ion (H+ adduct) chromatogram of NP1EO (m/z=265) 

and NP2EO (m/z=309). 

Under negative ion conditions, nonylphenol (technical 4-NP, p-n-NP), octylphenol (4-OP) and 

nonylphenolcarboxylates (4-NP1EC; p-n-NP2EC) give exclusively [M-H]- ions, consistent with previous reports in 

the literature (Petrovic et al., 2002; Cespedes et al., 2004; Wang et al., 2006) for this class of compounds. These 

ions are formed by loss of a proton from the phenolic moiety. 

Nonylphenol ethoxylate (NPnEOs) molecules show a remarkable affinity for alkali metal ions, which is 

reflected in the positive ion electrospray spectra of these analytes. Even in the absence of added electrolyte (Na+), 

NPnEOs are detected as Na+ adducts ([M+Na]+), presumably due to the ubiquity of this metal in the solvents and 

surfaces employed. Na+ ( Petrovic et al.,2002; Xie et al., 2006) or NH4
+ (Rice et al., 2003) have been added to 

enhance the response. Because of a possible reduction in NPEO ionization due to insufficient ion availability, it is 

necessary to add 5 mM ammonium acetate to the mobile phase to enhance the response of NPnEOs as NH4
+ 

adducts ([M+NH4]
+). This provides sufficient ions for analyte-ion adduct formation. At the same time, H+ adducts 

([M+H] +) are also found (Figure 4c) although the response is not very high compared with [M+NH4]
+ (Figure 4a) 

and [M+Na]+ (Figure 4b). Either in negative or positive conditions, isotopes (M+1) are found as the same analyte-

ion adducts. They are also detected in the analysis. As reported previously, absolute response in the ESI-MS signal 

increases with increasing degree of alkylphenol ethoxylation (absolute response of 4-NP2EO is higher than that of 

4-NP1EO for the same concentration) (Figure 4). 

 

3-4-Method validation  

3-4-1 Test of conservation 

Before undertaking sampling campaigns, tests of conservation were carried out at the laboratory. Two 

factors being able to influence the conservation of the sample were tested: filtration (GF/F, 0.7 µm) and 

acidification (HCl, pH 2) of the sample. Briefly, a water sample taken near the laboratory and being able to present 

a potential contamination in APnEO metabolites underwent the protocol exposed in Figure 5. Each sample (n=3) 

have been characterized (qualification and quantification) at T+0, T+2 days and T+5 days after sampling, according 

to the protocol presented previously. As reported in Table 5, the results obtained seem to highlight that the integrity 

of the sample is influenced by filtration and acidification. Some compounds such as 4-NP1EC seem to be very 

influenced by these parameters. It appears that the conservation of the sample is better when filtration is led just 
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after the sampling. In the same way, it seems that acidification of the sample before filtration can also influence the 

distribution of the compounds. It appears that the conservation of a filtered sample, over a 5th days period, at a 

room temperature of 4°C is compatible with the leading of an environmental analysis on APnEO metabolites from 

a qualitative and a quantitative point of view. 

 

Table 5: The results of the conservation tests. 

Measured concentrations at T+0 and T+5days are expressed in ng.l-1. Degradation ratio (%) is expressed as (([T0]-[T5])/(T0]) 

*100 

3-4-2 Matrix effects 

Matrix effects occur when molecules coeluting with the compounds of interest alter the ionization 

processes (Taylor, 2005). 3 main mechanisms have been suggested to explain a part of the ion suppression 

phenomena (Antignac et al., 2005): the decrease of the evaporation efficiency (due to the presence of matrix 

components), the competition between nonvolatile matrix components and the analytes to access to the droplet 

surface for the transfer to the gas phase (King et al., 2000) and the competition between analytes and interferences 

regarding to the maximal ionization efficiency of the interface. Matrix components can be provided in one hand by 

the sample itself (in the case of environmental sample: pigments, macromolecules, humic substances) and in the 

other hand by the sample preparation steps (ion pairing reagents, SPE by-products). Bonfiglio et al. (2006) have 

demonstrated that ion suppression phenomenon is compound dependent. In the case of APnEO, such mechanisms 

may be prevalent. In fact, when analysing in reverse phase-HPLC, APnEO are separated according to their 

hydrophobic part, in consequence all APnEO ethoxymers co-elute, involving a potential competitive ionisation 

suppression during electrospray ionisation (especially when sample present a high level of long chain ethoxymers) 

Ferguson et al. (2000). Matrix effects may lead to: non detection of present analytes, underestimation of analytes, 

non repeatability, non linearity which may induce dramatic quantitative estimation (Taylor, 2005; Antignac et al., 

2005). Two techniques are currently used to assess matrix effects: the postextraction addition and the postcolumn 

infusion .Because of its easiness of application, the postextraction addition was chosen to evaluate matrix effects. 

The principle is to compare the difference of response between a postextraction extract fortified with analytes of 

 Concentration of metabolites, ng.l-1 

 Ac-Fil NAc-Fil Ac-Nfil NAc-NFil Nac-Fil-Ac 

 T+0 T+5 
Degradation 

(%) 
T+0 T+5 

Degradation 
(%) 

T+0 T+5 
Degradation 

(%) 
T+0 T+5 

Degradation 
(%) 

T+0 T+5 
Degradation 

(%) 

4-NP1EO 43 31 29% 28 35 -26% 43 35 19% 43 32 26% 26 37 -42% 

4-NP2EO 21 22 -6% 21 16 25% 21 23 -11% 21 23 -11% 31 16 48% 

4-NP1EC 75 78 -4% 98 103 -5% 75 95 -26% 75 95 -26% 105 91 14% 

4-NP 94 78 17% 100 102 -2% 94 78 17% 94 78 17% 100 98 3% 
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interest (A) and a pure solution of solvent fortified with the same quantity of analytes (B). The ratio ((A-B)/B)*100 

provides the percentage of ion suppression for each analyte of interest under chromatographic conditions. 

A first approach has been conducted in order to evaluate the robustness, selectivity and sensitivity of the 

developed protocol. 

Three environmental extracts, one of sewage treatment plant effluent and two of surface water have been 

extracted according to the protocol exposed previously. 100 µl extracts have been supplemented, prior to injection, 

with a mixture of five compounds (p-n-NP, p-n-NPC13, p-n-NP1EO, p-n-NP2EO, p-n-NP1EOC13). In parallel, a pure 

methanol extract has been supplemented with the same quantity of compounds. 

 

Table 6: The results of the matrix effects investigation 
 WWTP effluent (0.3 l) Surface water (0.5 l) Surface water (0.3 l) 

Analytes of 
interest 

Post 
extraction 

(Ion intensity) 

(A) 

Pure solution 
(Ion intensity) 

(B) 

ME 

Post extraction 

(Ion intensity) 

(A) 

Pure solution 

(Ion intensity) 

(B) 

ME 

Post extraction 

(Ion intensity) 

(A) 

Pure solution 
(Ion intensity) 

(B) 

ME 

p-n-NP 58181 67812 -14% 131620 147457 -11% 133192 147457 -10% 

p-n-NPC13 55548 62994 -12% 100542 113109 -11% 102526 113109 -9% 

p-n-NP1EO 233588 356569 -34% 328191 326611 0% 366655 326611 12% 

p-n-NP2EO 985938 1370460 -28% 1588290 1697500 -6% 1724320 1697500 2% 

p-n-NP1EOC13 225983 356569 -37% 326611 328000 0% 366890 326611 12% 

Matrix effects (ME) are expressed as (([A]-[B])/ [B])*100 

 

The results showed matrix effects depending of the compound and the matrix (Table 6). Effluents extracts 

present the higher matrix effects with values included between -14% to -37%, surface water extracts present matrix 

effects values included between -11% to 12%, which is coherent with the hypothesis according which organic 

burden is responsible of ion suppression phenomena (King et al., 2000). Compared to others works ( Ferguson et al, 

2000; Petrovic et al., 2003; Baugros et al., 2008) which measured extinction phenomena in the range of 15% to 

20%, our results are quiet similar. As reported by Ferguson (2001) in a previous work, there were no significant 

decrease responses between surrogate and internal standards (linear forms and C13 labelled forms) and targeted 

analytes; which suggested that in a limited retention window matrix effects where constant. In consequence we can 

assume that linear forms of APnEO (p-n-NP, p-n-NP1EO, p-n-NP2EO) and labelled forms of APnEO (p-n-NPc13, p-

n-NP1EOc13) have good quality to become internal standards. Baugros et al. (2008), in their investigation on matrix 

effects affecting STP effluents and natural waters, reported that the only way to overpass matrix effects was the 



Publications 
 

 Page 276 

standard addition; even if it was time and cost consuming. Meanwhile, it has to be noticed that matrix effects may 

vary from sample to sample; in consequence it had to be pointed out the necessity to improve our analytical 

protocol by adding a purification step and introducing quantification by internal calibration and control standard. 

The overall analytical method was tested for the method detection limits (MDLs), precision, selectivity 

and robustness. The method detection limit (MDLs), defined as the minimum amount of a compound present in a 

sample that produces a signal-to-noise ratio of 3 upon final analysis, was typical 2 ng.l-1 under negative ionization 

mode SIM conditions, and typical 1 ng.l-1 under positive ionization mode SIM conditions. In all river water 

samples, the method detection limits were based on an injection of a 5 µl aliquot from the final 100 µl extract of a 1 

l water sample (STP effluents samples are based on 400 ml). All environmental samples were analyzed under SIM 

conditions. 

 

3-5-Method application-analysis of river water and STP effluents near Seine estuary 

APnEO metabolites were quantified in triplicate water samples to evaluate the method’s performance in 

handling real samples. Results from these analyses (5 samples of river water sampled in the Seine estuary 

(sampling in May 2002, May 2005) and 3 STP effluent samples (STP Rouen, STP Elbeuf and STEP Tancarville 

May 2002 and May 2005) are shown in Table 7 and Table 8.  

 

Table 7: The average concentration of APnEO metabolites in Seine estuary water samples 
 Concentration of metabolites, ng.l-1,(RSD)* 

 Poses Elbeuf Rouen Caudebec Honfleur 

 pK 202 pK 218 pK 246 pK310 pK 355 

 May 2002 May 2005 May 2002 May 2005 May 2002 May 2005 May 2002 May 2005 May 2002 May 2005 

4-NP1EO 121 (3.9) 136 110 (3.8) 168 99 (4.4) 131 81 (1.1) 87 83 (14.0) 131 

4-NP2EO 76 (5.3) 116 72 (6.5) 138 64 (0.8) 90 35 (12.8) 59 99 (18.0) 90 

4-NP1EC 727 (4.6) 1128 718 (2.8) 925 711 (4.6) 622 727 (2.0) 685 597 (16.7) 782 

4-NP 108 (4.4) 221 128 (9.5) 311 137 (7.6) 285 108 (4.9) 164 61 (8.5) 161 

* RSD based on triplicate sample measurements, given in percent 
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Table 8: The average concentration of APnEOs metabolites in STP effluent 
 Concentration of metabolites, ng.l-1,(RSD)** 

 STP ELBEUF effluent STP ROUEN effluent STP TANCARVILLE effluent 

 May 2002 May 2005 May 2002 May 2005 May 2002 May 2005 

4-NP1EO 136 (11.9) 232 308 (9.4) 377 <1 238 

4-NP2EO 400 (5.8) 142 172 (16.4) 176 <1 259 

4-NP1EC 862 (6.5) 1861 800 (10.0) 4171 307 (2.65) 2166 

4-NP 81 (7.9) 369 176 (5.0) 627 59 (11.3) 367 

**Based on independent triplicate sample measurements. RSDs are given in percent. 

As shown in the sampling campaign of May 2002, overall precision of the data is excellent, with relative 

standard deviations (RSDs) of the measured APs and APnEOs concentrations falling generally between 1-15%. In 

consequence, it has been decided to realize analyze in one replicate for the next sampling campaigns (data in ways 

of publication). 4-NP, 4-NP1EC, 4-NP1EO and 4-NP2EO are found at all sites of the Seine River and in all STP 

effluent samples. No linear forms (p-n-NP, p-n-NP1EO, p-n-NP2EO and p-n-NP2EC) are detected in effluents or 

River samples. Chromatographic determinations highlighted linear forms of APnEO were absent of the technical 

mixtures; as technical mixtures are the constituents employed in by-products, these results appeared coherent. 4-

NP1EC is the predominant form of APnEO metabolites in STP effluents (307 ng.l-1 to 2,166 ng.l-1) as well as in the 

Seine estuary (597 ng.l-1 to 1,128 ng.l-1). NP1-2EO are usually quantified in concentrations ranging between tens to 

hundreds ng.l-1. 4-NP, although hydrophobic compound, is measured in concentrations between 100 to 300 ng.l-1 

depending on the station, 311 ng.l-1 at Elbeuf (May 2005) to 61 ng.l-1 at Honfleur (May 2002), and the sampling 

period (between 61 to 137 ng.l-1 in 2002 and between 161 to 311 ng.l-1 in 2005). These data seem to highlight a 

chronic state of contamination of the Seine estuary with measured concentrations closes to PNEC (Predicted No 

Effect Concentrations). The INERIS INERIS) reported a PNEC value of 330 ng.l-1 for 4-NP. For 4-NP1EC, 4-

NP1EO and 4-NP2EO PNEC values are, respectively of 2.0, 0.11, 0.11 µg.l-1 (Fenner et al., 2002). Consequently, 

the risks linked to the occurrence of APnEOs in the Seine Estuary appeared harmful; especially considering the fact 

that these results did not consider the suspended solids (data in preparation) which are known to be a significant 

well for these compounds (Soares et al., 2008). 

 

4-Conclusion 

Reversed-phase HPLC-ESI-MS has been shown to be a highly sensitive, rapid, and robust method for the 

determination of nonylphenol ethoxylate metabolites in environmental samples. The high sensitivity of the 
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technique allows the use of small water sample volume and makes it possible to determine the concentration in 

river water and STP effluent samples. The present methods will be most useful for analyzing NPnEO metabolites in 

natural waters where there has been high degradation of highly ethoxylated NPnEO. It overcomes some of the 

limitations of currently used GC-MS, LC-UV, LC-FLUO and normal-phase LC-ESI-MS methods. SPE 

preconcentration and clean-up protocol was developed and validated.  
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Résumé : 

Une méthode d'extraction assistée par micro-ondes (MAE) performante a été développée pour 

l’analyse des métabolites d’alkylphénol-éthoxylés  dans les matières en suspension et les sédiments. En outre, une 

méthodologie de purification en 2 étapes (C18 et HF-PSA) a été développée avec succès et est, à notre 

connaissance, la première méthodologie de purification permettant la récupération simultanée des métabolites 

aérobies et anaérobies d'APEO. Ainsi, la méthodologie globale a permis la détermination de cinq métabolites 

d'APEO avec des taux de récupération supérieurs à 90% et des écarts- type relatifs inférieurs à 20%. Cette méthode 

qui montre répetabilité, reproductibilité et sensibilité a été appliquée avec succès à l'étude de la contamination des 

matières en suspension par le nonylphénol (NP), l'octylphénol (OP), les nonylphénol mono et di-éthoxylés (NP1EO 

et NP2EO) et l’acide nonylphénoxyacétique dans les eaux du fleuve et les effluents des stations d’épuration en 

estuaire de Seine (France). Les concentrations des composés ciblés dans les matières en suspension varient 

considérablement selon la localisation et le temps d’échantillonnage et sont comprises entre la dizaine de ng.g-1 et 

le µg.g-1 selon les métabolites. Les résultats ont indiqué une forte affinité des NP(0-2)EO pour les matières en 

suspension, les métabolites d’APEO à courte chaîne «ethoxy» sont associés aux matières en suspension tout au 

long de l’estuaire. Les matières en suspension jouent un rôle prépondérant dans la contamination de la phase 

aqueuse d’autant plus lorsque les valeurs de matières en suspension augmentent. Dans les eaux de l’estuaire, la part 

des phases solides dans la contamination est comprise entre 10-60% pour les NP(0-2)EO et moins de 1% pour le 

NP1EC  

Mots-clés : matières en suspension, alkylphénols, nonylphénols, métabolites d'alkylphénol- polyethoxylés, MAE, 

CL-SM, purification. 

Pour soumission à Analytical and Bioanalytical Chemistry (ABC) 
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Abstract 

A powerful focused microwave-assisted extraction (MAE) was developed for alkylphenol polyethoxylate 

metabolites extraction from suspended solids or sediments. Furthermore, 2 step purification methodology (C18 and 

HF-PSA) was successfully achieved and is, to the best of our knowledge, the first purification procedure allowing 

the recovery of both aerobic and anaerobic metabolites of APEOs. The global methodology allowed the 

determination of five APEO metabolites with average recoveries upper than 90% and relative standard deviation of 

less than 20%. These methodology showing repeatability, reproducibility and sensitivity was successfully applied 

to the study of the contamination of suspended solids by nonylphenol (NP), octylphenol (OP), nonylphenol mono- 

and diethoxylates (NP1EO and NP2EO) and nonylphenoxyacetic acid (NP1EC) in river surface water, sewage 

treatment plant effluent and wastewater from the sewage-impacted Seine estuary (France). The concentrations of 

the target compounds in suspended solids varied considerably among different locations and different sampling 

times and was between tens ng.g-1 to µg.g-1 depending on the metabolites. The results indicated that a strong 

affinity of NP(0-2)EO to aquatic suspended solids exists and that short ethoxy-chain APEO metabolites were present 

in suspended solids throughout all the estuary. The role played by suspended solids in the contamination of aqueous 

phase appeared prevalent especially when total suspended solids levels increase: in estuarine water samples, ∼10-

60% of NP(0-2)EO, less than 1% of NP1EC was brought by suspended solids.  

 

Keywords: Suspended solid analysis, Alkylphenols, Nonylphenols, Alkylphenol polyethoxylate metabolites, MAE, 

LC-MS, purification. 
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1-Introduction 

Alkylphenol polyethoxylates (APEO) are one of the most widely used classes of effective non-ionic 

surfactants. They have been used in various industrial, institutional and household applications (Talmage, 1994) the 

most significant commercial APEOs are NPEOs and OPEOs. Approximately, 500,000 tons were produced annually 

worldwide (1997), 60% of which end up in the aquatic environment (Renner, 1997; Sole et al., 2000). APEOs are 

highly biodegraded in wastewater treatment processes and by consequence a complex mixture of metabolites is 

released into the aquatic environment via discharges of the treated sewage (Soares et al., 2008). The metabolites 

demonstrate persistency, toxicity, and accumulation in the food chain (Servos, 1999; Ying et al., 2002; Vazquez-

Duhalt et al., 2006; Soares et al., 2008). The main environmental concern, however, is not their acute toxicity but 

rather the estrogenic potential of APEOs towards aquatic organisms at lower concentration (Servos, 1999). 

Concerns over the toxicity and estrogenic potential of APEO biodegradation products led to their inscription in the 

list of the 33 priority substances of the European Water Framework Directive. Furthermore their ban from a wide 

range of applications has been adopted by French authorities as from 17 January 2005 (INERIS). 

 

Table 1: State of the art of recent published sets of data presenting suspended solid and sediment contamination by 

APEO metabolites, worldwide. 

ng.g-1 (d.w.) NP NP1EO NP2EO OP Localization Reference 

Surface water 

Suspended 

solids+sediments 
427-6,105 <88-513 <19-960 na 

Rhine estuary 

(Germany) Jonkers et al. 

(2005) Suspended 

solids+sediments 
764-16,637 <88-2,344 <26-3,784 na 

Sheldt estuary 

(Netherlands) 

Sediments 3.6-239 na na <lod-3.6 Jiaozhou Bay (China) 
Fu et al. 

(2007) 

Sediment core 76.9-702,7 na na na 
Pearl river estuary 

(China) 

Chen et al. 

(2005) 

Suspended solids 240-7,320 250-2,260 90-2,430 na Italian river 
Patrolecco et 

al. (2006) 

Sediments <10-1,750 <25-690 <25-1,250 <5-52 Great lakes (Canada) 
Mayer et al. 

(2007) 

Suspended solids 49.6-2,835.2 na na na 
Yellow River (China) 

Xu et al. 

(2006) Sediments 38.4-863 na na na 

Sludge 

Sludge (composting 

units) 
16,500-216,500 na na na Paris area (France) 

Ghanem et 

al. (2007) 

Solids /Sludge <0.02-406 na na <0.02-10.9 Queensland (Australia ) 
Tan et al. 

(2008) 

Soils amended Soil+Sludge 142-500 na na 105-238 Mediterranean area 
Andreu et al. 

(2007) 

(concentrations are expressed in ng.g-1 d.w.); na: not analyzed 
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As brought above, the complex biodegradation scheme of APEOs, which is characterized by the loss of 

amphiphilic properties, leads to the coexistence of a wide range of metabolites. The main point is that it leads to the 

formation of highly lipophilic compounds, particularly AP(0-2)EO which have low water solubility and tend to 

adsorb onto suspended particulates and are finally deposited into the bottom sediment. 

Although APEOs and metabolites are some of the most concerned classes of compounds, worldwide; it 

has to be noted that data concerning their occurrence and fate in solid matrix (suspended solids, sludge, soil or 

organisms) were sporadic. Two main explanations may be advanced: the analytical costs of both analytical 

developments and sample analysis and the absence of legislation. It has to be noted that, recently (years 2005-

2007), some relevant sets of data have been published. The most interesting ones are summarized in Table 1. 

Globally, measured environmental concentrations are comprised between detection limits (ng.g-1, for marine 

suspended solids) and more than hundred µg.g-1 (for sludge or amended soils), depending on analytical capabilities, 

matrix type and site locations. In any case, it can be assumed that the association of APEOs with aquatic suspended 

particles is one of the important processes controlling the fate of APEOs in the rivers or coastal environments. 

“Old” generation extraction methodologies techniques: sonication, Soxhlet are still currently used 

although they are time and solvent consuming and can, in certain cases miss of sensitivity. Furthemore, it has to be 

noted that few are the works which consider both the areobic and the anaerobic APEO metabolites. A need for 

developing new analytical methodologies (automatizable and “economic”) able to provide reliable quantitative 

information in environmental matrices particularly the presence of APEO biodegradation metabolites  

 

To the best of our knowledge, no reports have established the distribution or concentration of APEO and 

the metabolites in the suspended solids of France estuary water and wastewater treatment plant effluents. In the 

present paper, focused microwave-assisted extraction (MAE) was developed for extraction of alkylphenol 

polyethoxylates metabolites from suspended solids or sediments. Distributions in the suspended solids were studied 

for the river surface water and STP effluent. 

 

2-Experimental 

2-1-Chemical standards 

Unlabeled p-n-nonylphenol (98%+, p-n-NP), p-n-nonylphenol monoethoxylate (95%+, p-n-NP1EO), 

nonylphenoxyacetic acid (ring chain isomers) (98%+, NP1EC), were purchased from Promochem. (Molsheim, 
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France), (100 µg.ml-1 in nonane, respectively). 4-nonylphenol (100%, NP, technical), 4-nonylphenol-

monoethoxylate (99.5%, NP1EO) and 4-nonylphenol-diethoxylate (99.5%, NP2EO) were purchased from Sigma 

Aldrich (Saint Quentin Fallavier, France). The spiked solutions were prepared in methanol at concentrations of 1 

µg.ml-1 of each compound. 

 

2-2-Reagents and chemicals 

Methanol was for the analysis of pesticide residues from Merck (VWR international, Strasbourg, France). 

Dichloromethane (DCM) was for organic residue analysis from J.T.Baker; Acetone, hexane and pentane were for 

organic residue analysis from Scharlau, water used for LC/MS analysis was from JT Baker (Atlantic Labo, Bruges, 

France). All the above solvents were used without further purification. Water used for solid phase extraction was 

Evian water in glass bottles (France Boisson, France). Hydrochloric acid (37%) was purchased from VWR 

international (Strasbourg, France). Ammonium acetate (minimum 98%) was purchased from Sigma Aldrich (Saint 

Quentin Fallavier, France), trifluroacetic acid (ACS, mimimum 99%) was purchased from Acros (Noisy le grand, 

France). All the chemicals were tested for background levels for the compounds of interest. 

Due to the ubiquitous occurrence of alkylphenols and alkylphenol polyethoxylates, materials in plastic 

and detergents, glassware was chosen to avoid contamination of the sample. Furthermore, all the glassware and 

sampling apparatus required special treatment prior to use. All the glassware was washed and then heated at 450oC 

for 6 h prior to use. Whatman GF/F glass fibre filters (pore size 0.7 µm) were purchased from VWR International 

(Fontenay-sous-Bois, France) were also heated at 450oC for 6 h prior to use. 200 mg Bondelut® C18 cartridges, 500 

mg Bondelut® PSA and 500mg HF-Bondelut® PSA were purchased from Varian (Courtabœuf, France), LC-NH2 

cartridges were purchased from Supelco (Sigma Aldrich, Saint Quentin Fallavier, France). 

 

2-3-Site description and sample collection 

The Seine River, which flows out onto the north-western European continental shelf, has a macrotidal 

estuary, of which 120 km have a dual marine-river influence [Guezennec et al. (1999)]. The watershed of the Seine 

estuary is 79,000 km2; it represents about 25% of the French population and 40 % of French economic activities. 

The middle estuary is characterized by a turbidity maximum zone (TMS) which is a zone of maximum turbidity 

particular to estuaries, ranging between freshwaters not very charged with suspension material and marine salted 

water. It situation is not stable because it evolves/moves with the fluctuation of hydrological conditions (flows, 

cycles of tide) (Guezennec et al., 1999) (Figure 1). 
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Figure 1: Sampling point localization on the Seine estuary. 

 

River water and STP effluent near the Seine estuary (Figure 1) were collected in May 2005 and July 

2006. They were kept in 4 l amber glass bottles, which were previously washed and heated at 450oC for 6 h. All 

aqueous samples were filtered through glass microfiber filters (GF/F). The GF/F filters, which trapped suspended 

solid matters, were stored in an aluminum container at –20oC until analysis. The sediment samples were also stored 

in an aluminum container at -20oC until analysis. The suspended solids and sediment samples were freeze-dried 

(RP2V, CIRP, Argenteuil, France) before focused microwave-assisted extraction at atmospheric pressure (Soxwave 

100 apparatus, Prolabo, Fontenay-sous-Bois, France). Total suspended solids (TSS, mg.l-1) were determined 

gravimetrically. 

 

 

 
 
 
  
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Sampling point Characteristics Coding (in this study) 
Poses Kp 202 - - S1 
Elbeuf Kp 235 - - S2 
Rouen Kp 250 - - S3 

Caudebec Kp 310 - - S4 
Tancarville Kp 340 - - S5 
Honfleur Kp 350 - - S6 

WWTP 
Tancarville - 1800 EI 

Activated sludges (under 
prolonged ventilation) WWTP1 

WWTP 
Rouen - 550,000 EI 

Activated sludges (under 
prolonged ventilation) WWTP2 

WWTP 
Elbeuf - 110,000 EI 

Activated sludges (average 
load) WWTP3 

WWTP 1 

WWTP 2 

WWTP 3 

Paris 
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2-4-Sample preparations and APEO metabolites determination 

2-4-1 Extraction  

Focused microwave-assisted extraction was performed at a frequency of 2,450 MHz with programmable 

heating power (total 800 W) operated at atmospheric pressure. Many research works (Budzinski et al., 1996; 

Budzinski et al., 1999; Letellier and Budzinski, 1999a; Letellier and Budzinski, 1999b) have reported on the 

influence of time, power, solvent nature and volume, matrix nature and moisture on focused microwave-assisted 

extraction of organic compounds from solid matrix at atmospheric pressure. Extraction conditions based on a 

mono-parameter approach have been roughly optimized for the selection of important parameters such as power 

(from 10% to 50%), time of irradiation (from 2 to 12 min), nature of solvent (100% methanol, 

methanol/dichloromethane (3/1; v/v), methanol/dichloromethane (1/1; v/v), methanol/dichloromethane (1/3; v/v), 

100% dichloromethane), volume of solvent (from 10 to 50 ml per gram of sediment), matrix moisture (spiked water 

from 10 to 60%, dry weight). There is no significant difference from power from 10% to 50% and from irradiation 

time from 6 to 12 min. The results show that the mixture of methanol/dichloromethane (3/1; v/v) is good for the 

recovery of all the five selected alkylphenolic compounds. The focused microwave-assisted extraction was shown 

to be not significantly matrix-dependent and there was no need for precise and specific optimization depending on 

the type of matrix to be extracted (Letellier and Budzinski, 1999a). The sketch of the analytical methods can be 

seen in Figure 2. The freeze-dried GF/F filters, which trapped particulate matters, were extracted using focused 

microwave-assisted extraction with methanol/dichloromethane mixture (3/1; v/v). Before the extraction, the 

weights of the suspended solids on the filters were measured; therefore, the suspended solid APEO concentrations 

are reported on a weight basis (i.e. ng.g-1). Freeze-dried sediment samples were also extracted using focused 

microwave-assisted extraction with a methanol/dichloromethane mixture (3/1; v/v). All the extracts were 

evaporated under vacuum (600 mbars, 80°C) with an automatic reconcentrator (RapidVap, Bioblock, Fontenay-

sous-Bois, France) to remove the solvent and then about 60 ml of water (pH 2) were added.  

 

2-4-2 Purification 

The SPE purification (C18), reversed-phase liquid chromatography and electrospray ionization-mass 

spectrometry detection have been described in a detailed protocol (Pan et al., submitted ). Briefly, disposable 3 ml 

cartridges (BondElut C18) were activated first with 5 ml of methanol, and then conditioned with 5 ml of water 

(adjusted to pH2) at a flow rate of 1 ml.min-1. The extracts (60 ml) were loaded at a flow rate of 8-10 ml.min-1 

under vacuum. After preconcentration, 2 ml of pH 2 water were passed through the sorbent to elute the impurities 
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in the water samples which could not be absorbed by the sorbent. Most of the pigments were eluted out with 50% 

methanol in water (pH 2) for rinsing, and then completely dried under vacuum (about 50 min) to avoid hydrolysis. 

After drying, the SPE cartridges were eluted with a 5 ml mixture of methanol/dichloromethane (1/1; v/v). The 

eluates were evaporated to dryness with a gentle stream of nitrogen and reconstitute with methanol to a final 

volume of 100 µl. Most of the eluates were clear and fit for LC-MS injection directly.  

For some heavy colorful suspended solids and sediment samples, more purification was needed. The 

eluates were evaporated to dryness with a gentle stream of nitrogen and reconstituted with hexane to a volume of 5 

ml. Disposable 3 ml cartridges (Supelco LC-NH2) were activated first with 5 ml of acetone, and then conditioned 

with 5 ml of pentane at a flow rate of 1 ml.min-1. The eluates (5 ml) from the last purification step were loaded. 

After preconcentration, 2 ml of pentane were passed through the sorbent to rinse impurities that cannot be absorbed 

by the sorbent. LC-NH2 cartridges were eluted with 5 ml mixture of acetone/pentane (1/3; v/v). The eluates were 

evaporated to dryness with a gentle stream of nitrogen and reconstituted with methanol to a final volume of 100 µl. 

The very polar compounds, such as nonylphenoxyacetic acid (NP1EC), cannot be eluted out from LC-NH2 cartridge 

even with pure acetone or methanol due to the strong polarity of the cartridge. In consequence, a second 

optimization development occurred, in order to improve purification methodologies in keeping NP1EC in the 

extracts. Three types of sorbents were tested LC-NH2, PSA and HF-PSA. Three elution mixtures were tested: 

methanol/dichloromethane, methanol/dichloromethane/acetic acid, methanol/dichloromethane/trifluoracetic acid. 

Finally HF-PSA sorbent was selected for its ability to provide satisfactory recovery rates for the five APEO 

metabolites. The optimized SPE protocol was carried out with disposable 3 ml HF-PSA (Bondelut, 500 mg, HF-

PSA, Varian). The cartridges were conditioned with 3 ml of methanol and 3 ml mixture of 

methanol/dichloromethane (80/20; v/v). After deposit of the extracts, HF-PSA cartridges were eluted with mixture 

of methanol/dichloromethane (80/20; v/v) followed with mixture of methanol/dichloromethane/trifluoroacetic acid 

(79/19/2; v/v/v). The final eluates were evaporated to dryness with a gentle stream of nitrogen and reconstituted 

with methanol to a final volume of 100µl. 

The HPLC system consisted of an Agilent 1100 series (Palo Alto, CA, USA). The HPLC separation was 

achieved on a 3.5 µm, 150 × 2.1 mm i.d. C18 reversed-phase column (Zorbax-SB, Agilent, USA) and the same 

kind of guard column with gradient elution procedure as follows: 0-2 min, 60%B (A: water/Methanol (3/1; v/v, 5 

mmol.l-1 ammonium acetate); B: Methanol), 2-7 min, from 60%B to 80%B, 7-32 min, 80%B, 32-33 min, from 

80%B to 60%B, 33-50 min, 60%B. The injection volume was set at 5 µl, and the flow rate was 0.15 ml.min-1. 

Detection was carried out using an Agilent 1100 UV detector coupled in series with an Agilent 1100 series 

LC/MSD mass selective detector equipped with an electrospray interface in Single Ion Monitoring (SIM) mode. 
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NP, OP, NP1EC were detected under negative ionization (NI) conditions as [M-H]-, m/z 219, 205, 277 respectively. 

NP1EO and NP2EO were detected under positive ionization (PI) conditions as [M+NH4]
+ and [M+Na]+, m/z 282 

and 331 respectively (Lardy-Fontan S., submitted ) .  

 

Figure 2: The sketch of analytical methodology. 

 

Calibration curves were generated using linear regression analysis and over the established concentration 

range (0.2 ng.ml-1 to 6 µg.ml-1) gave good fits (typically R2 values >0.998) for each of the metabolites. For 

environmental samples, the extract concentration was converted into metabolite concentration in the sample by 

using the amount of sample extracted, the volume of the extract analyzed and average recovery obtained from a 

parallel assay of spiked samples. The sample concentrations were expressed on a freeze-dried weight basis. A 

protocol blank and a supplemented extracts are joined to each analytical serie in order to control contamination 

(which may happen during sample treatment procedure) and the efficiency of the analytical methodology.   

Optimization of this technique lead to the following average recoveries for suspended solids and sediment analyses 

as following: MAE-C18: 4-NP: 901%; 4-NP1EO: 75%; 4-NP2EO: 73%; NP1EC: 76%; (spiked concentration, 0.2 

µg.g-1 respectively); MAE-C18-(LC-NH2): 4-NP: 86%; 4-NP1EO: 43%; 4-NP2EO: 46% (spiked concentration, 0.2 

µg.g-1 respectively); MAE-C18 only for nonylphenoxyacetic acid: NP1EC: 73% (spiked concentration, 1µg.g-1) 

(spiked concentration, 0.2 µg.g-1); with standard deviation less than 15% for all procedures. 

 

 

 Freeze - driedsuspendedsolids or sediment

After filtration, automaticreconcentration and addition of

60 ml waterpH2

SPE : VARIAN Bondelut C18, 200mg, 3c.c.

Analysis LC- ESI-MS (SIMmode)

MAE

extraction conditions

Solvent: MeOH:DCM (3:1; v/v); Power:30% (total 800 W); 
Time 10 min

SPE : Bondelut HF-PSA, 
500mg, 3cc  
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3-Results and discussion 

3-1-Extraction  

An optimized Microwave Assisted Extraction technique coupled to a C18 purification was successfully 

developed and lead to the following average recoveries for suspended solids and sediment analyses: 4-NP: 91%; 4-

NP1EO: 75%; 4-NP2EO: 73%; NP1EC: 76%; (spiked concentration, 0.2 µg.g-1 respectively) with standard deviation 

less than 15% for all procedures. Furthermore, the optimized protocol allows the achievement of all the preparation 

procedures of no less than 24 samples in one day (8 hours) with respect of the green chemistry challenges. Overall 

procedure gave satisfactory method detection limit lower than ng.g-1 which was a significant improvement of 

sensitivity and allowed the detection and quantification of APEO metabolites in natural solid matrices at 

concentrations lower than tens ng.g-1.  

 

3-2-Purification 

Because most of suspended solids and sediment samples eluates are heavy colorful, more purification was 

needed. Several preliminary tests were performed with different elution mixtures on three types of sorbent: NH2, 

PSA, HF-PSA. Whatever was the elution applied the recoveries for the NP1EC were between 0 to 3% for NH2 and 

PSA sorbents. With HF-PSA sorbent, recoveries for NP1EC were 1% with mixture of methanol/dichloromethane 

(80/20; v/v), 15% with mixture of methanol/dichloromethane/acetic acid (79/19/2; v/v/v) and 127% with mixture of 

methanol/dichloromethane/trifluoroacetic acid (79/19/2; v/v/v). Average recoveries of the purification procedure 

using, elution mixtures of methanol/dichloromethane (80/20; v/v) followed by mixture of 

methanol/dichloromethane/trifluoroacetic acid (79/19/2; v/v/v), were satisfactory, upper than 90% for the five 

compounds. HF-PSA differs from PSA with their porosity (120 µm against 40 µm), the results seems to highlight 

that it was a limiting factor to explain the low recovery when PSA was used. 

 

3-3-Method validation parameters  

Figure 3 presents average recoveries and standard deviation of the global protocol for 5 independent 

times of .manipulation (6 months period), it shows that developed methodology gave satisfactory repeatability and 

reproducibility with relative standard deviation lower than 20%.  
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Figure 3: Average recoveries of the global analytical methodology for the study of APEOs in solid samples. 

(n=5, 5 separate extraction procedures) 

 

As previously mentioned, the linearity and range of application were established by the calibration curves 

(0.2 ng.ml-1 to 6 µg.ml-1) with coefficients of correlation values upper than 0.99 (5 points calibration).  

The intraday and interday precision was checked by injecting two independent quality standards mixture (1 µg.ml-

1) at the beginning of each sequence of injection on the apparatus and in the course of each sequence of analysis. 

RSD are satisfactory between 1% to 10%. The analysis of highly complex mixtures did not seem to impact both 

sensitivity and linearity of the LC-MS (Table2).  

It lets us assume that the overall analytical procedure answer the criteria of validation and is consequently 

applicable to environmental monitoring studies.  

Table 2: Performance data: Intra-day and inter-day precision 

 
1st day RSD (%) (n=3) 2st day RSD (%) (n=3) 3rd day RSD (%) (n=3) 

NP 3% 4% 1% 

OP 1% 5% 3% 

NP1EC 7% 7% 7% 

NP1EO 3% 3% 10% 

NP2EO 3% 1% 10% 

 

3-4-Distribution and partitioning of APEO metabolit es to suspended solids in river water 

Table 3: Partition coefficients for APEO metabolites determined in freshwater lab and field studies. 

 NP NP1EO NP2EO OP River Reference 
Log Kow 4.48 (0.12) 4.17 (0.15) 4.21 (0.18) 4.12 (0.11)  Ahel and Giger 

Log K′oc 

5.39 (0.12) 5.46 (0.12) 5.18 (0.25) 5.18 (0.35) USA river Ferguson et al. (2001) 
4.7-5.6    Canadian Sekela et al. (1999) 
4.7-6.1    Japan river Isobe et al. (2001) 

5.10 (0.48)    USA river Van Ry et al. (2000) 

 

0

20

40

60

80

100

120

NP OP NP1EC NP1EO NP2EO

R (%) 



Publications 
 

 Page 293 

Short ethoxy-chain APEOs are moderately hydrophobic contaminants (see log Kow values in Table 3) that 

have been found to associate strongly with organic-rich particulate matter in aqueous systems (John et al., 2000).  

In the present work, significant amounts of NP (from 32-2,015 ng.g-1), NP1EO (from lod-1,237 ng.g-1) 

and NP2EO (from lod-2,661 ng.g-1), NP1EC (from lod-1,102 ng.g-1) are present in suspended solids in the river 

water samples from Seine Estuary in May 2005 and July 2006 (as shown in Table 4). OP have been detected and 

quantified (from lod to tens of ng.g-1, data not shown) in the Seine estuary, but as sets of data were not complete; no 

more attention will be carried out in this study. As is obvious from Table 3, NP is normally more adsorbed to 

suspended solids than NP1EO and NP2EO. This difference can be explained by differences in their hydrophobicity. 

It was reported that the log Kow (octanol-water partition coefficient) of NP is 4.48 while that of NP1EO and NP2EO 

is 4.17 and 4.21, respectively (see Table 3). The difference in partitioning between NP and NP1EO and NP2EO 

suggests that more NP accumulates in the sediments and/or in the biological tissues than NP1EO and NP2EO. As 

anticipated the more polar compound NP1EC is present in lower proportions (except in some specific points) 

although it is the prevalent form in dissolved phase (see Table 4). 
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Table 4: Occurrence of APEO metabolites in suspended solids (expressed in ng.g-1) and dissolved phase (expressed in ng.l-1) of the Seine estuary obtained during 2 

sampling campaigns (May 2005 and July 2006) 

 

  S6 S5 S4 S3 S2 S1 

  C° susp. solids 
C° diss. 

phase 
C° susp. solids 

C° diss. 

phase 
C° susp. solids 

C° diss. 

phase 
C° susp. solids 

C° diss. 

phase 
C° susp. solids 

C° diss. 

phase 
C° susp. solids 

C° diss. 

phase 

  
ng.g-1 

(d.w.) 
ng.l-1 ng.l-1 

ng.g-1 

(d.w.) 
ng.l-1 ng.l-1 

ng.g-1 

(d.w.) 
ng.l-1 ng.l-1 

ng.g-1 

(d.w.) 
ng.l-1 ng.l-1 

ng.g-1 

(d.w.) 
ng.l-1 ng.l-1 

ng.g-1 

(d.w.) 
ng.l-1 ng.l-1 

July 2006 

NP1EO NS NS NS <7 - 11 291 11 14 605 13 18 381 9 16 243 7 24 

NP2EO NS NS NS <7 - 2 1,134 42 <2 2,661 57 4 642 14 <2 368 10 8 

NP1EC NS NS NS <15 - 277 <15 - 312 45 1 489 <15 - 327 <15 - 1,279 

NP NS NS NS 32 3 25 602 23 45 1,628 35 34 1,028 23 27 957 27 30 

TSS (mg.l-1) NS 93 37 21 23 28 

May 2005 

NP1EO 339 46 131 NS NS NS 489 49 87 863 9 131 1,237 23 168 1,181 18 136 

NP2EO 449 64 90 NS NS NS 350 35 59 <10 - 90 1,013 19 138 <10 - 116 

NP1EC <15 - 782 NS NS NS <15 - 685 136 1 622 150 3 925 1,102 10 1,128 

NP 392 54 161 NS NS NS 832 83 164 1714 18 285 1,943 36 311 2,015 18 221 

TSS (mg.l-1) 137 NS 99 11 18 9 

NS: Not Sampled; d.w. dried weight; Diss. Phase: dissolved phase (<0.7 µm); Susp. Solids: Suspended solids (> 0.7 µm); TSS : Total Suspended Solids 
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As highlighted by Figure 4 which presents the part of suspended solids in the global NP 

contamination of the water column, it appears that suspended solids may represent from 10% to more 

than 50% of the water contamination depending on the site and the season. By way of consequence, it 

can be assumed that the non consideration of suspended solids in environmental monitoring surveys 

(especially in highly turbid aquatic systems) can lead to the underestimation of real water 

contamination by a factor, at worst, of 2.  

 

 

Figure 4: Part of suspended solids in the global contamination of the Seine estuary water (May 2005 

and July 2006). 

(TSS Total Suspended Solids) 

 

If isotherm and equilibrium partitioning are assumed, K′oc of nonpolar compounds can be 

predicted from Kow, which is referred to as predicted Koc. The predicted log Koc value calculated from 

Kow value of NP is 3.81 (Isobe et al., 2001). All of the log K′oc values observed in the river water 

samples are 1 order of magnitude higher that the predicted log Koc (see Table 3). This means that 

APEOs partition more to suspended solids than expected from their hydrophobicity. This also implies 

that the suspended solid APEO metabolites could play a significant role in their transfer in the aquatic 

environments and their incorporation into bottom sediments and could be one of the most important 

reservoirs. APEOs in suspended solids are finally deposited into the bottom sediment, which may act 

as a reservoir and/or ultimate reservoir of APEO metabolites. 

The sorbent properties and mechanisms controlling sorption of APEO metabolites onto 

suspended solids are not fully understood. In a comparison between the sorption of APEOs on 

organic-rich sediment before and after organic matter removal, John et al. (2000) provided data 

indicating that interactions with organic matter were important in controlling sorption of APs and short 

chain APEOs. 
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3-5-Distribution and partitioning of APEO metabolit es in suspended solids in WWTP effluents 

Table 5: Occurrence of APEO metabolites in suspended solids (expressed in ng.g-1) and dissolved 

phase (expressed in ng.l-1) in WWTP effluents of the Seine estuary obtained during 2 sampling 

campaigns (May 2005 and July 2006). 

 

  WWTP1 WWTP2 WWTP3 

  C° susp. solids C° diss. phase C° susp. solids C° diss. phase C° susp. solids C° diss. phase 

  ng.g-1 (d.w.) ng.l-1 ng.l-1 
ng.g-1 

(d.w.) 
ng.l-1 ng.l-1 

ng.g-1 

(d.w.) 
ng.l-1 ng.l-1 

July 2006 

NP1EO 14,300 1,049 1,417 1,585 27 56 2,621 24 146 

NP2EO 5,490 403 129 1,794 31 <2 2,003 18 75 

NP1EC 189 14 3,569 1,880 32 4851 <15 - 2,558 

NP 1,313 96 205 3,503 60 148 1,023 9 116 

TSS (mg.l-1) 73 17 9 

May 2005 

NP1EO 7,107 62 238 906 9 377 2,717 40 232 

NP2EO 5,071 44 259 291 3 176 1,537 20 142 

NP1EC 5,117 44 2,166 570 6 4,171 2,904 37 1,861 

NP 6,626 57 367 508 6 627 2,796 36 369 

TSS (mg.l-1) 9 10 15 

d.w. dried weight; Diss. Phase: dissolved phase (<0.7µm); Susp. Solids: Suspended solids (> 0.7µm); TSS: Total 

Suspended Solids 

 

In the 3 screened effluents (Table 5), it can be observed that NP (508-6,626 ng.g-1) and 

NP1EO (906-14,300 ng.g-1) are the predominant metabolites which is in accordance with previous 

remarks. Interestingly, NP1EC is also quantified in significant proportions (maximum concentration of 

5,117 ng.g-1) whereas it was not detected in suspended solids of receiving waters. As suggested before, 

NP1EC is the most polar APEO metabolite, it differs from other APEO metabolites by its carboxylic 

function. The hypothesis of a punctual trapping, which does not obey the hydrophobic rule, could be 

advanced. In any case, the proportion of suspended solid NP1EC did not exceed 1% of the global 

contamination of effluents (data not shown). On the contrary, for more lipophilic compounds such as 

NP, NP1EO and NP2EO (Figure 5) the proportion is between 13% to 21% when the suspended solids 

load is low (9 mg.l-1) and between 32% to 75% when the suspended solids load is high (73 mg.l-1) (It 

can reasonably be deduce that WWTP1 were faced with a non conventional functioning period during 

sampling campaign of July 2006). In any case, the control of the suspended solid loads in aquatic 

systems is one the key points to succeed in the decrease of natural ecosystem contamination by APEO 

metabolites. 
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Figure 5: Part of the suspended solids in the global contamination of the effluent of WWTP1 (May 

2005 and July 2006). 

 

4-Conclusion 

This paper presents a simple, easy and powerful methodology for the study of APEO 

metabolites in environmental solid matrix. The Seine estuary exhibits a chronic and relevant state of 

contamination of both dissolved and suspended solid phase by APEO metabolites. In the Seine 

estuary, suspended solids can represent, at worst, more than 50% of the global contamination of the 

water. In the Seine estuary, suspended solids act as a temporary reservoir and participate in the 

dissipation of APEOs toward the Seine Bay. Furthermore the fact that they participate in the 

reprotoxic effects (Minier et al., 2000) that occurred in the Seine hydrosystem could not be excluded. 
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Résumé : 

Cet article présente des méthodologies puissantes pour la détermination des alkylphénols 

(AP), des alkylphénol-polyéthoxylés  (APEO) et des acides alkylphénoxypolyéthoxyacétiques (APEC) 

dans les phases dissoutes et particulaires des échantillons d'eau usagée ainsi que les boues d’épuration. 

Les méthodologies développées répondent à des critères de validation et montrent des taux de 

récupération satisfaisants (habituellement supérieurs à 80%), une bonne répétabilité et reproductibilité 

intra-laboratoire (RSD< 20%). Des effets de matrice significatifs sont mis en évidence dans les 

matrices les plus complexes; ce qui met en évidence la nécessité de leur évaluation pour conduire des 

analyses quantitatives fiables. La méthodologie développée a été appliquée avec succès à l'étude des 

stations d’épuration françaises. L’ensemble des échantillons étudiés montre une contamination 

significative par les métabolites d'APEO. Bien que l'efficacité des stations d’épuration  pour abattre  

les AP et les APEO soit clairement démontrée;  des apports significatifs de 4-NP, de 4-NP1-2EO et de 

4-NP1EC se produisent par l'intermédiaire de la phase dissoute (centaines de ng.l-1 à quelques µg.l-1), 

des phases solides en suspension (dizaines de ng.g-1 à la dizaine de µg.g-1) et des boues d’épuration 

(jusqu'au mg.kg-1). Les tendances observées démontrent que les restrictions d’usages et de marketing 

entrées en application en 2005 ne sont pas encore entièrement accomplies, en France. 
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Abstract 

This paper presents methodologies for the determination of alkylphenols (APs), alkylphenol 

polyethoxylates (APEOs) and alkylphenoxypolyethoxyacetic acids (APECs) in the dissolved and 

particulate phases of wastewater samples as well as sludge. The overall methodologies answer 

validation criteria and display satisfactory recovery rates (usually higher than 80%), repeatability and 

within-laboratory reproducibility (RSD<20%). Significant matrix effects are encountered in highly 

complex matrices; highlighting the fact that their estimation is prevalent to conduct reliable 

quantitative analysis. The developed methodology was successfully applied to the survey of French 

WWTPs. All the investigated samples display significant contamination by APEO metabolites. 

Although the efficiency of investigated sewage to remove APs and APEOs is clearly demonstrated; 

significant loads of 4-NP, 4-NP1-2EO and 4-NP1EC occur via the dissolved phase (hundreds of ng.l-1 

to a few µg.l-1), the suspended solids (tens of ng.g-1 to tens of µg.g-1) and the sludge (up to mg.kg-1). 

The trends demonstrate that the restrictions of uses and marketing implemented as from 2005 are not 

yet fully achieved, in France. 

 

1-Introduction 

Alkylphenol-polyethoxylates (APEOs) are non ionic surfactants widely used for their 

properties as emulsifiants, wetting agents, adjuvants (Renner, 1997); nonylphenol production is 

estimated to reach 154,200 tons in the USA, 73,500 tons in Europe (Review by Soares et al., 2008). 

80% of the production are nonylphenol-polyethoxylates (NPEOs), 20% are octylphenol-

polyethoxylates (OPEOs). Commercial mixtures are highly complex mixtures of ethoxymers, 

oligomers and isomers used in agricultural applications, industrial and institutional applications 
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(textile industry, tanneries, chemical industry, food industry, steam industry; Terzic et al., 2008) and 

domestic applications (Renner, 1997). Since the first research works by Ahel and Giger (1994) who 

studied the fate and occurrence of APEOs in wastewater treatment plants and receiving waters, 

APEOs are known for their extensive biodegradation properties (review by  Soares et al., 2008). 

Through complex degradation ways, it leads to the formation of numerous metabolites of degradation: 

shorter chain ethoxy APEOs under anaerobic conditions, shorter chain alkylphenoxyacetic acids 

(APECs) and carboxyalkylphenoxyacetic acids (CAPECs) under aerobic degradation; under both 

conditions the ultimate biodegradation products are alkylphenols (APs) (e.g., nonylphenol NP; 

octylphenol OP). Their main environmental concern lies on the fact that biodegradation phenomena 

lead to the formation of ubiquitous, lipophilic, persistent and toxic compounds (reviews by Vazquez-

Duhalt et al., 2006; Soares et al., 2008). Consequently, they have been included in the Water 

Framework Directive priority substances and some environmental quality standards (EQS) have been 

suggested: 0.3 µg.l-1 for NP in surface waters, 0.1 µg.l-1 for OP in river waters (0.01 µg.l-1 for OP in 

marine waters). More than 60% of APEOs and their metabolites are estimated to be released into 

aquatic systems (Renner, 1997); WWTPs are the main entrance. Consequently, the control of their 

occurrence in the environment relies on both control of their production and use (implemented in 

Europe since 2003) and the efficiency of WWTP processes to remove them. Numerous research works 

have investigated the fate and occurrence of APEOs and have been reviewed by Teske and Arnold 

(2008).  

20 years of environmental research has led to the development of numerous analytical 

methodologies. Solid phase extraction (SPE) has become the most conventional extraction technique 

for liquid samples; numerous extraction techniques from ultrasonication to accelerated solvent 

extraction (ASE) are still used for solid samples. Mass spectrometry (single or tandem MS) has 

become the conventional detector coupled with either gas chromatography or liquid chromatography. 

State of the art, failures and future needs for their analysis in complex environmental matrices have 

been recently reviewed (Lardy-Fontan et al., submitted).  

This study aims to develop and to improve an analytical method to detect and to quantify 

five of the most persistent APEOs metabolites in sewage matrices. The strong axis of this research is 

the consideration of both dissolved and suspended solid phases as well as sludge. The overall method 

was successfully applied to study 7 French biological wastewater treatment plants, which are of 

particular interest due to their relatively common use. The measured concentrations allowed to 

determine the average efficiency of French WWTPs faced with APEOs. 

 

2-Material and methods 

2-1-Quantification standards 
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Unlabeled p-n-nonylphenol (98%+, p-n-NP), p-n-nonylphenol monoethoxylate (95%+, p-n-

NP1EO), nonylphenoxyacetic acid (ring chain isomers) (98%+, 4-NP1EC) were purchased from 

Promochem (Molsheim, France) (100 µg.ml-1 in nonane, respectively). 4-nonylphenol (100%, 4-NP, 

technical), 4-nonylphenol-monoethoxylate (99.5%, 4-NP1EO) and 4-nonylphenol-diethoxylate 

(99.5%, 4-NP2EO) were purchased from Sigma Aldrich (Saint-Quentin Fallavier, France). The spiked 

solutions were prepared in methanol at concentrations of 1 µg.ml-1 of each compound. 

 

2-2-Reagents and chemicals 

Methanol (MeOH) was used for the analysis of pesticide residues and was purchased from 

Merck (VWR international, Strasbourg, France). Dichloromethane (DCM) was used for organic 

residue analysis and came from J.T.Baker; water used for LC/MS analysis was from JT Baker 

(Atlantic Labo, Bruges, France). All the above solvents were used without further purification. Water 

used for solid phase extraction was Evian water in glass bottles (France Boisson, France). 

Hydrochloric acid (37%) was purchased from VWR international (Strasbourg, France). Ammonium 

acetate (minimum purity 98%) was purchased from Sigma Aldrich (Saint Quentin Fallavier, France); 

trifluroacetic acid (ACS, mimimum purity 99%) was purchased from Acros (Noisy le grand, France). 

All the chemicals were tested for background levels for the compounds of interest. 

Due to the ubiquitous occurrence of alkylphenols and alkylphenol polyethoxylates (in plastic 

materials and detergents), glassware was chosen to avoid contamination of the sample. Furthermore, 

all the glassware and sampling apparatus required special treatment prior to use. All the glassware was 

washed and then heated at 450oC for 6 hours prior to use. Whatman GF/F glass fibre filters (pore size 

0.7 µm) were purchased from VWR International (Fontenay-sous-Bois, France) and were also heated 

at 450oC for 6 hours prior to use. 200 mg Bondelut® C18 cartridges and 500 mg HF-Bondelut® PSA 

were purchased from Varian (Courtabœuf, France). 

 

2-3-Sample collection 

In order to representative fluxes of micropollutants received and released, 24 hours flow 

proportional composite samples were collected thanks to refrigerated automatic samplers (Bühler 

5010) equipped with glass containers to prevent from degradation. Daily average composite samples 

were then stored in coolers (4°C) and shipped to the laboratory in 24 hours. Samples were 

immediately filtered through glass microfiber filters: highly complex samples (influents) followed a 

sequential filtration on GF/A (1.6 µm) then GF/F (0.7 µm) filters; effluents followed a single filtration 

step on GF/F filters. Filters from each sample were pooled and stored at -20°C until freeze-drying.  

Flow proportional composite samples of sludge were reconstituted, stored in coolers (4°C) 

and carried to the laboratory in 24 hours. Solid sludge was homogenized and divided before being 
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stored at -20°C until freeze-drying. 500 ml liquid sludge samples were manually homogenized and 

divided before being centrifuged (2*15 min; 3000 rpm); solids were pooled in an aluminium container 

and stored at -20°C until freeze-drying.  

Sampling collections were carried out under dry-weather conditions only onto, 7 WWTPs 

chosen in the overall territories. These facilities were representative of the French panel of activate 

sludge WWTPs that is the most widely used process for biological treatment. They are presented in 

Table 1. 

 

Table 1: Presentation of the 7 investigated WWTPs 

 Sampling PE. Water treatment 
steps 

Sludge treatment stages Type of receiving wastewaters 

CA-1 05/02-08/02 2,900 AS (C,N)+ dec Reed bed Industrial: no; Domestic yes; Hospitals: yes 

SE-1 26/02-01/03  36,000 AS (C,N,P) Centrifugation+polymers Industrial: yes, a few; Domestic: yes; 
Hospitals: no 

CA-2 19/03-22/03 13, 000 AS (C,N)+dec Reed bed Industrial: no; Domestic: yes; Hospitals: no 

SE-2 24/04-26/04 250, 000 Iary dec., 
AS(C,N,P)+ rapid 

decantation 

Anaerobic digestion + 
centrifugation+ liming 

Industrial: yes, (leachates, food industry); 
Domestic: yes; Hospitals: yes 

CA-3 21/05-24/05 700,000 Iary settl.., AS ( 
C)+ biofilters (N) 

(15%) 

Centrifugation+ 
polymers 

Industrial: yes (chemical industry); 
Domestic: yes; Hospitals: yes 

SE-3 11/06-14/06 50,000 AS (C,N,P) Centrifugation +thermal 
drying 

Industrial: yes,(chemical industry); 
Domestic: yes; Hospitals: yes 

SE-4 10/09-13/09 110,000 AS (C,N) Centrifugation+ 
polymers 

Industrial: yes, a few; Domestic: yes; 
Hospitals: no 

PE : population equivalent; AS(C,N,P): Activated sludge; treatment of carbon, nitrogen, phosphorus; AS (C,N) : 
Activated sludge, treatment carbon, nitrogen; Iary settl..: Primary Settling tank. 
 
2-4-Dissolved phase analytical treatment  

Disposable 3 ml cartridges (BondElut® C18, 200 mg, Varian) were activated first with 5 ml of 

methanol and then conditioned with 5 ml of Evian water (adjusted to pH 2). Water samples (acidified 

to pH 2 with hydrochloric acid), 300 ml to 500 ml, were loaded at a flow rate of 8-10 ml.min-1 under 

vacuum. After preconcentration, 2 ml of pH 2 Evian water were passed through the sorbent followed 

by a mixture of Evian water (pH 2)/ MeOH (50/50; v/v) to elute impurities in water samples which 

cannot be adsorbed by the sorbent. The cartridges were then completely dried under vacuum (about 50 

min) to avoid hydrolysis using a SUPELCO (VISIPREP) SPE apparatus connected to a vacuum 

system set at -10 psig. After drying, the SPE cartridges were eluted with a 5 ml mixture of 

MeOH/DCM (1/1; v/v). The eluates were evaporated with a gentle stream of nitrogen and 

reconstituted in 2 ml mixture MeOH/DCM (80/20; v/v) (Pan et al., submitted). 

Disposable 3 ml cartridges (HF-BondElut® PSA, 500 mg, Varian) were activated and 

conditioned with 5 ml of MeOH followed by a 5 ml mixture of MeOH/DCM (80/20; v/v). The extracts 
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were loaded to the cartridge and elution was achieved with 6 ml of a mixture of MeOH/DCM (80/20; 

v/v) followed by a 6 ml mixture of MeOH/DCM/TFA (79/19/2; v/v/v). The eluates were evaporated to 

dryness with a gentle stream of nitrogen and reconstituted in 200 µl methanol (Lardy-Fontan et al., 

submitted). 

 

2-5-Solid phase analytical treatment  

The suspended solids and sludge samples were freeze-dried (RP2V, CIRP, Argenteuil, 

France) before focused microwave-assisted extraction (MAE) at atmospheric pressure (Soxwave 100 

apparatus, Prolabo, Fontenay-sous-Bois, France). The freeze-dried solids (SPM; sludge: 0.1 g), were 

extracted using focused microwave-assisted extraction with a MeOH/DCM mixture (3/1; v/v). After 

being filtrated on glass cotton, the extracts were evaporated under vacuum (600 mbars, 80°C) with an 

automatic reconcentrator (RapidVap, Bioblock, Fontenay-sous-Bois, France) to remove the solvent 

and then 60 ml of Evian water (pH 2) were added to undergo the 2 step SPE purification 

methodology (as exposed in previous section) (Lardy-Fontan et al., submitted). 

 

2-6-Liquid chromatography mass spectrometry (LC/MS) analysis 

The HPLC system consisted of an Agilent Technologies 1100 series (Massy, France). The 

HPLC separation was achieved on a 3.5 µm, 150× 2.1 mm i.d. C18 reversed-phase column (Zorbax-

SB, Agilent, Massy, France) and the same kind of guard column. Detection was carried out using an 

Agilent MSD mass selective detector (G1946 VL) equipped with an electrospray interface. 4-NP, 4-t-

OP, 4-NP1EC and p-n-NP were detected under negative ionization (NI) conditions as [M-H]-; 4-

NP1EO, 4-NP2EO and p-n-NP1EO were detected under positive ionization (PI) conditions as 

[M+NH4]
+ and [M+Na]+ (Pan et al., submitted to ABC). Quantification was performed by internal 

calibration. 4-NP1EC, 4-t-OP and 4-NP were quantified using p-n-NP as internal standard, 4-NP1EO 

and 4-NP2EO were quantified using p-n-NP1EO as internal standard. 

 

2-7-Quality Assurance/Quality Control 

2-7-1 Sampling apparatus integrity 

In order to prevent cross contaminations, all sampling apparatus were tested for their 

background levels of compounds of interest. Evian water was passed through the system after its use. 

Quantification of both Evian water and sample was carried out before and after their flow through the 

apparatus. Compounds of interests were quantified in Evian water in non significant proportion (<lod 

for 4-NP1EC to tens ng.l-1 for 4-NP), after its flow through the sampling apparatus. Consequently, the 

integrity of the samples was achieved and sampling schemes and procedures were validated. 
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2-7-2 Evaluation of the conservation of samples from sampling to extraction 

Before undertaking sampling campaigns, tests of conservation were carried out in the 

laboratory. In the context of this research work, the filtration of the samples could not be achieved 

immediately after the sampling. Although previous validation works (Lardy-Fontan S., submitted) 

have highlighted the fact that the filtration of the sample significantly reduced the degradation 

phenomena, this parameter was not tested in this case. Unfiltered waters from WWTPs were sampled, 

2 conservative agents were tested: 1% of methanol and 1% formaldehyde. Each sample, stored at 4°C 

in an amber glass bottle, was characterized (qualification and quantification) at T0, T0+2 days and 

T0+7 days after sampling, following the protocol presented previously. The results highlight the fact 

that the integrity of the sample is rapidly altered by degradation phenomena, even 2 days after 

sampling time (IS 1). It can affect both the distribution of the compounds and their abundance. The 

use of preservatives (methanol or formaldehyde) did not succeed in controlling the phenomenon. 

Consequently, all the analytical procedure took place in the first 48 hours following the sampling.  

 

2-7-3Validation of recoveries 

Recovery means the percentage of the true concentration of a substance recovered during the 

analytical procedure. It is determined during validation, if no certified reference material is available. 

As no certified reference material (CRM) exists for APEOs or their metabolites, the evaluation of the 

efficiency of extraction in real samples is hard to achieve. Faced with the ubiquity of APEOs and their 

metabolites, it appeared that the fortifying of natural samples with analytes of interest, at realistic 

environmental concentrations, might generate erroneous data. As a consequence, it was decided to 

create artificial complex matrices which were fortified with a mixture of the compounds of interest. 

In order to mimic domestic effluent and influent, Viandox® which is a sort of “gravy” of 

synthesis, made up mainly of sugar and proteins was chosen. It is a substrate whose degradation is 

close to that of domestic water (Tusseau-Vuillemin et al., 2002; Gourlay et al., 2005). 2 sets of 

samples were prepared: one liter of Evian® water was supplemented with 1 ml of Viandox® and 

fortified with 1 ml of a mixture of APEOs at a concentration of 5 µg.ml-1 (for each compound) to 

mimic influent water. One liter of Evian® water was supplemented with 0.2 ml of Viandox® and 

fortified with 1 ml of a mixture of APEOs at a concentration of 5 µg.ml-1 (for each compound) to 

mimic effluent water. In order to mimic natural surface waters, 10 mg of Aldrich humic acid were 

added to 1 liter of Evian® water which was supplemented with 0.1 ml of a mixture of APEOs at a 

concentration of  2 µg.ml-1 (for each compound). The samples were stored at 4°C for 20 hours, in order 

to equilibrate. They were then acidified and internal standards were added before the samples to be 

extracted (in triplicates). 



Publications 
 

 Page 307 

For solid samples, a natural sediment sample which was previously tested for a low content 

in APEOs was chosen. 1 g of sediment was supplemented in order to obtain a final concentration of 

100 ng.g-1 and 10 µg.g-1. The fortified samples were stored for 20 hours at -20°C to equilibrate. 0.1 g 

of each matrix was analyzed in triplicates following the previously described methodology.  

 

2-7-4 Evaluation of matrix effects 

Matrix effects are the weak point of LC-ESI-MS, especially LC-ESI-MS-MS (Taylor, 2005). 

They occur when molecules co-elute with the compounds of interest and affect the ionization 

efficiency of the electrospray interface resulting in signal enhancement and/or ion suppression. When 

occurring, matrix effects affect both the precision and accuracy of the method; ion suppression, for its 

part, leads to a decrease in sensitivity and higher limits of quantification (Taylor, 2005). By looking at 

the bibliography, it appears that investigations to assess matrix effects are usually absent from the 

validation criteria because they are time consuming and difficult to implement (see Review Lardy-

Fontan and Budzinski, submitted).  

Three sets of samples were prepared in order to evaluate matrix effects on surface waters 

(SW) and wastewaters (influent (INF) and effluent (EFF)). The samples were extracted on C18 and 

were divided into 2 sub-samples. One of them underwent the purification step on HF-PSA; the second 

one was evaporated under a nitrogen stream. All the extracts have been supplemented, prior to 

injection, with a mixture of compounds of interest (a mixture of internal standards and compounds to 

quantify). In parallel, a pure methanol extract had been supplemented with the same quantity of 

compounds. The evaluation of matrix effects relies on the comparison of abundances measured in pure 

methanolic extracts and sample methanolic extracts.  

 

3-Results and discussion 

3-1-Method performance 

Performance characteristic means the functional quality that can be attributed to an analytical 

method. This may be for instance, accuracy, repeatability, reproducibility, recovery, detection 

capability and ruggedness (Decision 2002/657/EC). 

 

3-1-1 Trueness-Extraction efficiency 

Figure 1 shows the average recovery rates (calculated by internal calibration) obtained with 

the global analytical methodology applied to the 4 types of tested liquid matrices. Except for the 4-

NP1EC which shows a rate of recovery of 50% in the matrix mimicking surface water samples, the 

other studied molecules present average recovery rates from 80% to 130% depending on the 



Publications 
 

 Page 308 

compound. Figure 2 presents the average recovery rates obtained with the global analytical 

methodology applied to the 3 types of solid matrices tested. Except for the 4-NP1EC which shows a 

rate of recovery of 50% in the sediment supplemented at 1 µg.g-1, all the other studied molecules 

present rates of recovery from 60% to 130% depending on the compound.  

 

Figure 1: Validation of the dissolved phase methodology. 

Lab water: laboratory water (Evian® water); average recovery of the global protocol (extraction + purification) (n=28, 7 
months)      
SW rec.: water supplemented with10 mg.l-1 of humic acid, average recovery of the global protocol (extraction + purification) 
(n=3),  
Effrec.: water supplemented with 2 mg.l-1 of Viandox, average recovery of the global protocol (extraction + purification) 
(n=3),  
Infrec.: water supplemented with 10 mg.l-1 of Viandox, average recovery of the global protocol (extraction + purification) 
(n=3). 
Horizontal axis presents the compound to be quantified and the standard compound used as internal standard (e.g. 4-NP 
quantified by internal standard p-n-NP). 
 

 

 

Figure 2: Validation of the solid phase methodology. 

Lab. solv: organic solvent supplemented, average recovery of the global protocol (n=4, independents), 
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Sed 1: sediment supplemented at 100 ng.g-1, average recovery of the global protocol (n=3), 
Sed 2: sediment supplemented at 1 µg.g-1, average recovery of the global protocol (n=3), 
Horizontal axis presents the compound to be quantified and the standard compound used as internal standard (e.g. 4-NP 
quantified by internal standard p-n-NP). 

 

3-1-2 Repeatability and within-laboratory reproducibility 

Repeatability conditions mean conditions under which independent test results are obtained 

with the same method on identical test items in the same laboratory by the same operator using the 

same equipment. Within-laboratory reproducibility means the precision obtained in the same 

laboratory under stipulated (predetermined) conditions (concerning e.g. method, test materials, 

operators and environment) over justified long time intervals (Decision 2002/657/EC). 

Both methodologies (MAE+2 step SPE for solid samples; 2 step SPE for aqueous samples) 

show good recoveries and low relative standard deviation for all the analytes; average recoveries 

ranged from 76 ± 26% to 115 ± 14% for aqueous methodology, from 68 ± 8% to 104 ± 18% for solid 

phase methodology (Figure 1 and Figure 2). Consequently, the applied methodologies show good 

repeatability and within-laboratory reproducibility.  

 

3-1-3 Ruggedness  

Ruggedness means the susceptibility of an analytical method to changes in experimental 

conditions which can be expressed as a list of the sample materials, analytes, storage conditions, 

environmental and/or sample preparation conditions under which the method can be applied as 

presented or with specified minor modifications (Decision 2002/657/EC).  

a) Laboratory Blank  

APs are ubiquitous contaminants of the environment and consequently of a laboratory. As 

previously reported, they can be found in plastics and detergents which can enter in contact with 

analytical materials (solvents, SPE material, etc…). As highlighted by Loos et al. (2008) in their report 

on the first inter-calibration study for the analysis of NP and OP in river water, blanks can 

significantly affect the ability of a laboratory to quantify APs in natural samples. Furthermore, one can 

observe that mentions concerning such control in quality control and assurance are generally absent 

from published works.  
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Figure 3: One year survey of protocol blank. Quantity of4-NP expressed in ng (n=28; 2 operators). 
Clear barrel: mean of 28 values of blank 
 Dark barrel: mean without contaminated blank (23, 24 may; 12-13 September) 
 

Figure 3 presents a one year survey of 4-NP blank contamination (global protocol, 2 step SPE, 

28 analyses, 2 operators). Some variations are observed in the laboratory background level in 4-NP 

whose average value of 34 ng is compatible with the analysis of 4-NP in WWTP samples. 

Nevertheless, it also suggests that some specific contamination could have occurred and were linked 

with building remediation; consequently the addition of no less than one blank to each extraction 

series should be recommended to achieve sufficient quality control and quality assurance. 

b) Matrix effects 

Table 2 presents the matrix effects for the 3 sets of investigated waters: surface water (SW), 

effluent (EFF) and influent (INF). The principle is to compare the differences of response between a 

post extraction extract fortified with analytes of interest (A) and a pure solution of solvent fortified 

with the same quantity of analytes (B). The ratio ((A-B)/B)*100) provides the percentage of ion 

suppression for each analyte of interest under chromatographic conditions. 
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Table 2: Evaluation of matrix effects under LC-ESI-MS conditions 

 

Table 2 presents the measured matrix effects for the 3 studied matrices (river water, influent 

and effluent) and for the 2 tested conditions (with or without HF-PSA purification). The observations 

highlight a positive effect of the implementation of the HF-PSA purification step. This is illustrated by 

Figure 4. In fact, it leads to an improvement of the selectivity especially in the case of highly complex 

matrices (e.g., raw waters) with the reduction of matrix interferences (Figure 4a and 4b present the 

chromatographic profiles of a WWTP influent extract with and without the stage of purification and 

clearly demonstrate the reduction of interferences especially with 4-NP1EC). Furthermore, it leads to a 

decrease in ion suppression and consequently to an increase of the sensitivity (Figure 4c presents the 

chromatographic profiles of a river water extract with and without the HF-PSA purification, it shows 

an increase of abundance of almost 50% for all the molecules when the purification step is 

conducted).The matrix phenomena appear to be correlated with the matrix load of the sample (INF> 

EFF> SW, as highlighted by Table 2). In the negative mode of ionization, the phenomena seem to 

affect all the compounds in a homogeneous way (standards of quantification as well as compounds to 

be quantified). The quantification by internal calibration appears to be effective to control this effect 

and allows the production of reliable quantitative data. In the positive mode of ionization, the 

phenomenon affects the standards of quantification and the compounds to be quantified in a 

homogeneous way in the river water extracts and in the effluent extracts. Nevertheless, an important 

phenomenon of signal suppression is observed for the 4-NP1EO and the 4-NP2EO in raw waters 

extracts. The hypothesis of a competition for ionization between all the NPEOs which are abundant in 

untreated water, since the commercial mixtures are made up of them, can be advanced. Indeed, in 

reversed phase liquid chromatography, the molecules are separated by their hydrophobic character; it 

leads to the non separation of the NPEOs. The strong degradation that these molecules undergo during 

the WWTP processes may explain why these phenomena are stronger in raw water extracts by 

comparison with final effluent extracts. The assumption of an interaction between the NPEOs and the 

organic matter having the potential to be strongly degraded during the treatment of raw water cannot 

however be isolated. Few are the studies which have evaluated the matrix effects because as said by 

Loos et al. (2007) “It is too difficult”. Nevertheless, these results clearly demonstrate the need to 

evaluate the matrix effects for all the molecules. Even if the implementation of internal standards 

 Surface water Effluent Influent 
 SPE C18+HF-PSA SPE C18 SPE C18+HF-PSA SPE C18 SPE C18+HF-PSA SPE C18 

4-NP -18% 38% 29% 39% 36% 54% 
4-t-OP 7% 39% -8% 17% 20% 46% 

4-NP1EC 9% 69% 39% 22% 42% I 

p-n-NP 6% 55% 45% 42% 56% 62% 

4-NP1EO 4% 9% 24% 16% 96% 78% 

4-NP2EO 21% 23% 38% 32% 79% 78% 

p-n-NP1EO 7% 10% 12% 12% 34% 29% 
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succeeds in controlling them (as recommended by Lee Ferguson et al., 2000; Jahnke et al., 2004); it 

may not be sufficient in some highly complex matrices. The implementation of a standard addition 

methodology, despite being time consuming and expensive, appears to be a suitable way to overpass 

matrix effects (Baugros et al.,2008). 

 

 

Figure 4: Positive effect of the implementation of the HF-PSA purification step. 
a) and b) influents chromatograms in negative mode ionization, with or without the HF-PSA® purification step, 

c) Chromatograms of a surface water extracts with or without the HF-PSA® purification step. 
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3-2-Occurrence of APEOs in WWTPs 

3-2-1 Occurrence in influents (raw water) 

Table 3: Occurrence of APEO metabolites in the dissolved phase of the 7 investigated WWTPs. 

Influent Effluent 

C° µg.l-1 Min Max Mean C° µg.l-1 Min Max Mean 

4-NP 0.68 15.78 6.89 4-NP 0.05 1.97 0.34 

4-t-OP <LOD 16.06 2.20 4-t-OP <LOD 0.48 0.11 

4-NP1EO 0.29 12.72 1.98 4-NP1EO 0.04 0.22 0.14 

4-NP2EO 0.14 2.32 0.57 4-NP2EO 0.06 0.14 0.10 

4-NP1EC <LOD 10.10 1.64 4-NP1EC 0.27 5.31 1.85 

Concentrations are expressed in µg.l-1 (<0.7µm) 

The 7 investigated WWTPs highlight a chronic state of contamination of their influents by 

APEO metabolites (Table 3). Influents contamination is dominated by 4-NP and 4-NP1EO and 

confirmed litteraure review (Martin-Ruel et al., 2008); 4-t-OP and 4-NP1EC are usually not detected 

(despite a LOD of ng.l-1). The distribution appears to be consistent with the uses of alkylphenolic 

compounds: 80% of NPEOs and 20% of OPEOs (Renner,1997). Huge inter-day variability is observed 

depending on the compound and the WWTP and can reach 90% in some cases. It seems to be 

correlated with the type of WWTPs: the more the WWTP treats industrial wastes the higher the 

variability. Furthermore, an important variability of the contributions among WWTPs is observed. The 

average concentrations in the dissolved phase vary from 0.68 to 15.78 µg.l-1 for 4-NP, from 0.29 to 

12.72 µg.l-1 for 4-NP1EO. The influents of WWTPs SE-1, SE-2 and SE-3 appear to be significantly 

more contaminated than those of WWTPs CA-1, CA-2, CA-3 and SE-4. Although SE-1 is situated in a 

peri-urban area, its wastewater countains the effluents of a refinery, the processes of which implement 

the use of APEOs (Boitsov et al., 2004; Boitsov et al., 2007). SE-2 and SE-3, for their part, treat a lot 

of industrial wastes which use APEOs (numerous industries from various sectors: agro-alimentary, 

chemical industry, contributions of leachates). CA-1 and CA-2 are smaller WWTPs located in rural 

areas and treat domestic wastewater exclusively; CA-3 and SE-4 although being situated in highly 

urbanized areas, to which a diffuse industrial fabric is associated, treat mainly domestic water and 

some industrial wastes. These results are in accordance with those published by the national research 

action for the reduction of the loads of dangerous substances in water by classified installations 

(RSDE, 2007). They have reported occurrence of APs in effluents from different French sectors of 

activity: 45% in treatment and storage of waste, 56% for petroleum industries, 35% for hospitals, 30% 

for tanneries, 48% for mechanical work of metals. To summarize, it appears that, in France, the 

domestic and institutional uses are responsible for a chronic contribution of APEOs to the WWTPs; 

the dominant and discriminating component appears to be the industrial use. These results highlight 

the fact that, in France, the uses of APEOs in industrial, institutional and domestic applications seem 
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to be common although a restriction of uses and marketing has come into force since January 17, 

2005; the steps of substitution of these products seem to be still under way. 

3-2-2 Occurrence in final effluents (treated water) 

The 7 investigated WWTPs highlight a chronic state of contamination of their effluents by 

APEO metabolites (Table 3). The distribution of compounds is drastically different from the one 

observed for influents. In fact, effluents are dominated by 4-NP1EC, 4-NP and 4-NP1EO. 4-t-OP is 

usually not detected. Contrary to influents, inter-day variations are of less lower magnitude in 

effluents; due to 24 hour hydraulic retention time and to the removal efficiency of the plant. Moreover, 

effluent fluctuations in terms of abundance appear to be more homogenous with the exception of 4-

NP1EC. Measured concentrations vary from 0.27 to 5.31 µg.l-1 for 4-NP1EC, from 0.05 to 1.97 µg.l-1 

for 4-NP, from 0.04 to 0.22 µg.l-1 for 4-NP1EO and from 0.06 to 0.14 µg.l-1 for 4-NP2EO and seem to 

be clearly influenced by the type of process and efficiency in the removal of APEOs. It appears there 

is a shift in the distribution of oligomers due to the cleavage of their ethoxy units and carboxylation 

through the biological treatment process in relation with extensive biodegradation phenomena. These 

data are in agreement with those reported in other European countries. In some Spanish WWTP 

effluents, Cespedes et al. (2008) measured concentrations from 0.33 to 2.07 µg.l-1 for 4-NP, from 0.13 

to 0.33 µg.l-1 for 4-t-OP. Similarly, Loos et al. (2007) reported concentrations from 0.26 to 0.73 µg.l-1 

for 4-NP, 0.23 to 4.5 µg.l-1 for 4-NP1EC in some Belgian and Italian WWTP effluents. The only 

exception was the comparison with the observed trends in German WWTP effluents which displays a 

significant decrease in their concentrations (<lod to 0.011 µg.l-1 for 4-NP, <lod-0.333 µg.l-1 for 4-t-

OP) as reported by Quednow and Puttmann (2008). They concluded that it was a consequence of the 

ban on the use of the compounds.  

 

3-3-Role played by suspended solids 

One of the strong axis of these research tasks was the consideration of suspended solids and 

the evaluation of their role in the contamination of the aqueous phases. Concerning the metabolites of 

APEOs, the observations highlight values of contamination ranging from tens of ng.g-1 and a few tens 

of µg.g-1, in both raw and treated waters, depending on the metabolite. 4-NP and 4-NP1EO are the 

prevalent metabolites in suspended solids which is consistent with their hydrophobic character (log 

Kow 4.1 for 4-NP1EO and 4.5 for 4-NP). Usually, a reduction in the contamination of the suspended 

solid phase is observed along the treatment process.  

In raw waters, the contribution of suspended solids in the contamination to the aqueous 

phase can reach 20 to 80% of the contaminant load depending on the metabolite and the site. In treated 

water their share is extremely variable: lower than 10% for the 4-NP1EC which is the most polar 

metabolite, but it can reach 90% for 4-NP (a hydrophobic compound) in the case of CA-1 or SE-1 
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(Figures 5a and 5b). Few are the studies which have considered suspended solids in WWTP processes. 

Recently, Koh et al. (2008) reported the relevance of the sorption of some alkylphenolic compounds to  

suspended solids in WWTP samples (68% for 4-NP; 50% for 4-t-OP). 

 

3-4-Fate and removal of APEOs in the process 

3-4-1 Fate in the process 

Figure 5 presents the trends of measured concentrations in both phases (suspended solids and 

dissolved phase) in 4 of the investigated WWTPs. Figure 5c presents 2 day average measured 

concentrations in the influent, primary settling tank effluent and final effluent in the WWTP-SE2. The 

results highlight a decrease in the contamination of APEO metabolites in relation with the primary 

decantation process: corresponding to the removal of suspended solids, a removal of 64% for 4-NP, 

and of 36% for 4-NP1EO is observed. In the dissolved phase, removal of 59% for 4-NP is measured 

confirming the efficiency of this process to remove APEOs (Teske and Arnold, 2008; Martin-Ruel et 

al., 2008). The main center of the removal is the activated sludge in which both biodegradation and 

sorption phenomena occur (as previously shown, a significant decrease in the contamination of both 

liquid and solids phases occur (in the aqueous phase removal of 96% for 4-NP and 96% for 4-NP1EO 

in WWTP SE-2; -82% for 4-NP1EC and 55% for 4-NP in WWTP CA-3) (Teske and Arnold, 2008). 

Additional treatment steps provide a higher quality of the final effluents (reduction of the suspended 

solids concentration for phosphorus removal, biological nitrogen removal) into the natural 

environment. As highlighted by figure 5c-d, the implementation of a complementary of biofiltration 

for nitrogen removal leads to an improvement of removal of APEOs and metabolites by almost 50%, 

in this case study. 



Publications 
 

 Page 316 

 

 

Figure 5: Fate and occurrence of APEO metabolites in WWTPs. Part of each phase (Dissolved/solid phases) in the global contamination. 
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3-4-2 Efficiency of AS process 

Table 4: Efficiency of WWTP processes for the removal of APEOs and their metabolites 

R (%) Dissolved phase Solid phase Aqueous phase 

4-NP 88 ± 12% 80 ± 30% 83 ± 20% 

4-NP1EO 87 ± 8% 78 ± 31% 87 ± 9% 

4-NP2EO 76 ± 26% 78 ± 33% 85 ± 10% 

4-NP1EC -812 ± 1300% 90 ± 7% -47 ± 157% 

Average removals are calculated by using mean measured concentrations at each WWTP for the overall period 
of study. R (%) = (([Influent]-[Effluent]) / [Influent])*100. Aqueous phase: sum of dissolved phase and solid 
phase 

 

The measured concentrations allow the estimation of the removal rate for APEO metabolites 

in the investigated WWTP process. Table 4 presents the average removal rates of APEO metabolites 

in the dissolved phase, the suspended solids and the aqueous phase (sum of dissolved phase + 

suspended solids). For 4-NP, 4-NP1EO and 4-NP2EO, the observed trends in the dissolved phase and 

in the suspended solids are similar to significant removal rates higher than 75 % in both phases, it 

leads to the a global elimination rate of 83 ± 20% for 4-NP, 87 ± 9% for 4-NP1EO and 85 ± 10% for 

4-NP2EO. For NP, a similar removal efficiency has been obtained by Martin-Ruel (2008) from the 

summary of literature data The trends are obviously different for 4-NP1EC. In the suspended solids, 

the average rate of removal is of 90%, contrary to the dissolved phase which presents a negative 

removal rate of -812 ± 1300%. It leads to an overall elimination of -47 ± 157% and clearly 

demonstrates that 4-NP1EC is generated through AS WWTP processes (Loyo-Rosales et al., 2007; 

Teske and Arnold, 2008). 

These results clearly demonstrate the efficiency of AS WWTPs to remove 4-NP, 4-NP1EO 

and 4-NP2EO from the aqueous phase as confirmed by the low standard deviation (maximum value of 

20%). On the contrary, 4-NP1EC, the dominant biodegradation metabolite in this study, appears to be 

strongly affected by the WWTP process. Some more investigations will be necessary in order to 

highlight and understand the major explanatory parameters (effects of the temperature of the reactor 

which can affect the kinetics of biodegradation, known to be sensitive temperature, Loyo-Rosales et 

al.,2007; effects of other operating parameters of the sewage,Teske and Arnold, 2008).  

 

3-5 Occurrence of APEOs in sludge 

On the dried weight basis, measured concentrations are between 9.1 ± 5.1 mg.kg-1 for 4-NP; 

3.3 ± 2.9 mg.kg-1 for 4-t-OP; 8.0 ± 2.8 mg.kg-1 for 4-NP1EO; 5.0 ± 3.3 mg.kg-1 for 4-NP2EO and 15.0 

± 25.1 mg.kg-1 for 4-NP1EC. It is interesting to note the distribution of compounds with the 4-NP1EC 

dominant metabolite with 4-NP1EO and 4-NP. These results seem to suggest the existence of various 

mechanisms of sorption: interactions of a hydrophobic type for 4-NP1EO and 4-NP (as suggested by 
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their high contents in suspended solids); other types of interactions may be involved to explain the 

sorption of 4-NP1EC. Some electrostatic interactions between the molecule and the bacterial wall 

(bacteria present in the activated sludge) may occur. In an internal publication, the EAWAG reports a 

study on the sorption phenomena of 3 pharmaceutical substances among which norfloxacine (which 

has a molecular structure comparable to that of 4-NP1EC, with the presence of a -COOH function) 

during secondary treatment. Their observations highlight the fact that the fraction of sorbed 

norfloxacine increases along the treatment of water: 33% in raw wastewaters to reach 72% in 

secondary sludge. They assumed the sorption of norfloxacine to be related to electrostatic interactions 

which are all the more supported by the content of micro-organisms (of the wall which is negatively 

charged). 

A huge variability of the measured concentrations is observed in the final sludge and is related 

with the profile of contamination of the clarified treated waters (Figure 6). Indeed, WTTPs SE-1, SE-

2, SE-3 which have the most important levels of contamination in their influents, are also those which 

show the most important levels of contamination in final sludge. 

 

 

Figure 6: Occurrence of APEO metabolites in the final sludge of the 7 investigated WWTPs. 

 

Nevertheless the measured concentrations are of the same order of magnitude as those which 

have been reported by Ghanem et al. (2007) in a study on 4 French WWTP sludge (contents of 4-NP 

were from 17.3 ± 6.2 mg.kg-1 to 130.0 ± 35.8 mg.kg-1, dried weight). 

 

4-Conclusion and perspectives  

MAE, 2 steps SPE and LC–ESI–MS as described in this work allow the simultaneous 

enrichment and determination of the major estrogenic APEO biotransformation products. With the 
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natural samples. For highly complex matrices, interferences are distinct and have to be controlled. The 

transposition of the methodology to new powerful ones; such as UPLC®-MS-MS, will lead to 

significantly reduced signal suppression (the need for a lower enrichment factor, a new geometry of 

ionization source “Z-spray” which have shown to be favorable (Koh et al., 2008). Methodological 

validation clearly demonstrates that the ultra traces analysis of APEOs, especially 4-NP, is tricky due 

to potential contamination in the processing sequence of samples.  

From an ecological point of view, this monitoring work clearly highlights a chronic state of 

contamination of French influents and effluents by APEO metabolites. Although removal higher than 

80% are observed do these compounds through biological AS WWTPs large loads of APEO 

metabolites in both liquid and solid matrices were found in aquatic systems (via the final effluents) 

and terrestrial ecosystems (via the valorization of sludge in the French context). Finally, this work 

clearly demonstrates that consideration of APs and APEOs only, can lead to an underestimation of the 

chemical risk linked with the occurrence of APEOs in the natural environment. Further works and 

regulations should consider other classes of biodegradation metabolites, especially APECs and 

CAPECs.  
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IS 1: Conservation of WWTP matrices 

 

eff no add : effluent samples without preservative; inf no add : influent samples without preservative ; eff 1% meOH : effluent samples with 1% methanol; inf 1% meOH: 
influent samples with 1% methanol; eff 1% form. : effluent samples with 1% formaldehyde; inf 1% form.: influent samples with 1% formaldehyde. 
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Résumé :  

Les prélèvements ponctuels ne sont pas capables de donner une concentration moyenne dans 

le temps, ainsi les études de monitoring pour le contrôle de l'environnement exigent de nombreux 

prélèvements lourds à mettre en œuvre, un besoin pour de nouveaux outils a émergé. Les techniques de 

prélèvements passifs intégratifs sont de nouvelles approches développées pour le contrôle de 

l'environnement. L'utilisation des POCIS (Polar Organic Compounds Integrative Sampler) a été 

récemment documentée pour la détection des composés organiques polaires dans l’environnement. Le 

but de cette étude était d'exposer ces outils au cours de 2 essais in situ au niveau de la Meuse et de 

l’Alsace et d’étudier leur applicabilité pour les études de surveillance de 2 principales classes de 

composés organiques polaires : les substances pharmaceutiques et les alkylphénol-polyethoxylés. La 

capacité des POCIS à devenir un outil performant pour la surveillance des systèmes aquatiques a été 

mise en évidence. Néanmoins, quelques restrictions quant à leur capacité à devenir un outil quantitatif 

ont été soulignées. 
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Abstract  

As spot sampling cannot give time weighted average concentrations, which requires very 

heavy environmental monitoring surveys, a need for new tools has emerged. Integrative passive 

sampling is a new approach developed for environmental monitoring purposes. The use of Polar 

Organic Chemical Integrative Sampling (POCIS) has been recently documented for the detection of 

polar organic compounds in the field. The aim of this study was to expose such tools in 2 river basin 

field trials:  Meuse and Alsace and to study the application of the integrative sampling tool POCIS for 

the monitoring of 2 major classes of polar organic compounds: pharmaceutical substances and 

alkylphenol-polyethoxylates. POCIS tools have been applied in various aquatic systems in order to test 

their use as a monitoring tool. The ability of POCIS to become a powerful tool for the monitoring of 

aquatic systems has been highlighted. Nevertheless, some restrictions concerning its abilities to become 

a quantitative tool were underscored. 

 

1-Introduction 

For more than half a century, a general awareness of the impact of human activities on the 

environment has emerged and is nowadays a common project for political authorities, scientists or 

citizens. Considering that water has become an invaluable resource and that aquatic systems are the 

final receptacles of anthropic waste, a strong interest focused on these systems. The impact of anthropic 

contamination can be assessed by monitoring the numerous pollutants that can be present in aquatic 

compartments. Monitoring refers to the continuous or frequent standardised measurement and 

observation of the environment (air, water, land/soil, biota), often used for warning and control (OECD, 

1997). It has become a keyword in all environmental approaches. 

In Europe, the implementation of the Water Framework Directive (2000/60/EC) marks a 

strong standpoint. Its objectives are to improve, to protect water quality (surface water, coastal water, 
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and groundwater) and to prevent further deterioration of across Europe by the year 2015. To date, a first 

list of 33 pollutants identified as “dangerous substances” has been suggested for chemical monitoring.  

These compounds belong to several chemical groups, such as PAHs, pesticides, alkylphenols, 

but this list needs to be regularly updated depending on scientific research and developments in 

analytical technologies (liquid chromatography or gas chromatography, coupled to mass spectrometry 

(LC-MS, LC-MS-MS, GC-MS, GC-MS-MS). Indeed, advances in compound detection allow us to 

identify new compounds of interest, especially polar organic compounds which until now had very often 

been ignored in aquatic systems and can show toxicity towards aquatic organisms. Thus, an important 

and widespread contamination of aquatic systems by this kind of compounds has been highlighted. In 

this large class of polar compounds two classes caught attention: detergents (among them alkylphenol-

polyethoxylates and their breakdown products which are part of the priority list of compounds (Annexe 

X, 2000/60/EC) (Ying et al., 2002a; Ying, 2006) and the PCPP (Pharmaceuticals and Personal Care 

Products) with more specifically pharmaceutical substances (Halling-Sorensen et al., 1998;Ternes, 

2001a; Ternes, 2001b; Hilton and Thomas, 2003), and steroid hormones (Ying et al., 2002b). Regarding 

their ubiquity and their potential toxicity, some of these compounds require a specific attention (Jobling 

and Sumpter, 1993; Ahel et al., 1994a; Ahel et al., 1994b; Brooks et al., 2003; Jobling et al., 2004; 

Crane et al., 2006).  

Surveillance monitoring (designed to provide information to: supplement and validate impact 

assessment procedures; enable the adequate preparation of future monitoring programs; and, assess 

long-term changes in natural conditions or as a result of anthropogenic activity), operational monitoring 

(designed to provide information useful to classify the status of water bodies identified as being at risk 

of failing their environmental objectives and investigative monitoring (designed to understand the 

causes of objective failure and to assess the extent of the impact of accidental pollution events) are the 

three modes which have been specified by the Directive (Allan et al., 2006). The purpose of any 

ecological risk assessment analysis for chemical stressors is the determination of the time-weighted 

average (TWA) concentrations. Spot samplings cannot succeed without numerous and expensive 

approaches and integrative passive sampling appears to be a powerful tool for that purpose (Namiesnik 

et al., 2005).  

Limited research involving the passive sampling of polar organic compounds has been 

performed (Vrana et al., 2005a). Among passive sampling tools dedicated to the monitoring of polar 

compounds, POCIS (Polar Organic Compounds Integrative Sampler) has been successfully applied for 

the monitoring (qualitative and semi-quantitative data) of steroids (Vermeirssen et al., 2005; Zhang et 

al., 2008; Arditsoglou and Voutsa, 2008), pharmaceuticals and alkylphenol-polyethoxylates (Jones-

Lepp et al., 2004; Petty et al., 2004; Alvarez et al., 2004; MacLeod et al., 2007; Arditsoglou and Voutsa, 

2008) in different aquatic systems (Mills et al., 2007; Robinson et al., 2007). POCIS has been designed 

by the USGS in order to handle large volumes of water over a period of several days or weeks and to 

integrate episodic changes in environmental contaminant concentrations. To perform a quantitative 



Publications 
 

 Page 326 
 

approach, laboratory calibration studies need to be made for each analyte of interest (Togola and 

Budzinski, 2007). 

The aim of this work is to apply the integrative sampling tool POCIS for the monitoring of 

major classes of polar organic compounds: pharmaceutical substances and alkylphenol-polyethoxylates. 

POCIS tools have been applied in several aquatic systems in order to test their capability as a 

monitoring tool. In order to achieve that, several POCIS devices have been exposed in different aquatic 

systems: the Meuse River and the Lauch River watersheds through several kinds of water typology: 

surface waters, groundwater but also WWTP effluents.  This study presents an assessment of the 

availability of this tool considering qualitative and quantitative data obtained this way, compared with 

classical sampling methods currently used, showing the positive inputs but also the limits of this new 

approach of monitoring. 

 

2-Material and methods 

2-1-Chemicals and reagents 

Pharmaceutical compounds were obtained from Sigma Aldrich (St Quentin Fallavier, France; 

purity > 98%). Deuterated products (diazepamd5, amitryptilined6, nordiazepamd5) used for 

pharmaceutical quantification were purchased from Euriso-Top (St Aubin, France; purity > 98%). 

Nonylphenoxyacetic acid (ring chain isomers) (98%+, p-NP1EC) was purchased from PROMOCHEM 

(Molsheim, France). p-nonylphenol (100%, p-NP, Technical), p-tert-octylphenol (99.5%, p-t-OP), p-

nonylphenol-monoethoxylate (99.5%, p-NP1EO) were purchased from Sigma Aldrich (St Quentin 

Fallavier, France; purity > 98%). All the compounds are presented with their chemical structures in 

Table 1. POCIS AQUASENSE-P Pharmaceuticals® were purchased from Exposmeter (Tavelsjö, 

Sweden). Acetone, dichloromethane, ethyl acetate and methanol (HPLC reagent grade, Scharlau) were 

purchased from ICS (Belin-Beliet, France). Hydrochloric acid 37% (reagent grade) was obtained from 

Atlantic Labo (Eysines, France). Ultrapure deionised water was obtained with a Milli-Q system 

(Millipore, Molsheim, France). 60 mg Oasis MCX® and cartridges were purchased from Waters (St 

Quentin en Yvelines, France) and 200 mg Bondelut® C18 cartridges were purchased from Varian 

(Courtabœuf, France). MSTFA (n-methyl-n(trimethylsylil)trifluoroacetamide, purity > 97%; Acros 

Organics, Noisy-le-Grand, France) was used as the sylilation agent for GC-MS analysis. Whatman GF/F 

glass fibre filters (pore size 0.7 µm) were purchased from VWR International (Fontenay-sous-Bois, 

France). 

 

 

 

 

 



 

 

Table1: Chemical structures of 

Chemical structure 

Aspirin (ASP) 

Diclofenac (DICLO) 

Ibuprofen (IBU)

Ketoprofen (KETO)

Naproxen (NAP)

 

 

Amitryptiline (AMI) 

C9H19

OH

 para-Nonylphenol (p

O
CH2 O

OH

C9H19 Nonylphenoxyacetic acid   (p

NP1EC) 

 

2-2-Analytical protocols 

2-2-1 Aqueous phase analysis 

4 l of water sample were filtered through a GF/F glass fibre filter (previously heated at 450°C 

for 6 hours) (0.7 µm pore size) in order to separate dissolved and particulate phases. The aqueous phase 

was then stored at 4°C until analysis which occurred in the 48 hours following the sampling.

a) Solid phase extraction for pharmaceutical substances 

Gemfibrozil (GEMF) 

Table1: Chemical structures of investigated compounds. 

MW (g.mol-1) Chemical structure 

Pharmaceuticals substances 

180 

Diazepam (DZP)

295 

Nordiazepam (NDZP)

Ibuprofen (IBU) 

206 

Doxepine (DOX)

Ketoprofen (KETO) 

254 

Caffeine (CAF)

Naproxen (NAP) 

230 

Carbamazepine (CBZ)

250 

Paracetamol (PARA)

277 

Imipramine (IMIP)

Alkylphenol-polyethoxylates (APEOs) 

Nonylphenol (p-NP) 

220 

OH

C8H17  para-tert-Octylphenol  (p

OP) 

Nonylphenoxyacetic acid   (p-
278 

O
CH2

CH2
OH

C9H19 Nonylphenol

monoethoxylates  (p-NP1EO)

1 Aqueous phase analysis  

4 l of water sample were filtered through a GF/F glass fibre filter (previously heated at 450°C 

µm pore size) in order to separate dissolved and particulate phases. The aqueous phase 

was then stored at 4°C until analysis which occurred in the 48 hours following the sampling.

Solid phase extraction for pharmaceutical substances  
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MW (g.mol-1) 

Diazepam (DZP) 

284 

Nordiazepam (NDZP) 

270 

Doxepine (DOX) 

279 

Caffeine (CAF) 

194 

Carbamazepine (CBZ) 

236 

Paracetamol (PARA) 

151 

Imipramine (IMIP) 

280 

Octylphenol  (p-t-
206 

Nonylphenol-

NP1EO) 

264 

4 l of water sample were filtered through a GF/F glass fibre filter (previously heated at 450°C 

µm pore size) in order to separate dissolved and particulate phases. The aqueous phase 

was then stored at 4°C until analysis which occurred in the 48 hours following the sampling. 
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The protocol previously described has been used for pharmaceutical compound extraction 

(Togola and Budzinski, 2008). Briefly, the filtered water was acidified at pH2 and between 0.5 l and 1 l 

was loaded on an OASIS MCX® cartridge. The cartridges were then dried under vacuum and 

successively eluted with 3 ml of ethyl acetate, 3 ml of an ethyl acetate/acetone mixture (50/50; v/v) and 

3 ml of an ethyl acetate/acetone/NH4OH mixture (49/49/2; v/v/v). The extracts were evaporated under a 

nitrogen flux to a final volume of 100 µl prior to GC-EI-MS analysis (SIM mode) for neutral compound 

analysis. After a derivatization step (30 µl of MSTFA, incubation 35 min at 65°C) the extract was 

analysed (GC-EI-MS analysis in SIM mode) for acidic drug analysis. The quantification was performed 

by internal calibration (diazepamd5, amitryptilined6, nordiazepamd5). 

b) Solid phase extraction for alkylphenol-polyethoxylates 

The protocol previously described has been used (Pan et al., submitted). Briefly, the filtered 

water was acidified to pH 2. Between 0.5 l and 1 l were loaded on the cartridges (Bondelut® C18, 200 

mg, 3 c.c.). The cartridges were then dried under vacuum and the elution was achieved by 5ml of a 

mixture of methanol/dichloromethane (50/50; v/v). The extracts were evaporated under a nitrogen flux, 

to a final volume of 150 µl, prior to LC-ESI-MS analysis (SIM). The quantification was performed by 

external calibration. 

 

2-2-2 POCIS extraction 

After field retrieval, POCIS devices were rinsed with ultrapure water to remove any material 

adhering to the surface membrane and stored at - 20°C until extraction. The POCIS devices were 

opened; the disc arrays were disassembled and the membranes were detached from the stainless steel 

collars and rinsed with ultrapure water (pH2). The sorbent powder was also carefully transferred into a 

glass chromatography microcolumn, blocked by glass fibre cotton (previously cleaned by 

ultrasonication three times in dichloromethane). The sorbent was dried under vacuum for 90 minutes. 

For the Meuse River trial, the elution was performed with a mixture of ethyl acetate/acetone (50/50; v/v) 

and analyses were conducted by GC-MS (Togola and Budzinski, 2008).  

For the Alsace River trial, the protocol was adapted in order to extract both classes of 

compounds: APEOs and pharmaceuticals. The elution was carried out successively by methanol and a 

mixture of ethyl acetate/acetone/NH4OH (79/19/2; v/v/v). The extracts were then divided (gravimetric 

control) and aliquots were individually evaporated under a nitrogen flux and reconstituted (methanol for 

APEO and ethyl acetate for pharmaceuticals) prior to analysis (LC-MS for APEOs and their 

metabolites, GC-MS for pharmaceuticals).  

 

2-3-Use of POCIS as a quantitative tool 



Publications 
 

 Page 329 
 

Time weighted average concentration can be calculated from laboratory obtained uptake rate 

(RS) and from the mass of analytes sorbed into the POCIS device using equation 1: 

(1) 
dRs

MsCs
Cw

*

*=  

Where Cw is the water concentration (ng.l-1), Cs is the analyte concentration in the sorbent (ng.g-1), Ms 

is the mass of sorbent (g) and d (j) the POCIS exposure duration in the environmental field.  

 

In order to determine the sampling rate values (RS), expressed in litre per day per gram of 

sorbent, laboratory experiments have been carried out under representative environmental conditions 

(Togola and Budinski, 2007). 

 

2-4-Case study 

Two representative pilot river basins were investigated: the Meuse River and the Lauch River 

basin in Alsace. 

 

2-4-1 The Meuse pilot river basin field trial 

On the one hand a first experiment was undertaken in controlled conditions with the use of an 

experimental system of 300 liters fed continuously by water from the Meuse and spiked with a 

pharmaceutical substance mixture (theoretical concentration of 500 ng.l-1 then 1,000 ng.l-1). POCIS 

devices were exposed for 5 days. POCIS devices were taken to the field in their original containers. 

Containers were opened upon arrival at the field site. Each POCIS device was attached to a 0.5 cm 

stainless steel which was enclosed in a canister to prevent degradation by macro remains in the water 

flow. The canisters were attached and maintained in the river bed with strings. At the end of the 

sampling period, the POCIS devices were placed in alumina paper (individually) and stored at -20°C 

until analysis. In parallel, water samples were carried out regularly in order to compare results obtained 

by integrative tools and spot samplings. 

For the second experiment, POCIS devices were exposed in the Meuse for 5 days. In parallel, 

the measurement of the concentration in water was conducted at the T0 and T+5 days (22 to 27 April 

2005). Only pharmaceutical compounds were considered during this field trial.  

 

2-4-2 The Alsace pilot river basin field trial 

The watershed of the Lauch, a small tributary of the Rhine, was investigated in May and June 

2006. Several sites were investigated: groundwater (ESO 7), the river Lauch upstream (ESU 3) and 

downstream (ESU 4) of the wastewater treatment plant of Merxheim (1,300 equivalent inhabitants) and 
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the waste water treatment plant effluent (RESO 7). For each station, the monitoring approach shown in 

Figure 1 was applied. Briefly, the monitoring approach was based on the complementarity of spot 

samplings (one sampling) and passive sampling deployment (retrieval step at days 7 and 21). In this 

case, both pharmaceuticals and detergent pollutants were analysed. 

 

Figure 1: Monitoring scheme of the monitoring approach developed in the Alsace field trial. 

 

3-Results and discussion 

3-1-Validation of POCIS extraction  

For pharmaceutical substances, the average recoveries are higher than 70% for most 

compounds. For APEO, recoveries are good between 60% to 120% with standard deviation between 5 

to 8%. Considering the high variability of the physico-chemical properties of the studied compounds 

(lipophily, polarity), it appeared that this protocol was usable for this study. 

 

3-2- Spot sampling monitoring 

3-2-1 The Alsace pilot river basin field trial 

All the studied compounds are detected in all of the selected sites, which highlight a 

widespread contamination of the aquatic ecosystems by pharmaceutical substances and detergents 

(Table 2). Concerning APEOs, the concentrations in the natural environment are around a few tens of 

ng.l-1 for the p-NP, p-NP1EO. The p-NP1EC is the main measured compound in the dissolved phase 

with concentrations around a few µg.l-1. The p-t-OP is lower than the limit of detection (<2  ng.l-1). The 

influence of the effluent of the WWTP is highly significant concerning the p-NP1EC, but for the other 

 MONITORING APPROACH

SPOT SAMPLING PASSIVE SAMPLING

4 l SAMPLES

LC -ESI-MS 

FILTRATION 

(GFF, 0.7 µ m)Alkylphenol - 
polyethoxylates

0.5 l to 1l sample

SPE  ( Bondelut ® C 18, VARIAN  ) 

Pharmaceutical 
substances

0.5 l to 1l sample

SPE (OASIS MCX ®, WATERS ) 

GC- EI -MS GC- EI-MS 

Derivatization
(MSTFA) 

Deployment T=0

Retrieval T0+7 days Retrieval T0+21 days 

Storage at -20 °C

Extraction

LC - ESI-MS
GC - EI-MS

GC - EI -MS

Derivatization
(MSTFA) 

Aliquote 1 

APEO

Aliquote 2 

Pharmaceuticals
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alkylphenolic compounds the influence of the effluent does not appear to generate a marked additional 

contamination (increase in the concentrations of a factor 2 at the maximum). 

Concerning the pharmaceutical substances, the concentrations in the natural environment are 

low upstream of the WWTP effluent with values around tens of ng.l-1 and increase to several hundreds 

of ng.l-1 downstream of the WWTP effluent, depending on the compounds. An important increase of 

pharmaceutical concentrations downstream of the WWTP effluent can be noted: 700 times more 

concentrated for diclofenac, 60 times more concerning naproxen. Some compounds such as imipramine, 

amitriptyline and doxepine are below the detection limits (<2 ng.l-1). The presence of some 

pharmaceutical compounds in groundwater is shown in this study (presence of aspirin and caffeine, see 

Table 2). Other results (Ternes, 2001c; Heberer et al., 2001) have already highlighted the presence of 

pharmaceutical compounds in drinking water or in groundwater... Data seem to identify widespread 

sources of contamination concerning the APEOs (agricultural activities, spread of sewage, WWTP 

effluents...) and more punctual sources (WWTP effluents) for the pharmaceutical substances. 

 

Table 2: Concentrations in pharmaceutical substances and alkylphenol-polyethoxylates in the dissolved 

phase obtained with the spot sampling approach, in the Alsace field trial. 

Concentration (ng.l-1) Dissolved phase (<0.63µm) ESO 7 ESU 3 ESU 4 RESO7 
Groundwater Lauch Lauch WWTP 

Pharmaceutical 

substances 

ASPIRIN 37 24 72 61 
IBUPROFEN nd 2 24 23 

PARACETAMOL 5 3 59 4 

GEMFIBROZIL nd nd 13 11 

NAPROXEN 4 3 174 98 

DICLOFENAC nd 1 707 183 

KETOPROFEN 1 1 93 45 

DIAZEPAM 1 2 30 7 

CAFFEINE 61 337 227 14 

CARBAMAZEPINE 5 3 96 22 

AMITRYPTILINE nd nd nd 98 

IMIPRAMINE nd nd nd nd 

DOXEPINE nd nd nd nd 

NORDIAZEPAM 1 nd nd 7 

Alkylphenol-

polyethoxylates 

p-NP1EC nd nd 812 2,819 
p-NP 59 31 45 100 

p-t-OP nd nd nd nd 

p-NP1EO 23 17 44 55 

(concentrations are expressed in ng.l-1)  

 

3-2-2 The Meuse pilot river basin field trial 

The Meuse River seems to be moderately contaminated by pharmaceutical compounds whose 

concentrations range between tens of ng.l-1 and hundreds of ng.l-1, depending on the compound (Table 

3). Concentrations are in the same range as those measured in other estuaries (Hilton and Thomas, 

2003). What is really significant is the fluctuation of the concentrations even on a short scale of time (5 

days). The important variations of the flow can explain the differences of concentrations between two 
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measurements corresponding to a dilution phenomenon. This is a good example of the complexity 

encountered when trying to acquire representative environmental data. 

Spot samplings show a chronic contamination of the investigated sites. Measured 

concentrations varied from ng.l-1 to more than µg.l-1, depending on the compound and the location. 

Although the limits of detection of the analytical protocols are satisfying (< 2ng.l-1), they are still too 

high to quantify some compounds such as diazepam or p-t-OP. These two features (variability and 

sensitivity) highlight a crucial key-point of environmental monitoring: the representativeness of 

measured concentrations. 

 

Table 3: Concentrations in pharmaceutical substances in the dissolved phase obtained with the spot 

sampling approach, in the Meuse field trial. 

(concentrations are expressed in ng.l-1 , standard deviation is expressed as sampling variability (n=3)) 

 

3-3- The inputs given by passive sampling monitoring 

3-3-1 POCIS as an integrative tool 

Table 4: Concentrations in pharmaceutical substances (a) and alkylphenol-polyethoxylates (b) in the 

POCIS’ sorbent from the Alsace field trial. 

(a) 

C° (ng. g-1 sorbent) ESO 7 ESU 3 ESU 3 ESU4 ESU4 RESO 7 RESO 7 

ASPIRIN 357 291 391 371 675 289 571 
IBUPROFEN 64 155 388 357 1,142 1,769 4,479 

PARACETAMOL 267 847 668 658 951 1,028 264 

GEMFIBROZIL 17 16 19 122 275 804 843 

NAPROXEN 38 74 206 593 2,379 4,829 11,764 

DICLOFENAC 38 66 111 1,287 4,922 11,458 25,115 

KETOPROFEN 74 93 179.4 623 1,989 5,318 10,705 

CAFFEINE 18 1,181 1,035 1,471 1,115 2,716 194 

CARBAZ. 873 412 464 2,895 7,813 19,332 49,342 

DIAZEPAM 4 11 nd 35 45 205 284 

AMITRYPTILINE 1 9 7 100 228 727 2,093 

IMIPRAMINE nd nd nd 14 nd 76 nd 

DOXEPINE 18 6 8 19 24 nd nd 

NORDIAZEPAM 101 38 31 86 107 29 515 

(concentrations are expressed in ng. g-1 sorbent ) 

 

 

C° (ng.l-1) 22/04/2005 27/04/2005  22/04/2005 27/04/2005 

CAFFEINE 199 ± 27 18 ± 4 IBUPROFEN 37 ± 4 13 ± 2 

AMITRYPTILINE <1 <1 PARACETAMOL <2 <2 

DOXEPINE <1 <1 GEMFIBROZIL 2 ± 1 <1 

IMIPRAMINE <2 <2 NAPROXEN 23 ± 6 10 ± 1 

CARBAMAZEPINE 196 ± 33 40 ± 3 DICLOFENAC 29 ± 7 14 ± 3 

DIAZEPAM nd 8 ± 3 ASPIRIN 30 ± 6 11 ± 0,2 

NORDIAZEPAM 3 ± 1 2 ± 1 KETOPROFEN 10 ± 2 4 ± 1 
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(b) 

C° (µg.g-1 sorbent) ESO 7 ESU 3 ESU 3 ESU4 ESU4 RESO 7 RESO 7 

p-NP 0.597 0.591 0.505 0.436 0.716 1.022 5.177 
p-t-OP 0.097 nd 0.161 nd 0.123 nd 0.366 

p-NP1EC nd 0.145 0.326 4.890 13.911 35.392 95.429 

p-NP1EO 0.812 0.572 1.077 0.818 0.818 1.366 5.612 

(concentrations are expressed in µg. g-1 sorbent) 

 

Some compounds, not detected by the analysis of water (amitryptiline, doxepine, imipramine, 

diazepam,  …), are on the contrary put in evidence in the field by the use of the integrative sampler 

(Table 4). It can be noted that one of the very interesting characteristics of this new tool, is its capacity 

to allow the identification and the quantification of compounds present at concentrations lower than the 

limits of detection obtained with 1l water samples; the sampler indeed makes it possible to concentrate 

the analytes present in several litres (caffeine, ibuprofen...) or in several tens of liters (carbamazepine, 

amitryptiline...) (Table 4 a, b). 

 

3-3-2 POCIS as a pre-monitoring tool 

If POCIS sorbent contamination (ng.g-1 POCIS), for the same period of exposition, is 

compared, it appears that the contamination profile of POCIS for pharmaceutical substances as well as 

for APEOs is consistent with the level of contamination measured by spot sampling, in the Alsace field 

trial. [ESU7] < [ESO3] < [ESO4] < [RESO7] (Table 4). In consequence, it can be concluded that 

POCIS could be a very powerful tool for a pre-monitoring study. It can help to discriminate an impacted 

site from a pristine site, according to a representative scale of time. 

 

3-3-3 POCIS as a quantitative tool 

 

Figure 2: Concentrations in pharmaceuticals and APEOs in the sorbent of POCIS (ng.g-1 sorbent) after 7 

days and 21 days of deployment in the field. 

a) Trends in the Lauch River, upstream of the WWTP effluent (ESU3) 

b) Trends in the effluents of the WWTP of Merxheim (RESO7) 

a) b)
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Considering the trends of the compound adsorption on the POCIS sorbent (Figure 2), the 

adsorption does not seem to be linear. The pharmaceutical and APEO concentrations in the sorbent of 

POCIS (ng.g-1) after 7 days and 21 days of exposition in the field are not in agreement with what was 

expected. 

The calculation of ratios ([T21] / [T7]) gives 3 different tendencies in the river Lauch. For 

NP1EC, naproxen, amitryptiline and carbamazepine, ratios are close to 3; for caffeine and paracetamol 

ratios are close to 0.5, which means that there is a loss of compounds in the sorbent between the two 

days of sampling; finally for compounds such as gemfibrozil the ratio is close to 1.  

In the WWTP effluent, tendencies are a little bit different; NP1EC and naproxen have ratios 

around 2.5; carbamazepine and gemfibrozil have ratios close to 1; caffeine, paracetamol have ratios 

below 1. Such tendencies have been mentioned previously by Togola and Budzinski (2007). Firstly, 

some fluctuations of the compound concentrations occurred in the field as well as in WWTP (Ying et 

al., 2002a; Tauxe-Wuersch et al., 2005; Vrana et al., 2005b ; Xu et al., 2006; Togola, 2006) but it is not 

sufficient to explain all the observed tendencies. Secondly, various environmental physicochemical 

characteristics are suspected to modify the adsorption rate (biofouling, suspended matter, flow, etc …) 

(Vrana et al., 2005b; MacLeod et al., 2007; Togola and Budzinski, 2007; Arditsoglou and Voutsa, 

2008). Thirdly, the fact that some degradation phenomena occurred in the POCIS sorbent cannot be 

minored. In fact, pharmaceuticals such as paracetamol, caffeine are known to be readily degradable.  

What is relevant here is the crucial point that the choice of the period of deployment: a short period (less 

than 1 week) can lead to the non detection of compounds, on the contrary a long period of deployment 

(more than 1 month, less in some cases) can lead to the degradation of compounds in the sorbent and as 

a consequence to the underestimation of field contamination. 

 

Table 5: Rs values used to estimate water contamination by pharmaceutical substances and alkylphenol-

polyethoxylates in field deployment. 

Compound Rs Compound Rs Compound Rs Reference 
CAFFEINE 0.39 DIAZEPAM 1.4 NAPROXEN 0.72 

Togola et al. (2007) 22(a) 
AMITRYPTILINE 2.24 ASPIRINE 0.04 DICLOFENAC 0.83 
DOXEPINE 2.68 IBUPROFEN 0.48 TERBUTALINE 0.83 
IMIPRAMINE 2.02 PARACETAMOL 0.12 SALBUTAMOL 0.44 
CARBAMAZ. 1.99 GEMFIBROZIL 0.27 KETOPROFEN 1.43 

Compound Rs (l.j-1) Compound Rs (l.j-1) Compound Rs (l.j-1)  
p-NP 0.1167 p-NP1EO 0.0899 p-t-OP 0.1204 Arditsoglou et al.(2008)20 (b) 

(a) stirred conditions, 20°C ; (b) stirred conditions, 23.5+/- 0.5°C 

 

By determining Rs values in the laboratory, POCIS can estimate a TWA water concentration 

in compounds of interest. Rs values have been calculated for a wide range of pharmaceutical 

compounds, under different conditions (salinity, temperature) (Togola and Budzinski, 2007). The Rs 

values obtained for a salinity of 0 PSU and a temperature of 20 °C were selected as representative of the 
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field conditions of deployment and are presented in Table 5 (Togola and Budzinski, 2007). For 

alkylphenol polyethoxylates, Rs values recently published by Arditsoglou and Voutsa (2008) were used 

in order to estimate a derivatized water concentration and are summed in Table5. The comparisons of 

measured concentrations (spot sampling) with estimated ones (passive sampling) are shown in Figures 

3-4 and Table 6.  

Figure 3: Comparison of the concentrations in pharmaceutical compounds in water (ng.l-1) given by 

discrete sampling and POCIS, during the Meuse river field trial. Trends in the controlled experiment 

diverted from the Meuse River. 

 

For pharmaceuticals, it can be noted that, in both cases, POCIS tools overestimate the 

pharmaceutical concentration. The trends are lower in the controlled experiment than in the field (Figure 

3, Table 6).  

 

Table 6: Concentrations (ng.g-1sorbent) in pharmaceutical compounds in POCIS’ sorbent after 5 days of 

deployment in the Meuse River (n=3). Calculated concentrations (ng.l-1) from POCIS sorbent. 

 
Average concentration in the POCIS sorbent 

(ng.g-1+/- standard deviation) 

Average calculated concentration in the Meuse river 

(ng.l-1 +/- standard deviation ) 

CAFFEINE 9,982 +/- 25% 5,145 +/- 1,286 
AMITRYPTILINE 96 +/- 41% 9 +/-  4 

DOXEPINE 199 +/- 48% 15+/- 7 

IMIPRAMINE 331 +/- 51% 33+/- 17 

CARBAZ. 1,064 +/- 9% 107+/- 10 

DIAZEPAM 505 +/- 36% 72+/- 26 

ASPIRIN 309 +/- 47% 1,546+/- 1,144 

IBUPROFEN 932 +/- 11% 388+/- 43 

PARACETAMOL 2,923 +/- 30% 4,871+/-1,471 

GEMFIBROZIL 293 +/- 64% 217+/- 139 

NAPROXEN 387 +/- 15% 108+/- 16 

DICLOFENAC 928 +/- 6% 223+/- 13 

KETOPROFEN 593 +/- 43% 83+/- 36 
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In the Meuse River, as mentioned above, there has been a sudden modification of the flow due 

to important load consecutively to a storm episode. In the controlled experiment, the Meuse River 

waters were stocked before being introduced in the system; the suspended matter level was also 

decreased by decantation and river flow variations were attenuated by the tank. Nevertheless, the 

estimated concentrations are still not those expected, especially for small molecules which are, as 

mentioned above, readily degradable. One explanation can be related to the fact that the Rs calculated in 

laboratory are not representative, even if there is a will to mimic as close as possible environmental 

conditions.  

For APEOs, depending on the compound and the site, both under-estimation (p-NP in 

groundwater (ESU7)) and overestimation were observed (Figure 4); overestimation of water 

concentrations by POCIS was usually noticed and could reach maximal values in the effluents (430% 

for p-NP and 605% for p-NP1EO). It is interesting to note that the closer values for the less impacted 

medium: groundwater. One more time, physicochemical parameters can be incriminated; nevertheless 

the discrepancies in the methodology can also be highlighted as a significant parameter. In fact, it is 

difficult to simulate relevant parameters such as flow and turbidity. The presence of dissolved organic 

carbon has also been brought out by several authors (Vrana et al., 2006). It appeared that the use of 

POCIS as a quantitative tool would require a calibration sets in the field. Zhang et al. (2008) conducted 

a two times development for pharmaceuticals and endocrine disruptors: the first one under laboratory 

conditions and the second one under field conditions; they obtained good agreement between theoretical 

and measured concentrations for pharmaceutical compounds but some discrepancies still remain for 

endocrine disruptors. 

 

Figure 4: Comparison of the concentrations in APEOs compounds in water (ng.l-1) given by discrete 

sampling and POCIS, during the Alsace field trial. Trends in various impacted systems 

4- Conclusions and perspectives 
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This work is one of the first involving the laboratory development and field experiments of 

POCIS for a quantitative monitoring purpose. It highlights the fact that POCIS can become a powerful 

pre-monitoring tool under WFD directive. In fact, POCIS tools present 2 notable characteristics: the 

first one is their capability to integrate contaminants which are present in aquatic systems, at a wide 

range of concentrations; the second one, which is derived from the first one, is their specificity for 

screening purposes, as illustrated in this study by the identification of molecules that were not detected 

by spot sampling. Although, some care has to be taken; some degradation phenomena may occur in the 

sorbent. Nevertheless, this work highlighted the fact that, to date, POCIS cannot be considered as a 

quantitative monitoring tool. Crucial points have to be especially investigated. The first key point is the 

choice of the deployment period: some field deployments need to be carried out in order to find the 

appropriate duration. Secondly, the Rs values still need to be validated. By far, several key parameters 

need to be tested: flow, biofouling and suspended matter at least. Field calibration of the tool appears, 

now, inevitable. Meanwhile, recent works conducted by Mazzella et al. (2007) who found a PRC for 

POCIS tools allow us to think that some alternatives might be found to overcome such limitations. 
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Résumé : 

Cette étude décrit un travail de surveillance d’envergure effectué afin d'établir dans quelle 

ampleur l'estuaire de Seine : l’estuaire français le plus impacté par les activités anthropiques, peut être 

affecté par les composés alkylphénoliques. 5 années de suivi ont permis d’établir un état chronique de 

contamination de l'estuaire par les métabolites de biodégradation des NPEO, avec des concentrations en 

composés qui peuvent atteindre le µg.l-1. La distribution des molécules entre les phases dissoutes et les 

phases en suspension a été tout particulièrement surveillée, confirmant la nécessité de considérer ces 

deux phases dans les études de surveillance du milieu aquatique. Les matières en suspension peuvent 

être considérées comme des puits temporaires pour les composés alkylphénoliques et par conséquent 

comme des sources secondaires jouant un rôle dans leur dispersion dans les systèmes. La dynamique 

intrinsèque de l'estuaire a également été précisée. Même si des apports significatifs vers l'estuaire marin 

ont été mis en évidence, des phénomènes de dilution, rapides, se produisent. Néanmoins, il apparait que 

les niveaux de concentrations mesurées en estuaire sont proches ou supérieurs aux valeurs prédites sans 

effet, par conséquent un risque chimique lié à la présence des composés alkylphénoliques dans l'estuaire 

de seine existe.  

 

Mots clés: alkylphénol-polyethoxylés, nonylphénols, estuaire, phase dissoute, matières en suspension, 

tendances temporelles, tendances saisonnières. 
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Abstract  

This work describes a large monitoring study made in order to establish to what extent the Seine 

estuary (the most anthropized French estuary), may be impacted by alkylphenolic compounds. The fifth 

year survey has higlighted a chronic state of contamination of the estuary with concentrations of 

compounds which can reach µg.l-1. Partition between dissolved and particulate phases has been 

monitored, confirming the necessity to consider both phases in environmental monitoring. Suspended 

matter can be considered as a temporary sinks for alkylphenolic compounds and in consequence as a 

secondary source for long term dispersion. The intrinsic dynamics of the estuary have also been pointed 

out. Even if significant loads in the marine estuary have been highlighted, rapid dilution phenomena 

occur. Nevertheless, it has to be considered that the measured levels of metabolites are closer or higher 

than the predicted no effect concentration, as a consequence a chemical risk due to the presence of 

alkylphenolic compounds exists in the Seine estuary. 

 

Keywords: Alkylphenol polyethoxylates, nonylphenols, estuary, dissolved phase, suspended matter, 

temporal trends, seasonal trends 

 

1-Introduction 

Throughout the last 60s decades, there has been a great emerging concern about the potential 

dangers of anthropogenic chemicals in the environment; endocrine disruptors are by far of main 

concern. A combination of environmental and field studies shows the estrogenic effects of sewage 

effluents on fish species: trout and roach (in EDC, Harrison, 1999). Among well known or suspected 

endocrine disruptors, natural and synthetic hormones, phytoestrogens, polychlorinated biphenyls, 

dioxins, phthalates and alkylphenol polyethoxylates (APEOs) can be pointed out. 
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Alkylphenol polyethoxylates (APEOs) are one of the main non-ionic surfactant groups. 80% 

are nonylphenol polyethoxylates (NPEOs). They are largely used, worldwide, for their properties as 

detergents, emulsifiers, adjuvants and wetting agents in industrial, institutional and domestical 

applications: giving them a lot of entrance door towards the aquatic environment. In fact 60% of APEOs 

are estimated to be released in aquatic systems (Ying et al., 2002;Vazquez-Duhalt et al., 2006; Soares et 

al., 2008). Their physico-chemical properties and their biodegradation properties endow them with good 

dispersion capabilities in the aquatic environment, where APEOs are ubiquitous. Furthermore, the 

ultimate biodegradation products, nonylphenol (NP) in the case of NPEOs and octylphenol (OP) in the 

case of OPEOs are persistent and toxic at environmental measured concentrations (Ying et al., 2002; 

Vazquez-Duhalt et al., 2006; Soares et al., 2008). In fact, APEO metabolites are weak endocrine 

disruptors; they have been shown to display estrogeno-mimetic activities due to their agonist properties 

toward the estrogen receptor (R M Harrison, 1999; Lintelmann et al., 2003; Mills and Chichester, 2005). 

Although there are numerous environmental data of the state of contamination of aquatic systems by 

APEOs and their metabolites (Jonkers et al., 2003; Li et al., 2004a; Jonkers et al., 2005a; Jonkers et al., 

2005b; Chen et al., 2005;  Chen et al., 2006; Zoller, 2006; Xu et al., 2006; Pojana et al., 2007; Li et al., 

2008; Ribeiro et al., 2008a; Ribeiro et al., 2008b), there is still a need for awareness about their fate and 

behaviour in estuarine systems.  

 

The present work focuses on the understanding of the environmental fate of APEO 

metabolites in a complex ecosystem: the Seine estuary. The objective was at first to evaluate the state of 

contamination of the Seine estuary (dissolved phase, suspended matter (SPM)) and secondly to 

understand the intrinsic dynamics and specificity of the system. Numerous sampling compaigns have 

been held between years 2002-2006 focusing on both wastewater treatment plant effluents and 

surfacewater. 

  

2-Material and methods 

2-1-Study area 

The Seine River, which flows out onto the north-western European continental shelf, has a 

macrotidal estuary, of which 120 km are under a dual marine-river influence (Guezennec et al., 1999). 

The watershed of the Seine estuary is 79,000 km2; it represents about 25% of the French population and 

40% of the French economic activities. The river estuary is characterized by a turbidity maximum zone 

(TMS) which is a zone of maximum turbidity specific of estuaries, ranging between freshwaters which 

are heavily charged with suspended material and marine salt water Guezennec et al. (1999). For more 

than 10 years, screening programs have focused on the Seine hydrosystem (Programs “SEINE-AVAL” 

(http://seine-aval.crihan.fr/webGIPSA), “PIREN-SEINE” (http://www.sisyphe.jussieu.fr/internet/piren)). These works have 

pointed out a chronic state of contamination for a large scale of pollutants: PAHs (Cailleaud et al., 



Publications 
 

 Page 344 
 

2007), PCBs (Cailleaud et al., 2007; Bodin et al., 2007), steroids (Labadie and Budzinski, 2005) and 

more recently pharmaceutical compounds (Tamtam et al., 2007; Togola and Budzinski, 2007). 

Furthermore, several interdisciplinary studies have revealed that genotoxic effects (Cachot et al., 2006; 

Rocher et al., 2006; Rombke et al., 2007) and reprotoxic effects (Minier et al., 2000; Peck et al., 2007) 

occurr in the Seine hydrosystem.  

 

2-2-Sampling campaigns 

Several campaigns were carried out during the years 2002-2006 and aimed to characterize 

effluents loads and surface waters. Semi-monthly follow-up was held throughout the year 2002-2003, 

they focused on 4 points the Seine estuary (Poses, Elbeuf, Rouen, Honfleur) and in the same time on the 

3 main wastewater treatment plants (WWTP of Elbeuf, Rouen and Tancarville) (IS1). Further sampling 

campaigns were also carried out in May 2005 and February 2006. Moreover, sampling campaigns were 

especially conducted at Honfleur (Kp350). Besides these samplings, 2 sampling campaigns were carried 

out in a fixed point at Honfleur (Kp350) in May 2004 (tidal coefficients (71), (74)) and June 2004 (tidal 

coefficients (63), (64)) and had for objective to study the variation of concentrations and potential 

transfer mechanisms of APEO metabolites during a tidal cycle. 2 campaigns were also conducted in the 

marine estuary in June 2003 and November 2004 (IS1). At each point, 2 samples were taken: the first 

one in the sub-surface (0.1 m depth) and the second one in the bottom of the water column.  

After sampling, the unfiltered water was stored, in amber glass bottles (which has been 

previously washed with acid reagents and heated at 450°C for 6 hours) in a cooler at 4°C until analysis. 

Sample treatment occurred in the first 48 hours following the sampling in order to prevent 

biodegradation phenomena. 

 

2-3-Standards and Reagents 

Unlabeled p-n-nonylphenol (98%+, p-n-NP), p-n-nonylphenol monoethoxylate (95%+, p-n-

NP1EO), nonylphenoxyacetic acid (ring chain isomers) (98%+, 4-NP1EC) were purchased from 

Promochem. (Molsheim, France) (100 µg.ml-1 in nonane, respectively). 4-nonylphenol (100%, 4-NP, 

technical), 4-nonylphenol-monoethoxylate (99.5%, 4-NP1EO) and 4-nonylphenol-diethoxylate (99.5%, 

4-NP2EO) were purchased from Sigma Aldrich (Saint Quentin Fallavier, France). The spiked solutions 

were prepared in methanol at concentrations of 1µg.ml-1 of each compound. 

Methanol (MeOH) was for the analysis of pesticide residues from Merck (VWR international, 

Strasbourg, France). Dichloromethane (DCM) was for organic residue analysis from J.T.Baker; water 

used for LC/MS analysis was from JT Baker (Atlantic Labo, Bruges, France). All the above solvents 

were used without further purification. Water used for solid phase extraction was Evian water in glass 

bottles and has been tested for low level of NP before (<5 ng.l-1) (France Boisson, France). 
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Hydrochloric acid (minimum purity 37%) was purchased from VWR international (Strasbourg, France). 

Ammonium acetate (minimum purity 98%) was purchased from Sigma Aldrich (Saint Quentin 

Fallavier, France). All the chemicals were tested for background levels for the compounds of interest. 

Due to the ubiquitous occurrence of alkylphenols and alkylphenol polyethoxylates, materials 

in plastic and detergents, glassware was chosen to avoid contamination of the sample. Furthermore, all 

the glassware and sampling apparatus required special treatment prior to use. All the glassware was 

washed and then heated at 450oC for 6h prior to use. Whatman GF/F glass fibre filters (pore size 0.7 

µm) were purchased from VWR International (Fontenay-sous-Bois, France) were also heated at 450oC 

for 6 h prior to use. 200 mg Bondelut® C18 cartridges were purchased from Varian (Courtabœuf, 

France). 

 

2-4-Extraction procedures 

The protocols have been published previously (Pan et al., submitted; Lardy-Fontan et al. 

submitted). Briefly, between 1 l and 4 l of water samples were filtered through GF/F glass fiber filters. 

The treatment of the dissolved phase occurred in the 48 hours following the sampling in order to prevent 

biodegradation phenomena. The extraction was made by solid phase extraction (SPE) on Bondelut® C18 

cartridges (200 mg, 3 cc,Varian). The elution was achieved with 5 ml of a mixture of 

methanol/dichloromethane (50/50; v/v). The extracts were evaporated under a nitrogen flux prior to LC-

ESI-MS analysis (SIM) (100 µl to 300 µl final extracts). 

The suspended matter materials were stored at -20°C until the analysis. After freeze-drying, 

the samples were extracted by microwave assisted extraction MAE with 40 ml of a mixture of 

methanol/dichloromethane (3/1; v/v). The raw extracts were then filtered and reconcentrated to a few 

millilitres using RapivVap® (Bioblock, Fontenay sous bois, France). They were then redissolved in 60 

ml of Evian® water (pH 2) to undergo a purification step according to the same C18 cartridge protocol as 

the dissolved phase. Identification and quantification were performed by reversed phase liquid 

chromatography coupled with electrospray mass spectrometry, in SIM mode (Agilent technologies 1100 

series LC-MSD, Palo alto, USA).  

The HPLC separation was achieved on a 3.5 µm, 150 × 2.1 mm i.d. C18 reversed-phase 

column (Zorbax-SB, Agilent, USA) and the same kind of guard column with gradient elution procedure 

The injection volume was set at 5 µl, and the flow rate was 0.15 ml.min-1. Detection was carried out 

using an Agilent 1100 series LC/MSD mass selective detector equipped with an electrospray interface 

in Single Ion Monitoring (SIM) mode. NP, OP, NP1EC were detected under negative ionization (NI) 

conditions as [M-H]-, m/z 219, 205, 277 respectively. NP1EO and NP2EO were detected under positive 

ionization (PI) conditions as [M+NH4]
+ and [M+Na]+, m/z 282 and 331 respectively (Pan et al., 

submitted). 
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2-5-Quality Assurance /Quality Control 

All the chemicals and solvents were tested for background levels for the compounds of 

interest. Due to the ubiquitous occurrence of alkylphenols in plastics and detergents, glassware and 

sampling apparatus require special treatment prior to use. All the glassware was washed and then heated 

at 450oC for 6 h prior to use.  

The quantification was performed by an external calibration. Each series of injection was 

preceded by the injection of an analyte mixture (at known concentrations) from which a 5 point 

quadratic calibration curve was established (R2>0.99). Moreover, a pseudo-unknown standard solution 

was also injected during each sequence in order to make sure of the linearity and sensitivity of the LC-

MS. To each extraction series a protocol blank was joined in order to show evidence of contamination 

during the different analytical steps. Small amounts of 4-NP has been quantified in some cases (<30 ng), 

while for the other analytes blank signals were absent. Moreover, spiked water, which follows all the 

experimental procedure, was joined to each extraction series. Reported concentrations were corrected 

for the blank values and the recoveries. Developped analytical methodologies show recovery rates upper 

than 80% with relative standard deviation of 20%, satisfactory repeatability and reproducibility. 

Furthermore, optimized methodology displays good sensitivity 1-5 ng.l-1 for the dissolved phase, tens 

ng.g-1 for suspended solids (Pan et al., submitted; Lardy-Fontan et al., submitted). 

 

3-Results and discussion 

3-1-Occurrence of NPEOs in WWTP 

3-1-1Temporal trends in the Occurrence of NPEO in WWTPs effluents 

Concerning the dissolved phase, results show variations of the concentrations (ng.l-1) 

according to the station, the period of sampling and the compound considered by a factor from 10 to 200 

(IS2). The 4-NP1EC is the major compound of the dissolved phase with maximum concentrations of 

11,637 ng.l-1 in July 2003 for the WWTP of Elbeuf, 6,138 ng.l-1 in July 2002 for the WWTP of Rouen 

and 7,384 ng.l-1 in July 2003 for the WWTP of Tancarville. It shows amplitudes equal to a factor of 10 

between the concentrations of the hottest months (July) and those of the coldest months (February). The 

4-NP1EC results from the aerobic biological breakdown of NPEOs, which is thermo-dependent (Di 

Corcia et al., 1998). This seems to confirm the existence of intrinsic seasonal dynamics of WWTPs, 

which have been highlighted before (Ahel, 1994; Tanghe et al., 1998). The concentrations of other 

metabolites are weaker, between 8 and 768 ng.l-1 for the 4-NP1EO, between 2 and 437ng.l-1 for the 4-

NP2EO and between 39 and 627 ng.l-1 for 4-NP. Concerning the suspended solids, the concentrations 

vary from several hundreds of ng.g-1 to several tens of µg.g-1 (2,070-20,599 ng.g-1 at the WWTP of 

Elbeuf, 508-15,041 ng.g-1 at the WWTP of Rouen and 2,100-23,047 ng.g-1 at the WWTP of 

Tancarville). In May 2005, the dissolved phase is predominant and represents of effluent contamination, 
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depending on the compound. On the contrary, its part decreases to ,in February 2006 (Figure 1). It may 

be assumed that due to high flows arriving in the WWTP, the hydraulic residence time, which is a 

prevalent factor for the elimination rate of organic compounds as for APEOs in WWTPs (Langford et 

al., 2005; Bruchet and Janex-Habibi, 2007) was shorter. Consequently the efficiency of processes could 

be significantly lowered and allowed the loads of less purified water to the system (characterized by 

high levels of 4-NP). 

 

 

Figure 1: Distribution of NPEO in WWTP effluents: Part of each phase in the total concentration 

(expressed in ng.l-1), in 2 seasons. a) Winter, February 2006 (wet conditions); b) Spring, May 2005 (dry 

conditions). 

 

3-2-Fate and Occurrence of APEO metabolites in the Seine estuary 

3-2-1 Fate and occurrence of APEO metabolites in the fluvial estuary 

a) Temporal trends 

As shown in IS3 the dissolved phase is dominated by 4-NP1EC throughout the estuary and 

whatever the season (with the exception of February 2006 as discussed in the previous section) with 

concentrations of hundreds to thousands of ng.l-1 (IS3). The seasonal trends are significant for 4-NP1EC 

with higher concentrations observed in the summer months, which is consistent with previous works (Li 

et al., 2004a;  Li et al., 2004b) (IS3). Wang et al. (2006) concluded that the formation of 4-NP1EC was 

due to both phenomena: biodegradation and photooxydation processes, clearly dependent on the season. 

4-NP1EO, 4-NP2EO and 4-NP are quantified at all the stations during all the sampling periods. Their 

concentrations are lower by a factor of around ten than 4-NP1EC concentrations, with concentrations 

ranging from tens to hundreds of ng.l-1.  

Concerning the suspended solid phase contamination, it can be ascertained that, in most cases, 

4-NP is the predominant form in the solid phase with higher concentrations of more than µg.g-1, 

followed by 4-NP1EO and 4-NP2EO with concentrations between tens to thousands of ng.g-1. As stated 
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before and as shown in Figure 2, there is a variability in the occurrence of NPEOs in the Seine estuary. 

By adjusting the total concentration (expressed in ng.l-1) by the flow (at Poses station), the quantity of 

NPEO metabolites which enter the estuary can be estimated (expressed in kg.d-1) (Figure 2). Of course, 

the fact that longer chain ethoxymers have not been measured has to be taken into account. It leads to 

the underestimation of the quantity of NPEOs entering the system. It appears that the fluctuations of 

measured concentrations at Poses cannot be exclusively explained by flow (alternation of low water and 

swelling) but in a part by the variation of quantity of NPEOs and metabolites entering the system. The 

quantity fluctuates with an amplitude of 7 (Figure 2). Several hypotheses may be put forward: firstly, 

the fluctuation of uses (pesticide spreading, industrial production dynamics) which induces variations of 

the load to WWTPs and aquatic systems; secondly, the existence of punctual, sporadic loads to the 

system; thirdly, the seasonal dynamics of WWTPs upstream of the estuary (WWTPs of Achères and 

Colombes) and their dysfunctioning period. 

 

Figure 2: Quantity (kg.day-1) of APEO entering the Seine estuary at Poses level, temporal trends (2002-

2006) (a). Measured flow (m3.s-1) at Poses dam all through the studied period (b). 
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a) Fate in the estuary 

The concentrations of NPEO metabolites in the dissolved phase fluctuate in function of the 

sampling period (Figure 3a). Fistly, it appears that global contamination of the dissolved phase is 

significantly upper in May 2005 than in February 2006. In May 2005, the dissolved phase is dominated 

by 4-NP1EC (685 to 1,128 ng.l-1), followed by 4-NP1EO and 4-NP2EO (59 to 200 ng.l-1) and finally 4-

NP (161 to 311 ng.l-1). It appears that the amplitude of concentrations is around a factor of 2, the 

concentrations are constant throughout the estuary. In February 2006, the situation is very different.In 

this case, the dissolved phase is dominated by 4-NP (338 to 107 ng.l-1), followed by 4-NP1EC (123 to 

181 ng.l-1), 4-NP1EO and 4-NP2EO with concentrations around tens of ng.l-1. Once more the 

concentrations are constant throughout the estuary with an amplitude of concentrations around a factor 

of 2. If we compare the contamination levels of both campaigns, it can be observed that the rules of 

dilution phenomena (decreasing in the concentrations for all the compounds) are not respected, the 

observations held in February are unusual in terms of distribution with 4-NP which is the predominant 

compoud of the dissolved phase. In February 2006, the sampling campaign followed a swelling (flow 

value~600 m3.s-1). In consequence a further hypothesis can be put forward to explain such situation. 

Firstly, this swelling was the first since 2004, consecutively the swelling of the catchement area 

(spreading sludges, agricultural uses) should have been very efficient in bringing NPEO metabolites to 

the system, especially high levels of 4-NP. Secondly, it is well known that when WWTPs are confronted 

with high flows, the hydraulic residence time in the sewage is shorter, in consequence the removal rates 

are lowered. It can reasonably be assumed that the specific contamination profile of February’s waters 

should be largely explained by such phenomena. In fact, upstream of Poses Dam, are located WWTPs 

which are in charge of the treatment of the raw waters of the Paris area (urban area of more than 15 

millions inhabitants) among which the WWTP of Achères (2,100,000 Equivalent inhabitants) and the 

WWTP of Colombes (240,000 Equivalents inhabitants), it can be assumed that, during rainy seasons, 

they releas untreated waters to the Seine River, which can explain the low level of 4-NP1EC (which is a 

biodegradation product generated during WWTP processes). Thirdly, it can be assumed that both 

hypotheses have been emphasized by the season conditions (low temperatures (6°C), short spell of 

sunshine) which are not favorable for efficient degradation phenomena (Staples et al., 1999; Ahel et al., 

2003). 

In both campaigns, we can observe the predominance of 4-NP in the solid phase (2,015 to 832 

ng.g-1 in May 2005; 1,153 to 232 ng.g-1 in February 2006), followed by 4-NP1EO and NP2EO (1,237 to 

350 ng.g-1 in May 2005; 1,079 to 180 ng.g-1 in February 2006); 4-NP1EC is below our detection limit in 

most cases (tens ng.g-1). In both campaigns, we can observe a dilution phenomenon along the estuary 

(decrease of concentration in ng.g-1 d.w.) (IS3, Figure3b). Meanwhile, if we look at the part of each 

phase in the total concentration of 4-NP in the sampling campaign of May 2005 (Figure 3c), we can 

observe an increase of the contribution of the suspended solids phase: less than 10% to more than 30% 
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(less than 5% to more than 25% in February 2006) along the estuary with the increase of the total 

supended solids (TSS). 

To go further with the study of the fate of NPEOs in the estuary and especially the trends in 

the concentrations from the upstream part to the downstream part, some more hypotheses can be put 

forward. Even if the principal load is from the Paris area, it can be assumed that watershed contributions 

participate in the chronic state of contamination throughout the estuary and compensate the degradation 

phenomena which may occur in the estuary by continuous loads of “fresh” APEO metabolites. 

Furthermore, as suggested by several authors (Wang et al., 2006; Wang et al., 2007) degradation (biotic 

as well as abiotic) phenomena are reduced by the presence of TSS. As the load of TSS increases through 

the estuary, it can be assumed that the degradation rate decreases from Poses to Honfleur. 

 

 

 

 

 



Publications 
 

 Page 351 
 

 

Figure 3: Occurrence and fate of NPEO metabolites throughout the Seine estuary in May 2005 and February 2006. 

a) Concentrations (expressed in ng.l-1) of the dissolved phase in NPEO metabolites 
b) Concentrations (expressed in ng.g-1 d.w.) of the suspended matter phase in NPEO metabolites 
c) Part of each phase (dissolved and solid phases) to the total contamination of the water column by NPEO metabolites 
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3-2-2 Fate and occurrence of APEO metabolites: the key point of Honfleur 

Because of its particular location in the estuary, the site of Honfleur has been more deeply 

investigated (in fact, it is a transition point from the fluvial estuary to the marine estuary). 

a) Temporal trends 

As said before, 4-NP1EC is predominant with concentrations of more than hundreds of ng.l-1 

in any cases (sum of the dissolved phase and suspended solids). 4-NP is quantified at concentrations 

between 62 and more than 684 ng.l-1, which represents a significant load to the marine system (Figure 

4). A five-fold fluctuation of the concentrations can be observed (February 2003 compared to July 

2003) which is not surprising considering the fluctuations of NPEOs entering the system and the 

seasonal trends that have been presented in the previous section (Figure 4). No decreasing in the 

contamination is observed in 2005. 

 

 

Figure 4: Concentrations (sum of suspended solid+dissolved phase, ng.l-1) of nonylphenolic 

compounds at Honfleur level, temporal trends (2002-2005). 

 

b) Tidal cycle 

As it was difficult to highlight transfer phenomena, a focus on a small scale of time (a tidal 

cycle) was performed. First, it can be observed that the variations of concentrations follow the salinity 

gradient: highest concentrations are observed for the lowest salinity (Figure  5). It is interesting to note 

the two opposite tendencies observed in May 2004 and June 2004. In May, the highest concentrations 

were obtained for surface water with a maximum concentration of almost 2,500 ng.l-1. On the contrary 

in June, bottom water seems to be more contaminated with a maximum concentration of 1,800 ng.l-1. 

Here, we can notice, an abnormally contaminated marine point (June 2004), it can be assumed that it 

was a consequence of a handing-over in the suspension of sediments which can be related to biological 
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activities (bioturbation), frequent dredges occurring in the estuary. In May, the flow value was 508 

m3.s-1 and in June the flow was 243 m3.s-1, in consequence the dilution phenomena cannot explained 

the observed trends. In June the water temperature was higher than in May (20°C in June, 15°C in 

May), in consequence it can be assumed that biodegradation phenomena were more efficient in June; 

in fact biodegradation efficiency is controlled by temperature and thus affect biodegradation rates of 

NPEOs. Furthermore, in June the sunlight period is longer and the sunligt intensity stronger, in 

consequence it can be assumed that photodegradation phenomena, susceptible to occur in the 

superficial layer of the water column, were more efficient and explain the higher level of NPEO 

metabolites in the bottom water by comparison of the subsurface water. 

 

 

Figure 5: Occurrence and fate of nonylphenolic compounds during a tidal cycle, at 2 levels of the 

water column: subsurface water (0.1 m depth) and bottom water, at Honfleur. 

a) Concentrations of NPEO metabolites in May 2004. Total concentrations (sum of all the quantified 

nonylphenolic compounds in both dissolved and suspended phases) are expressed in ng.l-1. b) Concentrations of 

NPEO metabolites in June 2004. Total concentrations (sum of all the quantified nonylphenolic compounds in 

both dissolved and suspended phases) are expressed in ng.l-1 

 

3-2-3Fate of NPEO metabolites in the Seine marine estuary 

In the marine estuary, the main phenomenon which proceeds is dilution (Figure 6). This 

phenomenon is more obvious for the 4-NP1EC, with a correlation of more than 90% between the 

measured concentrations and salinity. For the other compounds, the correlations are less strong (such 

as for 4-NP with a correlation of 55%), which let think that the degradation phenomena initiated in the 

estuary continue, but in a less efficient way. Some studies showed that the rates of degradation NPEOs 

and their metabolites in the marine environment could be weaker than in brackish waters (Mann and 

Boddy, 2000). Moreover, it can be supposed that sedimentation phenomena occurre at the mouth of 

the estuary. 
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Figure 6: Fate and occurrence of the nonylphenolic compounds in the marine estuary in 2 seasons July 

2003 and November 2004. 

a) Fate of NPEOs in the surface part of the water column. Concentrations (sum of suspended solids and 
dissolved phases) are expressed in ng.l-1. 
b) Fate of NPEOs in the bottom part of the water column. Concentrations (sum of suspended solids and 
dissolved phases) are expressed in ng.l-1. 
 

4-Conclusions and perspectives 

 

This research study presents 5 years of follow-up work on the state of contamination of the 

Seine estuary in NPEOs. This work makes it possible to conclude in favour of a chronic contamination 

of the Seine estuary by the degradation metabolites of NPEOs in both dissolved and suspended solids 

phases. If it is compared with the tendencies measured by other research studies carried out on 

European estuaries (Kvestak et al., 1994; Kvestak and Ahel, 1994; Blackburn et al., 1999; Jonkers et 

al., 2003; Jonkers et al., 2005a; Jonkers et al., 2005b; Weigel et al., 2005; Vethaak et al., 2005), it can 

be observed that this estuary presents the same profile of contamination in terms of distribution as well 

as of quantification. However, certain specificities should be noted. It appears there is a intrinsic 

dynamic of the Seine estuary are strongly linked to the upstream part of the Seine. Indeed, works of 
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this extent (period of study, frequency of sampling) are not numerous. Even if a restriction of uses 

occured in January 2005, it does not appear for the moment that it is reflected in the french natural 

environment. It is obvious that NPEOs are still very largely employed in France. In the Seine estuary, 

the average measured values are lower than the environmental quality standard (EQS-AA 0.3 µg.l-1) 

come into effect with the adoption of the Water European Framework Directive. However, that does 

not mean that there are no chemical risks for organisms exposed to NPEOs and their metabolites in the 

Seine Estuary.  
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IS1: Presentation of the investigated sites on the Seine estuary over the period 2002
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IS1: Presentation of the investigated sites on the Seine estuary over the period 2002-2006. 
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May 2004, September 2004, November 2004,  May 2005 

May 2002, July 2002, September 2002, November 2002, March 2003, July 

2003, May 2005, February 2006 

May 2002, July 2002, September 2002, November 2002, March 2003, July 

2003, May 2005, February 2006 

May 2002, July 2002, September 2002, November 2002, March 2003, July 

2003, May 2005, February 2006 

 

Sampling Points in the Marine Estuary. 

June 2003, November 2004 
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IS2: APnEO metabolites in WWTP: Temporal trends in WWTP effluent contamination in the 

dissolved phase (expressed in ng.l-1) and in the suspended matter phase (expressed in ng.l-1). A 

five year survey. 

 

  WWTP ELBEUF WWTP ROUEN WWTP TANCARVILLE 

  
4-

NP1EO 

4-

NP2EO 

4-

NP1EC 

4-

NP 

4-

NP1EO 

4-

NP2EO 

4-

NP1EC 

4-

NP 

4-

NP1EO 

4-

NP2EO 

4-

NP1EC 

4-

NP 

May- 

02 

Diss ng.l-1 136 400 862 81 306 172 800 176 <lod <lod 307 59 

Susp ng.l-1 561 428 <lod 495 188 92 197 48 29 52 68 29 

July- 

02 

Diss ng.l-1 107 118 4,589 196 348 437 6138 461 31 22 3,943 211 

Susp ng.l-1 44 65 54 46 na na na na 16 16 15 41,8 

Sept- 

02 

Diss ng.l-1 48 5 1,233 144 172 116 2,827 271 <lod <lod 484 180 

Susp ng.l-1 29 11 102 79 38 7 19 28 6,2 10,7 27,2 29,3 

Nov- 

02 

Diss ng.l-1 45 2 886 142 193 28 2,937 195 8 8 1,01 121 

Susp ng.l-1 48 23 30 126 52 26 61 107 8 5,5 29 92 

March

- 03 

Diss ng.l-1 334 117 580 95 684 87 2,322 39 33 25 649 83 

Susp ng.l-1 30 5 42 64 36 5 48 113 42 36 66 68 

July- 

 03 

Diss ng.l-1 114 31 11,637 439 422 104 6,07 395 61 23 7,384 480 

Susp ng.l-1 86 29 19 62 40 14 7 18 4 7 58 49 

May – 

05 

Diss ng.l-1 232 142 1,861 369 377 176 4,171 627 238 259 2,166 367 

Susp ng.l-1 40 20 37 36 9 3 6 6 62 44 44 57 

Feb- 

 06 

Diss ng.l-1 768 311 1,137 576 379 152 1,555 244 46 48 677 102 

Susp ng.l-1 175 296 300 234 258 577 1,078 305 34 29 38 19 
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IS3 APEO metabolites in the Seine estuary: fate and occurrence. 

Contamination in the dissolved phase (expressed in ng.l-1) and in the suspended matter phase (expressed in ng.g-1 d.w. and in ng.l-1). A five year 

survey. 

  
March-02 May- 02 July-02 Sept-02 Nov-02 March-03 July-03 May-05 Feb-06 

  

Diss. 

ng.l-1 

Susp

. 

ng.g-

1 

Susp

. ng. 

l-1 

Diss

. 

ng.l-

1 

Susp. 

ng.g-1 

Susp

. ng. 

l-1 

Diss. 

ng.l-1 

Susp

. 

ng.g-

1 

Susp

. ng. 

l-1 

Diss

. 

ng.l-

1 

Susp

. 

ng.g-

1 

Susp

. ng. 

l-1 

Diss

. 

ng.l-

1 

Susp

. 

ng.g-

1 

Susp

. ng. 

l-1 

Diss. 

ng.l-1 

Susp

. 

ng.g-

1 

Susp

. ng. 

l-1 

Diss. 

ng.l-1 

Susp

. 

ng.g-

1 

Susp

. ng. 

l-1 

Diss. 

ng.l-1 

Susp

. 

ng.g-

1 

Susp

. ng. 

l-1 

Diss

. 

ng.l-

1 

Susp

. 

ng.g-

1 

Susp

. ng. 

l-1 

POSES'  

DAM 

NP1EO 155 
1,32

0 
39 100 1,720 42 61 

1,56

0 
13 117 28 1 141 490 20 167 520 22 60 

2,36

7 
56 136 

1,18

1 
18 80 773 76 

NP2EO 267 
1,36

0 
40 73 1,610 40 119 

2,10

0 
18 109 696 14 122 180 7 177 493 21 102 

1,68

3 
40 116 <lod <lod 87 892 88 

NP1EC 718 <lod <lod 745 <lod <lod 
2,07

2 

4,13

0 
35 766 

2,65

3 
52 538 

1,00

0 
40 

1,44

1 
<lod <lod 

2,91

3 
<lod <lod 

1,12

8 

1,10

2 
10 146 <lod <lod 

NP 203 
1,96

0 
57 121 4,220 104 14 

9,77

0 
82 195 

4,08

3 
80 205 

2,52

0 
101 288 

5,45

3 
232 

3,26

4 

4,92

2 
122 221 

2,01

5 
18 338 

1,15

3 
113 

TSS mg.l-

1 
- 29.5 

 
- 24.5 

 
- 8.5 

 
- 20.0 

 
- 40.0 

 
- 43.0 

 
- 25.0 

 
- 9.0 

 
- 98.0 

 

ELBEUF 

NP1EO 157 740 17 110 1,580 34 81 
1,99

0 
25 109 309 4 151 430 17 ns ns ns ns ns ns 168 

1,23

7 
23 47 541 25 

NP2EO 254 840 20 72 1,070 23 163 
3,42

0 
42 135 479 7 114 240 9 ns ns ns ns ns ns 138 

1,01

3 
19 75 682 32 

NP1EC 719 <lod <lod 719 <lod <lod 
2,03

5 

3,96

0 
49 435 

2,13

0 
31 661 880 34 ns ns ns ns ns ns 925 150 1 123 <lod <lod 

NP 181 
1,26

0 
29 129 4,270 91 148 

8,40

0 
104 162 

2,62

7 
38 174 

2,74

0 
106 ns ns ns ns ns ns 311 

1,94

3 
36 107 782 36 

TSS mg.l-

1 
- 23.5 

 
- 21.5 

 
- 12.5 

 
- 14.0 

 
- 39.0 

 
- - 

 
- - 

 
- 18.0 

 
- 47.0 

 

ROUEN NP1EO 114 930 9 101 1,320 36 70 2,02 22 108 523 22 ns ns ns 145 1,14 24 ns ns ns 131 863 0 50 532 55 
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0 7 

NP2EO 200 
1,31

0 
12 62 98 27 136 

2,88

0 
32 145 706 30 ns ns ns 156 

1,24

5 
26 ns ns ns 90 <lod <lod 61 

1,07

9 
111 

NP1EC 768 <lod <lod 721 <lod <lod 
1,88

2 

3,16

0 
35 457 

1,55

1 
65 ns ns ns 

1,54

9 
<lod <lod ns ns ns 622 136 1 130 <lod <lod 

NP 167 
3,41

0 
32 116 1,020 28 132 

7,10

0 
78 206 

1,60

2 
67 ns ns ns 367 

6,76

6 
141 ns ns ns 285 

1,71

4 
18 115 

1,02

8 
106 

TSS mg.l-

1 
- 9.5 

 
- 27.0 

 
- 11.0 

 
- 42.0 

 
- - 

 
- 21.0 

 
- - 

 
- 11.0 

 
- 

103.

0  

CAUD- 

-EBEC 

NP1EO 174 
2,72

0 
49 81 2,210 29 40,3 

1,05

0 
44 62 173 4 96 430 13 93 519 14 99 380 44 87 489 49 73 180 43 

NP2EO 255 
3,28

0 
59 36 520 15 55 

1,23

0 
51 64 114 2 74 190 6 102 250 7 37 283 35 59 350 35 76 193 46 

NP1EC 
1,05

1 
<lod <lod 728 <lod <lod 1531 

1,86

0 
77 651 986 20 473 

1,04

0 
31 

1,40

3 
<lod 0 

1,39

7 
<lod <lod 685 <lod <lod 181 83 20 

NP 241 
4,33

0 
78 108 1,340 26 94 

2,82

0 
117 113 

1,37

0 
28 159 

4,56

0 
135 221 

5,18

2 
143 24 

1,57

2 
189 164 832 83 170 232 56 

TSS mg.l-

1 
- 18.0 

 
- 16.0 

 
- 41.5 

 
- 20.0 

 
- 30.0 

 
- 28.0 

 
- 

121.

0  
- 99.0 

 
- 

239.

0  

TANCA

R- 

-VILLE 

NP1EO ns ns ns 91 1,29 109 46 560 36 38 42 14 93 250 11 ns ns ns ns ns ns ns ns ns na 70 39 

NP2EO ns ns ns 38 650 55 45 390 25 45 68 24 79 280 12 ns ns ns ns ns ns ns ns ns na 45 25 

NP1EC ns ns ns 777 <lod <lod 1168 
1,01

0 
65 506 <lod <lod 592 640 27 ns ns ns ns ns ns ns ns ns na 15 8 

NP ns ns ns 90 2,340 198 89 
1,66

0 
108 93 <lod <lod 144 

2,32

0 
99 ns ns ns ns ns ns ns ns ns na 56 31 

TSS mg.l-

1 
- - 

 
- 84.6 

 
- 64.8 

 
- 

347.

0  
- 43.0 

 
- - 

 
- - 

 
- - 

 
- 

558.

0  

HONF- 

-LEUR 

NP1EO 87 130 103 87 140 143 32 170 54 38 35 21 52 190 36 83 96 27 47 396 213 131 339 46 ns ns ns 

NP2EO 106 180 143 106 190 195 26 200 64 45 32 20 26 190 36 63 44 12 72 255 135 90 449 64 ns ns ns 

NP1EC 580 <lod <lod 580 <lod <lod 815 260 83 506 18 107 393 2,51 471 526 <lod <lod 588 <lod <lod 782 <lod <lod ns ns ns 
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0 

NP 131 400 318 131 220 225 69 860 275 93 177 107 101 
2,51

0 
471 91 714 197 178 739 393 161 392 54 ns ns ns 

TSS mg.l-

1 
- 

793.

0   

1024.

5  
- 

319.

0  
- 

347.

0  
- - 

 
- 

276.

5  
- 

532.

5  
- 

137.

0  
- - 

 

Diss.: Dissolved phase (<0.7 µm); Susp.: Suspended solids phase (>0.7 µm); ns not sampled 
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Publication n° 7 

Sources des métabolites d’alkylphénol-polyéthoxylés en estuaire de Seine: 

 Identification and Caractérisation 

 

Sophie Lardy-Fontan, Hélène Budzinski* 

 

Université Bordeaux 1, ISM-LPTC UMR 5255 CNRS 

351 crs de la libération 33405 Talence Cedex 

 

*Corresponding author. Tel.: 33 5 56 84 69 98 ; Fax: 33 5 56 84 69 98. 

E-mail address: h.budzinski@ism.u-bordeaux1.fr 

 

Résumé : 

   Neuf tributaires, les trois principaux effluents de stations d’épuration et la Seine ont été 

examinés pour examiner la présence des métabolites d'APEO (4-NP1EO, 4-NP2EO, 4-NP et 4-

NP1EC). Les APEO sont omniprésents dans les phases dissoutes et les phases solides en suspension. 

Bien que les tributaires et les effluents de stations d’épuration montrent une contamination 

significative par les APEO. La Seine est la source principale d'APEO pour l’estuaire de Seine avec 

plus de 95% des apports en APEO au système estuarien. Les pressions chimiques liées aux NPEO et à 

leurs métabolites ne semblent pas être liées à des tendances saisonnières. Selon les standards de qualité 

environnementale (EQS) fixés par la commission européenne, les eaux de la Seine présentent une 

qualité globalement satisfaisante. Néanmoins, un risque chimique lié à la présence d'APEO et de leurs 

métabolites dans l'estuaire de seine ne peut pas être totalement écarté. 

 

 

 

 

 

Pour soumission à Environmental Sscience and Technology 
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Sources of Alkylphenol Polyethoxylates metabolites in the Seine estuary: 

 Identification and Characterization 

 

Sophie Lardy-Fontan, Hélène Budzinski* 

 

Université Bordeaux 1, ISM-LPTC UMR 5255 CNRS 

351 crs de la libération 33405 Talence Cedex 

 

*Corresponding author. Tel.: 33 5 56 84 69 98; Fax: 33 5 56 84 69 98. 

E-mail address: h.budzinski@ism.u-bordeaux1.fr 

 

Abstract  

Nine tributaries, three main WWTP effluents and the Seine River have been checked for the 

presence of APEO metabolites (4-NP1EO, 4-NP2EO, 4-NP, 4-t-OP and 4-NP1EC). APEOs are 

ubiquitous in both dissolved phase and suspended solids. Although the tributaries and WWTP 

effluents display a significant contamination by APEOs; the Seine River is the principal source of 

APEOs in the Seine estuary with more than 95% of APEOs loads to the estuarine system. Chemical 

pressures linked with NPEOs and their metabolites do not seem to be seasonal dependent. The Seine 

River displayed a quality which appeared to be on the whole satisfactory, according to average annual 

environmental quality standard. Nevertheless, a chemical risk related to the presence of APEOs and 

their metabolites in the Seine Estuary cannot be totally discarded. 

 

1-Introduction 

Alkylphenol polyethoxylates (APEOs) are a widely used family of surfactants among which 

80% are nonylphenol polyethoxylates (NPEOs). APEOs are used in complex mixtures for a wide 

range of applications: industrial, institutional and domestic ones (Renner, 1997); giving them lots of 

dispersion possibilities through the environment, especially the aquatic system where more than 70% 

of them are expected to be released (Renner, 1997). APEOs display complex biodegradation schemes 

which lead to the formation of: parent compound nonylphenol (NP) and octylphenol (4-t-OP); shorter 

chain ethoxymers (alkylphenol monoethoxylate (AP1EO), alkylphenol diethoxylate (AP2EO)) and 

carboxylated derivatives (alkylphenoxycetic acid (APEC) and carboxyalkylphenoxyacetic acid 

(CAPEC)). Furthermore, their physicochemical properties suggest broad dispersion capabilities (Ying 

et al., 2002). APEOs are widespread contaminants of aquatic systems as they have been found from 

groundwater to marine water at concentrations ranging from ppt to ppb as well as in suspended solids 

and sediments (Ying et al., 2002; Soares et al.,2008). Several of the by-products are persistent and of 
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ecotoxicological concern, considering their potential for endocrine disruption (Soares et al., 2008). 

Because of this ecotoxicological concern, they have been banned or are under restriction in European 

countries (Soares et al., 2008). 

The goal of this work was to establish an assessment of the loads of APEOs entering the Seine 

estuary system, to characterize the contribution of sources from a qualitative and quantitative point of 

view; for this purpose both dissolved phase and suspended solids were considered. Furthermore, one 

aim was to study the seasonal dynamics of the Seine estuary catchment area. 

 

2-Material and Methods 

2-1-Sampling area 

The Seine estuary is the natural discharge system of the Seine River which flows through the 

north-west of France. It runs on a catchment area of more than 72,000 km2, characterized by high 

demographic pressure (more than 17 million inhabitants, thus 25% of the French population), high 

industrial pressure (more than 14,000 registered industries) and high agricultural pressure (more than 

104,000 agricultural exploitations, 34 % of the French production of cereals). The catchment area of 

the Seine estuary (Figure1) is drained by 9 major tributaries which display various anthropogenic 

pressures (IS1).  

Figure 1: Studied area and sampling locations. 

 

 

2-2-Sampling strategy 
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3 sampling campaigns were held: in May 2005 under springlike conditions, in February 2006 

under winter conditions (after a rise in the water level) and in July 2006 under summer conditions 

(lowest water flows). During each campaign, samplings were conducted and were related to: 1) the 9 

principal tributaries of the Seine estuary at their junction with the Seine (Figure 1 and IS 1); 2) the 

Seine at Poses’ dam (entrance point of the estuarine system), 3) the effluents of the 3 principal 

wastewater treatment plants of the Seine estuary, namely the WWTPs of Tancarville (1,800 equivalent 

inhabitants), Rouen (550,000 equivalent inhabitants) and Elbeuf (110,000 equivalent inhabitants). Spot 

samplings were performed, manually, from bridges and banks. Samples were kept, in glass amber 

bottles (previously washed and heated at 450°C, 6 hours), then stored in a cooler at 4°C until 

analytical treatment. 

 

2-3-Standards and Reagents 

 Unlabeled p-n-nonylphenol (98%+, p-n-NP), p-n-nonylphenol monoethoxylate (95%+, p-n-

NP1EO), nonylphenoxyacetic acid (ring chain isomers) (98%+, 4-NP1EC) were purchased from 

Promochem (Molsheim, France) (100 µg.ml-1 in nonane, respectively). 4-nonylphenol (100%, 4-NP, 

technical), 4-nonylphenol-monoethoxylate (99.5%, 4-NP1EO) and 4-nonylphenol-diethoxylate 

(99.5%, 4-NP2EO) were purchased from Sigma Aldrich (Saint-Quentin Fallavier, France). The spiked 

solutions were prepared in methanol at concentrations of 1 µg.ml-1 of each compound. Methanol 

(MeOH) was used for the analysis of pesticide residues and was purchased from Merck (VWR 

international, Strasbourg, France). Dichloromethane (DCM) was for organic residue analysis and came 

from J.T.Baker; water used for LC/MS analysis was from JT Baker (Atlantic Labo, Bruges, France). 

All the above solvents were used without further purification. Water used for solid phase extraction 

was Evian water in glass bottles (France Boisson, France). Hydrochloric acid (purity 37%) was 

purchased from VWR international (Strasbourg, France). Ammonium acetate (minimum purity 98%) 

was purchased from Sigma Aldrich (Saint Quentin Fallavier, France); trifluroacetic acid (ACS, 

mimimum  purity 99%) was purchased from Acros (Noisy le grand, France). All the chemicals were 

tested for background levels for the compounds of interest. 

Due to the ubiquitous occurrence of alkylphenols and alkylphenol polyethoxylates (in plastic 

materials and detergents), glassware was chosen to avoid contamination of the sample. Furthermore, 

all the glassware and sampling apparatus required special treatment prior to use. All the glassware was 

washed and then heated at 450oC for 6 hours prior to use. Whatman GF/F glass fibre filters (pore size 

0.7 µm) were purchased from VWR International (Fontenay-sous-Bois, France) and were also heated 

at 450oC for 6 hours prior to use. 200 mg Bondelut® C18 cartridges and 500 mg HF-Bondelut® PSA 

were purchased from Varian (Courtabœuf, France). 

 

2-4 Analytical methodologies  
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The protocols have been published previously(Pan et al., submitted; Lardy-Fontan et al., 

submitted). Briefly, between 1 l and 4 l of water samples were filtered through GF/F glass fiber filters. 

The treatment of the dissolved phase occurred in the 48 hours' following the sampling in order to 

prevent biodegradation phenomena. After acidification (pH 2, HCl), water was passed through 

Bondelut® C18 cartridges (200 mg, 3 cc, Varian). The elution was achieved by 5 ml of a mixture of 

methanol/dichloromethane (50/50; v/v). Solid materials were stored at -20°C until freeze-drying. 

Extraction was carried out by microwave assisted extraction MAE with a mixture of 

methanol/dichloromethane (40 ml; 3/1; v/v). The extracts were then filtered, evaporated to less than 

500 µl and redissolved in 60 ml of water (pH 2) to undergo a purification step on C18 cartridges. The 

extracts were evaporated and redissolved in methanol to a final volume of 100-200 µl.  

Identification and quantification were performed with reversed phase liquid chromatography 

coupled with electrospray mass spectrometry LC-ESI-MS, in Single Ion Monitoring mode (Pan et al., 

submitted). 

 

2-5 Quality control 

The quantification was performed by an internal calibration. To each extraction series a 

protocol blank was joined in order to show evidence of contamination during the different analytical 

steps. Small amounts of 4-NP has been quantified in some cases (<30 ng), while for the other analytes 

blank signals were absent. Moreover, spiked water (100 ng.l-1, individual compound), which follows 

all the experimental procedure, was joined to each extraction series. Reported concentrations have 

been corrected for the blank value and the method recovery. Developped analytical methodologies 

show recovery rates upper than 80% with relative standard deviation of 20%, satisfactory repeatability 

and reproducibility. Furthermore, optimized methodology displays good sensitivity 1-5 ng.l-1 for the 

dissolved phase, tens ng.g-1 for suspended solids (Pan et al., submitted; Lardy-Fontan et al., submitted) 

 

3-Results and discussion 

3-1-WWTPs contamination 

Table 1 sums up measured contamination of both dissolved and suspended solid phases by 

APEO metabolites (minimal and maximal values) in the 3 investigated WWTPs, in the course of the 

season. It highlights that dissolved phase contamination are dominated by 4-NP1EC which are the 

major NPEO metabolite whatever the season with concentrations of up to µg.l-1; followed by 4-NP 

(average values up to hundreds of ng.l-1). The suspended solid phase displays significant 

contamination between tens of ng.g-1 to tens of µg.g-1 depending on the WWTP and the season. By 

considering the TSS, the proportion of suspended solids in the global contamination varies between 

tens of ng.l-1 for 4-NP1EO or 4-NP2EO to more than hundreds of ng.l-1 for 4-NP1EC and 4-NP), 
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which can get to represent 50% of the global contamination of WWTP effluents, whatever the 

metabolites and the seasons. The increase of 4-NP1EC at the hottest time has to be noted. Such results 

are in accordance with bibliographic data which argue that seasonal trends in biodegradation 

phenomena affect both distribution and efficiency of WWTP processes (Ahel, 1994; Soares et al., 

2008). 

 

Table 1: Occurrence of NPEO metabolites in the dissolved phase and the suspended solid phase of the 

Seine estuary WWTP effluents. 

 
3-2-Tributaries contamination 

In order to simplify the general scheme, the Seine River at Poses’ dam was considered as a 

tributary of the Seine estuary. Table 2 shows the measured concentrations of APEO metabolites 

(dissolved phase, expressed in ng.l-1) for each tributary at each season. There is a generalised 

contamination of the Seine catchment area by APEOs and their metabolites which emphasize the idea 

of a chronic state of contamination of the system although some restrictions in APEOs uses have taken 

place since 2005 (Soares et al., 2008). 

The Seine River displays the highest contamination. 4-NP1EC is the major metabolite during 

the hottest season (with concentrations between 1,128 to 1,279  ng.l-1), it could represent up to 90% of 

the contamination. On the contrary, its part decreases to less than 25% in February when 4-NP is the 

principal form with concentrations of up to 300 ng.l-1. Such trends are in accordance with the fact that 

the Seine River is one of the most anthropized rivers in Europe and is the receptacle of around 25% of 

French industrial activities. Its contamination is in the same order of magnitude as those found in 

Asian, American and European Rivers (Ferguson et al., 2001; Jonkers et al., 2005a; Jonkers et al., 

2005b; Chen et al., 2005; Peng et al., 2006; Benotti and Brownawell, 2007; Ribeiro et al., 2008; 

Soares et al., 2008). 

The Eure River, the Commerce stream, the Cailly stream, the Austreberthe stream and the 

Risle River display moderate contamination profiles. The dissolved phase is dominated by 4-NP1EC 

(measured concentrations of 108 to 432 ng.l-1, except 2 points at 6 and 36 ng.l-1) which usually 

represents more than 50% of the contamination. They also exhibit 4-NP at concentrations closed or up 

to hundreds of ng.l-1. Those systems are the ultimate gathering place of moderately impacted 

 May 05 Feb 06 July 06 

 diss. ng.l-1 part. ng.l-1 diss. ng.l-1 part. ng.l-1 diss. ng.l-1 part. ng.l-1 

4-NP1EO 232-377 62-9 46-258 34-258 56-1,417 24-1,048 

4-NP2EO 142-259 3-44 48-311 29-377 <lod-129 18-103 

4-NP1EC 1,861-4,171 6-54 677-1,555 38-1,078 2,558-4,851 <lod-32 

4-NP 367-627 6-57 102-576 19-305 116-205 9-96 
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catchment areas which exhibit some industrial and domestic influenced areas. Once more 

contamination profiles are in good agreement with catchment area specificities (IS1). 

The Andelle River, the Rançon stream, the Sainte-Gertrude stream and the Robec stream 

display lowest contamination profiles. Although 4-NP1EC is quantified in some moderate extent 

(concentrations above 100 ng.l-1), 4-NP is the predominant form with concentrations from 34 to 170 

ng.l-1. Compared to previous observations, the proportion of 4- NP1EO and 4-NP2EO also increases to 

get 50% of the contamination. These systems flow on small catchments areas which display weak 

anthropization, the hypothesis of various upstream sources of contamination may be put forward. 
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Table 2: Contamination profiles (dissolved phase < 0.7 µm) of the 9 tributaries and the Seine River. 

Temporal trends of the distribution of APEO metabolites. 

 

  Seine River (Poses) Eure Commerce Cailly Austreberthe 

ng.l-1 May 05 Feb06 July06 Min-Max* May05 Feb06 July06 Min-Max* May05 Feb06 July06 Min-Max* May05 Feb06 July06 Min-Max* May05 Feb06 July06 Min-Max* 

4-NP1EO 136 80 24 2 - 12 % 73 19 18 9 – 13 % 80 36 64 8 -13 % 30 9 181 4 – 28 % 10 2 21 3 – 10 % 

4-NP2EO 116 87 8 1 - 13 % 43 16 3 2 – 8 % 42 18 18 3 – 7 % 35 8 83 4 – 18 % 30 1 3 1 – 9 % 

4-NP1EC 1,128 146 1,279 22 - 95 % 250 108 121 46 – 71 % 392 233 417 53 – 73 % 69 86 252 35 – 39 % 268 6 432 30 – 87 % 

4-NP 221 338 30 2 -52 % 178 75 28 16 – 34 % 122 151 77 13 – 34 % 63 117 128 20 – 53 % 41 11 40 8 – 55 % 

4-t-OP NA 26 <lod - NA 7 2 - NA 36 25 - NA 9 13 - NA 1 <lod - 

 

  Risle Andelle Rançon Sainte Gertrude Robec 

  ng.l-1 May05 Feb06 July06 Min-Max* May05 Feb06 July06 Min-Max* May05 Feb06 July06 Min-Max* May05 Feb06 July06 Min-Max* May05 Feb06 July06  Min-Max* 

4-NP1EO 69 15 40 3 -16 % 46 19 22 10 – 34 % 8 20 21 10 – 20  % 5 13 38 3 – 20 % 53 24 96 10 – 41 % 

4-NP2EO 115 13 16 6 -27 % 48 9 1 2 -18 % 45 26 5 4 -57  % 11 10 12 5 – 6 % 94 16 29 6 – 48 % 

4-NP1EC 155 36 115 30 – 45 % 86 24 8 13 – 32 % <lod <lod 6 0 – 5  % 15 <lod 37 0 -19 % 14 39 32 7 – 16 % 

4-NP 85 58 84 20 – 48 % 93 136 34 34 – 72 % 26 59 77 33 – 71 % 149 159 105 55 – 87 % 35 170 78 18 – 68 % 

4-t-OP NA 9 <lod - NA 14 <lod - NA 11 3 - NA 12 6 - NA 9 <lod - 

Min-Max*: minimal and maximal contribution of each metabolite to the global contamination of dissolved phase 
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3-3-Partition between suspended solids and liquid phases  

Figure 2: Part of each phase (dissolved phase and suspended matter phase) in the global 

contamination (expressed in ng.l-1) of 5 tributaries of the Seine estuary by 4-NP1EO and 4-NP.  

a) May 2005, b) February 2006, c) July 2006 

 

In the past, the study of APEOs was restricted to the dissolved part of the aqueous phase. As 

highlighted in a previous section, significant loads of APEO metabolites via suspended solids are 

found in WWTP effluents. The issue of the role played by the suspended solid phase in natural 

systems obviously must be raised. Figure 2 presents the contribution of each phase to the global 

contamination of 5 tributaries (for 4 of them, insufficient suspended solid materials were obtained 

despite a sampling volume of 4 l; consequently the extraction could not be done) in the course of 

season (May 2005, February 2006, July 2006). Depending on the site and the season, particulate phase 

contamination is between 3 and 52 ng.l-1 for 4-NP1EO and 3 to 30 ng.l-1 for 4-NP. In most streams 4-

NP1EO is the predominant form of NPEO metabolites before 4-NP. Contrary to effluents, 4-NP1EC is 
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under the limit of detection (< to tens ng.g-1) whereas it is the predominant form in WWTPs. These 

results are in accordance with previous ones Lardy-Fontan S.) which hypothesizes a punctual trapping 

of acidic forms. In fact, as it has been shown for acidic pharmaceuticals, acidic compounds did not 

adsorb to suspended solids due to the existence of negative charges at environmental pH (Ra et al., 

2008). For NPEOs, suspended solids can represent up to 50% of the global contamination (Commerce 

stream, May 2005) even if average measures highlight values ranging from 10 to 30%. Isobe et al. 

(2001);  Li et al. (2004),  Patrolecco et al. (2006) highlighted the proportion of APEO metabolites 

sorbed to suspended solids which ranged from 2 to 60% depending on the compound and the season.  

In May 2005, the particulate organic carbon levels are comprised between 649 µg.l-1 at Poses dam to 

4,309 µg.l-1 in the Risle stream, in February the POC levels are comprised between 1,950 µg.l-1 in the 

Risle stream to 5,250 µg.l-1at Poses dam. At Poses dam (Seine River), the POC level increases by a 

factor of 8 between May and February, in the same manner the concentration of 4-NP (expressed in 

ng.l-1) increase by a factor 6.5. In the same time, in the Risle stream the POC level decrease by a factor 

of 2 as well as the concentration of 4-NP. The highest contamination levels could be correlated with 

the highest organic carbon contents (Hou et al., 2006; Chen et al., 2006). In fact, it has been assumed 

that interaction with organic matter could play a significant role in sorption phenomena, especially for 

shorter chain ethoxymers. As it has been shown, suspended solids could play a significant role in the 

dispersion of APEOs in aquatic systems (Ra et al., 2008), and may be considered as a temporary well 

for the compounds. Furthermore, as it has been demonstrated, the sorption to suspended solids might 

affect bioavailabilityy and toxicity: the toxicity of organic compounds could be reduced by sinking 

suspended solids or increased by serving as sources of contaminated food for aquatic species. Thus, 

Ra et al. (2008) has demonstrated that the toxicity of substituted phenols (octylphenol, 

pentachlorophenol) to Daphnia magna decreases by 36% and 22%, respectively, in the presence of 

suspended solids. 

 

3-4-Seasonal trends 

One of the aims of this work was to evaluate seasonal trends in the occurrence of NPEOs in 

the Seine estuary system. This work put forward a ratio based on the concentration of aerobic 

biodegradation metabolites of NPEO (4–NP1EC) divided by the sum of anaerobic metabolite of 

NPEOs (4-NP1EO+4-NP2EO) to assess trends in the degradation efficiency of the system (R=[4-

NP1EC]/[4-NP1EO+4-NP1EO]).  
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Figure 3: Seasonal trends in the contamination of the Seine catchment area. Proposition of a ratio 

aimed to estimate degradation scheme, R = [4-NP1EC] / [4-NP1EO+4-NP2EO]. 

 

Figure 3 presents the calculated ratio for the studied sources in the course of seasons. 

Whatever the sources, higher ratios are obtained in July, the hottest month (water temperature between 

20 to 26°C, intensive sunshine period; TSS comprised between 3 to 50 mg.l-1) and a lower ratio is 

observed in February (water temperature between 5 to 9°C, weak sunshine period, TSS comprised 

between 20 to 100 mg.l-1); highlighting seasonal trends in the distribution of NPEO metabolites in the 

system. APECs formation occurred in both biological and abiological conditions Wang et al. (2007) 

and has been shown to be strongly dependent of physico-chemistry. Water temperature had been put in 

evidence as predominant parameter (Hayashi et al., 2005; Xu et al., 2006; Fu et al., 2007), highest 

temperature favours APEC formation as well as highest light intensity (Hayashi et al., 2005). 

Furthermore, the presence of dissolved organic matter and its quality, which led to the oxidation of 

terminal alcoholic group, improves the formation of carboxylated metabolites (Hayashi et al., 2005). 

On the contrary, the presence of high contents of suspended solids (as it was observed in February) has 

been shown to decrease APEO degradation and APEC formation. Seasonal trends in the distribution of 

NPEO metabolites exist in the Seine river catchments area. 
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3-5-Loads to the Seine estuary system  

 

Figure 4: Loads of APEO in the Seine estuary in the course of seasons. Relative proportions of 

tributaries, WWTPs and the Seine River. 

 

Another aim of this study was to evaluate the proportion of each source (The Seine River, the 

tributaries and the WWTPs) in the global contamination of the Seine estuary by NPEOs and their 

metabolites. Whereas taking into consideration water concentrations, it could be reliable to consider 

the flux of compounds (the quantity of the compound per unit of time), which takes into account flow 

variations. Figure 4 presents the loads of NPEO metabolites (the sum of the quantified metabolites) by 

the 9 tributaries and by the Seine at the Poses’dam, over the course of time. The Seine (upstream) is, 

by far, the principal contributor of the Seine estuary contamination with average loads of compounds 

ranging from 47.47 kg.d-1 in February 2006 to 20.5 kg.d-1 in July 2006. Regarding the tributaries, 

values are comprised between low g.d-1 and 5 g.d-1 for the smaller streams (namely Sainte-Gertrude, 

Rançon, Commerce, Robec, Cailly and Austreberthe streams) and between 3 g.d-1 and 40 g.d-1 for the 

Eure, Risle and Andelle Rivers. Whatever the season, the Seine represents from 97% (July 2006) to 

99% (May 2005 and February 2006) of the global contamination entering the Seine estuary. 
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Surprisingly, WWTPs represent no more than 3% (maximum value, July 2006) of the contamination 

and the tributaries less than 1%.   

 

Table 3: Flux of NPEO metabolites in the Seine Estuary, in the course of seasons. 

g.d-1 Tributaries Seine (up.) WWTP 

May 2005 71 46,959 487 

February 2006 38 47,471 429 

July 2006 33 19,870 515 

Tributaries: Sum of the flux of the 9 tributaries 

 

Table 3 presents the flux of NPEO metabolites in the Seine estuary by the 3 identified main 

sources. Inputs by the tributaries and the Seine River decrease by a factor of 2 between the first 2 

campaigns (May 2005 and February 2006) and the last one (July 2006). On the contrary they are 

constant in WWTP effluents, with average values of 500 g.d-1. As shown by previous works (Lardy-

Fontan S., submited), temporal trends exist in the Seine system (inter annual variations of a factor of 2 

have been highlighted); as a consequence the trends observed in this work could be related to the 

intrinsic variability of the Seine basin. As it has been demonstrated by Quednow and Puttmann (2008) 

in the Hesse basin, trends to a decrease of the occurrence of APEOs and metabolites in European 

natural systems exist. It is assumed to be a consequence of the implementation of European Directive 

2003/53/EG which restricts both the marketing and uses of nonylphenols. But as no decrease in 

WWTP loads, at the level of the Seine estuary, is observed, this hypothesis does not seem sufficient to 

explain observed trends. WWTPs located upstream of the sampling area might have been improved. In 

fact the improvement of processes could lead to an increase of WWTP efficiency and by way of 

consequence to a decrease of the loads of compounds through the system. The WWTP of Achères 

(2,100,000 Equivalent inhabitants), which is in charge of the treatment of 80% of Parisian waste 

water, had been under renovation works between November 2005 and April 2006 (which led to direct 

releases into the Seine River). By consequence, the hypothesis of abnormal loads to the system might 

be advanced and explained the trends to a decrease in contamination observed in February. 

 

4-Conclusion 

The Seine estuary, a natural discharge of the Seine River, displays a chronic state of 

contamination predominantly linked to the pressure of the Paris basin; the catchment areas of the 

Seine estuary show widespread contamination which do not impact the Seine estuary to a great extent. 

Chemical pressure linked to NPEOs and their metabolites does not seem to be seasonal dependent, in 

fact whatever the season, significant loads of NPEOs occur in the system. By comparing the levels 

measured during this study with the maximum average values fixed by the Water Framework 
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Directive for these molecules, it appears that, on the level of the catchment area of the Seine estuary, 

the surface water seemed to show a satisfactory quality in comparison with the reference level. The 

Seine River displays a quality which appears to be satisfactory even if it seems that in certain periods 

(whose cyclicity and duration were unspecified) the measured concentrations are higher than the 

average value fixed by the European Commission (330 ng.l-1) as well as the predicted no effect 

concentrations (fresh waters). Nevertheless, a chemical risk related to the presence of APEOs and their 

metabolites in the Seine Estuary cannot be clearly highlighted. 
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Supplementary information 1: Presentation of the pressure occurring at the Seine estuary level 
and principal characteristics of the catchment areas and tributaries. 

+: minimal pressure; ++: moderate pressure; +++: high pressure (arbitrary) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Andelle Eure 
(downstream) Risle Commerce Seine 

(Upstream) Rançon Austreberthe Cailly  Robec Ste-
Gertrude 

Domestric Pressure ++ ++ ++ + +++ + ++ ++ +++ + 

Industrial Pressure + ++ + ++ +++ + + +++ + + 

Agricultural 
pressure 

+ + + + +++ + + + + + 

Number of 
Wastewater 

treatment plant 
effluents 

3 14 13 2 - 1 3 3 - 1 

Flow May 2005 

 (m3.s-1) 
5.4 20.1 7.6 0.2 330 1.1 1.4 2.3 0.3 1.2 

Flow February 2006  

(m3.s-1) 
28 5.5 14.2 0.3 592 0.4 1.6 2 0.3 1.1 

Flow July 2006  

(m3.s-1) 
5.5 17.1 8.8 0.5 166 1.2 1.7 2.4 1.2 0.5 
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Résumé: 

Quatre années d’investigation au niveau de 5 estuaires français ont mis en évidence un état 

de contamination chronique par les métabolites d’APEO. Chacun des systèmes semble présenter une 

dynamique de fonctionnement propre. En dépit de leur restriction d’usages pour une large gamme 

d’applications, les tendances temporelles ne semblent pas refléter une diminution dans la présence des 

métabolites d’APEO. Ce travail met également en évidence une contamination significative des phases 

solides en suspension par les métabolites d’APEO. De plus, les concentrations environnementales 

mesurées sont proches des concentrations prédites sans effets ; en conséquence, des effets toxiques liés 

à la présence des métabolites d’APEO sont susceptibles d’être détectés dans les estuaires français et 

les zones côtières sous influence, si l’on prend en compte la contribution des systèmes estuariens pour 

les écosystèmes marins. 

Mot-clés: alkylphénols, alkylphénol-polyéthoxylés, acide alkylphénoxyacétique, matières en 

suspension, estuaire, France. 
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Abstract 

Four years of investigation on five French estuaries highlight a chronic state of 

contamination by APEO metabolites. Each system seems to display an intrinsic dynamic of 

functioning. Despite their prohibition in a wide range of uses, temporal trends did not reflect a 

decrease in their occurrence. This work highlights significant contamination of suspended solids by 

APEO metabolites. Furthermore, measured environmental concentrations (MECs) are near the 

predicted no effect concentrations values; thus, some toxic effects related to the presence of the 

degradation metabolites of APEOs are likely to be detected in the French estuaries as well as in the 

coastal zones under influence, taking into consideration the contributions of estuarine systems to the 

marine environment. 

 

Keywords: alkylphenols, alkylphenol polyethoxylates, acid alkylphenoxyacetic, suspended solids, 

estuary, France 

 

1-Introduction 

An estuary consists of a confined water mass having a free connection with the open sea and 

inside which the sea water is diluted in a measurable way with fresh water resulting from the drainage 

of the catchment area (Allain et al., 2006). There are three main ideas around the notion of estuaries: - 

they display specific characteristics; - they are under the strong influence of river flows; - their state of 

degradation is very often the reflection of the health status of their catchment area. They are referred to 

by the Water Framework Directive (WFD) as waters of transition near the mouths of rivers, which are 

partially salted because of their proximity to coastal water, but which are influenced by fresh water. 

Analyses, led on a Community scale, reveal that estuarine areas are not made up in clearly identified 

territories and that there is a gap in the law with their definition; what raises problems for their 
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management. France has on its western coasts, the Atlantic and the Channel, no less than 57 estuaries. 

A certain number of stakes and environmental problems are attached to them: - environmental 

protection and prevention of risks; - development of plans of prevention; - control of the water quality 

and protection of the aquatic environments. The estuaries are the receptacles of all anthropic activities. 

Although they display important purification capacities through their mudholes and reed beds; their 

water are seldom of good quality. The inventory of fixtures drawn up within the WFD lets us predict 

that, for the majority of the identified water masses, it will be difficult to obtain their “good state” 

label in 2015. Among the 33 priority substances of the WFD: heavy metals, pesticides, polycyclic 

aromatic hydrocarbons and alkylphenol-polyethoxylates (APEOs). APEOs are non-ionic surfactants 

whose applications range from the agricultural to the industrial domains; 80% are nonylphenol-

polyethoxylates (NPEOs) and 20% are octylphenol-polyethoxylates (OPEOs) (review by Ying et al., 

2002;Vazquez-Duhalt et al., 2006;Soares et al., 2008 ). Their fate, sources and occurrence have been 

studied for more than 20 years and have been reviewed by Ying et al. (2002), Vazquez-Duhalt et al. 

(2006), Soares et al. (2008). Although they present moderate bioaccumulation and bioamplification 

properties (Servos, 1999; Vazquez-Duhalt et al., 2006; Soares et al., 2008); they are of first 

ecotoxicological interest because they are displaying endocrine disruption properties in vivo and in 

vitro (Mills and Chichester, 2005) and are suspected of participating in endocrine disruption occurring 

in natural ecosystems. 

The objective of this work was to establish a state of contamination of five of the main 

important French estuaries by APEO metabolites. As they display specific characteristics, one aim of 

this work was to try to compare them and to understand their intrinsic dynamics in the course of 

seasons and time. Moreover, this work took interest in the role played by suspended solids in the 

dispersion of APEOs in those highly complex systems. Finally, a discussion of the ecotoxicological 

risks linked with the occurrence of APEOs in French estuaries will be provided. 

 

2-Material and methods 
2-1-Investigated sites 

Among the 57 French macrotidal estuaries (Allain et al., 2006), 5 have been selected and 

investigated between 2002 and 2005, namely: The Seine estuary, The Gironde estuary, the Adour 

estuary, The Vilaine bay and the Authie bay. All the investigated sites are briefly presented in Figure 

1; their pertinent characteristics are summed in Table 1. 
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Figure 1: Localization of the five investigated estuaries. Localization of the sampling points in each of 

the five sites. 

 

Table 1: Relevant characteristics of the 5 investigated estuaries. 

 
Seine estuary 

(a) 
Gironde estuary (b) 

Adour estuary 

(b) 
Vilaine estuary (c) Authie Bay (d) 

Catchment area (km2) 79,000 29,500  16,880  10,400 1,305 

Density of population 

(inhabitants/km2) 
35-2000 84 54 NR 57 

Domestic pressure +++ ++ + + + 

Industrial pressure +++ ++ + + + 

Agricultural 

pressure 
+++ ++ ++ ++ + 

Inorganic 

contamination 

Multi 

components 
Cadmium Moderate Moderate pristine 

Organic 

contamination 

Multi 

components 
Moderate Pesticides Pesticides pristine 

 +, ++, +++: increasing level of pressures; NR: no reference; http://www.eau-seine-normandie.fr/; (b) 

http://www.eau-adour-garonne.fr/; (c) http://www.lavilaine.com/; (d) http://www.eau-artois-picardie.fr/. 
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The Seine estuary was investigated at three sites (Poses dam, Caudebec, Honfleur) in 

September and November 2002, March and July 2003, May 2005.  

The Gironde estuary was investigated in February 2002 downstream from Bordeaux to the 

mouth at Le Verdon. A second campaign was held in November 2005 upstream of the Gironde estuary 

(Garonne River from upstream of Toulouse to upstream of Bordeaux) and in the Gironde estuary 

(downstream from Bordeaux to the mouth at Le Verdon).  

The Adour estuary was investigated in July 2002 on the level of the estuary (downstream 

from Bayonne to the mouth). A second campaign was held in November 2005: upstream of the Adour 

estuary (Adour River from upstream of Saint Mont to upstream of Bayonne) and in the Adour estuary 

(downstream from Bayonne to the mouth). In order to ensure comparability of data, all samplings 

were made at low tide. 

In the Vilaine bay, sampling campaigns were carried out in 3 points: the site of the Arzal 

dam, point of entrance of the estuary, was the subject of weekly samplings (controlled by the flow) 

during the period from 04/18/06 to 07/24/06 (12 weeks). The sites of Halguen (47°30.05 N, 2°29.63 

W) and Maresclé (47°27.83 N, 2°29.75 W) located in the zone of influence of the mouth of the Vilaine 

were the subject of semi-monthly samplings during the period from 04/18/06 to 07/24/06.  

In the Authie Bay, sampling campaigns were held in the intertidal zone on the level of the 

northern mudhole (50.22.2170 NR; 1.36.4840 E) in February and November 2003, February, May, 

September and November 2004. In order to be able to ensure the comparison of data, the samplings 

were carried out at low tide. 

All the samples were collected in 4l glass bottles, which were previously washed and heated 

at 450oC for 6 h, and transported to the laboratory in a cooler (4°C). 

 

2-2 Reagents and chemicals 

Nonylphenoxyacetic acid (ring chain isomers) (98%+, 4-NP1EC) was purchased from 

Promochem. (Molsheim, France) (100 µg.ml-1 in nonane, respectively). 4-nonylphenol (100%, 4-NP, 

technical), 4-nonylphenol-monoethoxylate (99.5%,4-NP1EO) and 4-nonylphenol-diethoxylate (99.5%, 

4-NP2EO) were purchased from Sigma Aldrich (Saint Quentin Fallavier, France). The spiked solutions 

were prepared in methanol at concentrations of 1 µg.ml-1 of each compound.  

Methanol (MeOH) was for the analysis of pesticide residues from Merck (VWR 

international, Strasbourg, France). Dichloromethane (DCM) was for organic residue analysis from 

J.T.Baker; water used for LC/MS analysis was from JT Baker (Atlantic Labo, Bruges, France). All the 

above solvents were used without further purification. Water used for solid phase extraction was 

Evian water in glass bottles (France Boisson, France). Hydrochloric acid (purity 37%) was 

purchased from VWR international (Strasbourg, France). Ammonium acetate (minimum purity 98%) 

was purchased from Sigma Aldrich (Saint Quentin Fallavier, France). All the chemicals were tested 
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for background levels for the compounds of interest. 200 mg Bondelut® C18 cartridges were 

purchased from Varian (Courtabœuf, France). 

Due to the ubiquitous occurrence of alkylphenols and alkylphenol polyethoxylates, materials 

in plastic and detergents, glassware was chosen to avoid contamination of the sample. Furthermore, all 

the glassware and sampling apparatus required special treatment prior to use. All the glassware was 

washed and then heated at 450oC for 6 h prior to use. Whatman GFF glass fibre filters (pore size 0.7 

µm) were purchased from VWR International (Fontenay-sous-Bois, France) and were also heated at 

450oC for 6h prior to use.  

 

2-3-Analytical methodologies 

Briefly, between 1 l and 4 l of water were filtered through GF/F glass fiber filters. Between 

0.5 to 1 l of acidified water (pH 2, hydrochloric acid) were passed through Bondelut® C18 cartridges 

(200 mg, 3 cc,Varian). After one hour of drying (under vaccum; 5 mmHg) the cartridges were eluted 

with a mixture of 5 ml of MeOH/DCM (50/50; v/v). The extracts were evaporated under a gentle 

stream of nitrogen, transferred to MeOH prior to LC-ESI-MS analysis (SIM) (100 µl to 300 µl final 

extracts). The treatment of the dissolved phase occurred in the 48 hours following the sampling in 

order to prevent biodegradation phenomena (Pan et al., submitted).The suspended matters were stored 

at -20°C until analysis. After freeze-drying, the samples were extracted by microwave assisted 

extraction (MAE) with 40 ml of a mixture of methanol/dichloromethane (3/1; v/v). The raw extracts 

were then filtered and redissolved in 60 ml of Evian® water (pH 2) to undergo a purification step 

according to the same C18 cartridge protocol as previously described (Lardy-Fontan S. et al., 

submitted). 

 

2-4-Quality control/Quality assurance 

Due to the ubiquitous occurrence of alkylphenols and alkylphenol polyethoxylates in 

materials in plastic and in detergents; glassware and sampling apparatus required special treatment 

prior to use. All the glassware was washed and then heated at 450oC for 6 hours prior to use. Glass 

microfiber filters were also heated at 450oC for 6 hours prior to use. Moreover, to each extraction 

series a protocol blank was joined in order to show evidence of contamination during the different 

analytical steps. A small amount of 4-NP has been quantified in some cases (<30 ng), while for the 

other analytes blank signals were absent. Additionally, spiked water (100 ng.l-1, individual compound 

basis), which follows all the experimental procedure, was joined to each extraction series. Reported 

concentrations were corrected for the blank value and the recovery.  

The quantification was performed by an external calibration. Each series of injections was 

preceded by the injection of an analyte mixture (at known concentrations) from which a 5 point 
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quadratic calibration curve was established (R2>0.99). Moreover, a pseudo-unknown sample was also 

injected during each run in order to make sure of the linearity, accuracy and sensitivity of the LC-MS. 

All the preparation steps were performed under gravimetric control. The overall methodologies show 

satisfactory recovery rates (upper than 80%), repeatability and reproducibility. Typical limit od 

detection are of 1-5 ngl-1 for dissolved phase, tens ng.g-1 for solid samples (Pan et al., submitted; 

Lardy-Fontan et al.; submitted). 

 

3-Results and discussion 

3-1-Comparison of the contamination profiles of the 5 estuaries 

Table 2: Contamination of the dissolved phase of the 5 investigated estuaries by APEO metabolites. 

Diss 

Phase 

Vilaine Bay 
Authie Bay Gironde Estuary Adour Estuary Seine Estuary 

Halguen Maresclé 

ng.l-1 min max % Det.  min max % Det.  min max % Det.  min max % Det.  min max % Det.  min max % Det.  

4-NP1EO 6 83 100% 10 248 100% 12 64 100% 14 89 100% 12 53 100% 87 136 100% 

4-NP2EO 3 38 75% 4 22 88% 3 49 100% 12 83 100% 6 36 100% 59 116 100% 

4-NP1EC 7 74 88% 16 62 75% <2 47 50% 5 88 100% 57 99 100% 685 1128 100% 

4-NP 14 50 100% 5 39 100% 14 76 100% 21 125 100% 11 35 100% 161 221 100% 

4-t-OP 7 7 13% 2 4 50% NA NA NA NA NA NA NA NA NA NA NA NA 

NA not analyzed;  Diss. Phase Dissolved phase; % Det % detection 
Vilaine Bay: min-max-frequency of detection over the period 18/04/06 to 24/07/06 
Authie Bay: min-max-frequency of detection over the period February and November 2003; February, May, September and 
November 2004 
Gironde Estuary: min-max-frequency of detection during the sampling campaign of 2005 
Adour Estuary: min-max-frequency of detection during the sampling campaign of 2005 
 Seine Estuary: min-max-frequency of detection over the period September and November 2002, March and July 2003; May 
2005 
 

Table 2 sums the contamination of the dissolved phases of the five investigated estuaries by 

APEOS compounds. It presents the minimal and maximum measured concentrations (ng.l-1) as well as 

percentages of detection for all investigated compounds. By looking at the results, a widespread 

contamination of French estuaries by APEO metabolites can be assumed. 4-NP and 4-NP1EO, the 

more persistent metabolites, are quantified at each site and at all sampling campaign; 4-NP1EC, an 

aerobic degradation metabolite of APEOs, is quantified at a frequency ranging from 50% (Authie Bay) 

to 100% (Gironde estuary, Adour estuary and Seine estuary). 4-t-OP is quantified in no more than 

50%, which is coherent with the fact that it is produced and used less. Contamination profiles seem to 

classify estuaries as following: Authie bay < Vilaine estuary < Gironde estuary ≤ Adour estuary << 

Seine estuary; which appears consistent with the anthropic pressures they undergo (Table 1). As 

expected, the Authie Bay appears poorly contaminated with average concentrations, for all 

compounds, lower than 80 ng.l-1. Interestingly the Vilaine estuary displays a low impacted profile with 

concentrations lower than 100 ng.l-1 (except 4-NP1EO with a maximal value of 246 ng.l-1). Both 

results seem to highlight a background environmental level in APEO metabolites on the French 

Atlantic and the Channel coasts of tens ng.l-1 for 4-NP, 4-NP1EO. The Adour estuary and the Gironde 
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estuary present maximum measured concentrations which can reach: 125 ng.l-1 for 4-NP in the 

Gironde estuary; 99 ng.l-1 for 4-NP1EC in the Adour estuary; but in any case they display moderately 

impacted profiles. Both estuaries do not seem highly impacted by APEO metabolites although their 

catchment areas display significant anthropic pressures. The case of the Seine estuary is obviously 

dissimilar; results highlight contaminations 2-fold (4-NP1EO and 4-NP2EO) to 10-fold (4-NP, 4-

NP1EC) higher than those of other French estuaries. 

The Seine estuary displays a contamination profile in terms of occurrence and distribution of 

compounds which is similar to those of major European estuaries: the Scheldt and Rhine Estuaries 

(Jonkers et al., 2003; Jonkers et al., 2005); the Krka estuary (Kvestak and Ahel, 1994). The Authie and 

Vilaine bays, the Adour and Gironde estuaries, for their part, present contamination profiles in the 

range of the Dutch (Bester et al., 2001) and German coastal areas (Vethaak et al., 2005); the Modego 

and the Douro estuaries (Ribeiro et al., 2008a; Ribeiro et al., 2008b) as well as the Venice lagoon 

(Pojana et al., 2007). As highlighted by Soares et al. (2008), significant differences in the management 

of production and use of APEOs between European countries and Asiatic or American countries exist; 

thus no comparisons were drawn with those countries although numerous works have been recently 

published which highlighted significant contamination by APEO metabolites. 

 

3-2-Seasonal trends 

APEO metabolites are byproducts of both photodegradation and biodegradation of longer 

chain APEOs whose efficiencies have been linked to physico-chemistry (Hayashi et al., 2005; Corvini 

et al., 2006). As water systems present natural variability particularly concerning flow conditions; the 

comparison of concentrations can be tricky and lead to misinterpretation.  

Figure 2 sums up the 15 week survey at the Arzal dam (concentrations expressed in ng.l-1, 

dissolved phase). Figure 2a presents the Vilaine River flow and highlights the fact that except for 2 

weeks before the beginning of the survey (which were characterized by a high flow), the Vilaine River 

flow appears to be constant over the studied period (and in any case lower than the reference flow); 

thus the variations observed in Figure 2b cannot be linked to variations of the flows.  
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Figure 2: Seasonal trends in the occurrence of APEO metabolites in the dissolved phase of Vilaine 

Bay at the Arzal Dam. 

a) Flow (m3.s-1) on the Vilaine River during the studied period (from http://www.hydro.eaufrance.fr/). 

b) Measured concentrations in APEO metabolites from 18-04-2008 to 23-07-2008 (weekly reconstituted 

samples). 

 

All through the studied period, the distribution and occurrence of APEO metabolites appears 

to be highly variable. Total contamination (sum of the five APEO metabolites µg.l-1) varies from less 

than 50 ng.l-1 at the end of June to close to 350 ng.l-1 at the end of April and July, thus a 7-times 

variation. 4-NP1EC, the predominant compound, represents from 31% (end of May) to 90% (end of 

June) of the global contamination, 1% to 42% for 4-NP. To sum up, this 12 week survey does not 

highlight any clear seasonal trends in the Vilaine Bay. The exceptional dry weather (low 

precipitations, high temperatures) that occurred during the monitoring survey might have affected the 

natural intrinsic dynamics of the system. 

Figure 3 presents the total flux (g.j-1, sum of dissolved phase+ suspended solids) of each of 

the compounds of interest in the Authie Bay all through the studied period (years 2003 to 2004). 

Fluxes are affected by a two-fold variation in the course of seasons. Maximum loads occur in February 

2003 and 2004 as well in August 2004. August was a stormy period in the Authie Bay, consequencetly 

some resuspension or reload phenomena may have occurred from the sediment to the water column 

increasing the occurrence of 4-NP. Biodegradation phenomena are thermo-dependent; in February, 

low temperatures might have decreased the purification efficiency of the system and thus led to an 

increased occurrence in 4-NP. 
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Figure 3: Seasonal trends in the occurrence of APEO metabolites in the Authie Bay. 

 

To sum up, should you consider the Vilaine and Authie bays, variability in the occurrence 

and distribution of APEOs was observed and appeared to be linked to the dynamics of the system. No 

clear seasonal trends were highlighted. 

 

3-3-Temporal trends 

The European Union has subjected 4-NP to the risk assessment procedure and furthermore 

added the substance to the list of 33 priority substances of the European Framework Directive (WFD). 

It has lead to a restriction of uses for a wide range of applications, it has been transposed in the French 

right and thus came into application as from 17 January 2005. Figure 4 presents temporal trends in the 

occurrence of APEO metabolites: 4-NP and 4-NP1EC in the Gironde, Adour and Seine estuaries 

between years 2002 and 2005. As flows were in the same range of values, comparability of data seems 

valid. For the three estuaries, measured concentrations of the dissolved phase in 4-NP are similar 

(ranging from tens to hundreds ng.l-1). In the Seine estuary, although trends in the fate of compound in 

the estuary are dissimilar (decrease of the concentrations from Poses to Honfleur in 2002, whereas the 

concentrations increase in 2005), 4-NP1EC concentrations are in the same range in 2005 as in 2002. 

On the contrary, in the Adour estuary they are 8-fold lower in 2005 than in 2002 and 2-fold lower in 

the Gironde estuary. In the Adour estuary, the 2005 campaign occurred in November whereas the 

previous one occurred in July 2002; the formation of 4-NP1EC has been shown to be strongly 

dependent on physico-chemistry, especially temperature and photoactivity which are strongest in July 

(Hayashi et al., 2005; Wang et al., 2007). Moreover, as previously explained in this paper, natural 

systems seem to display intrinsic dynamics resulting in variations of concentrations, which can reach a 

factor of two. Finally, the Adour-Garonne water Agency reports that strong improvement of the 

purification networks occurred during the last 5 years leading to more than 65% of depuration rate on 
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catchment areas of the Adour and Gironde estuaries. Globally, trends do not demonstrate any 

significant declining in occurrence of APEOs in France. On the contrary, Quednow and Puttmann 

(2008) observed a significant decrease in the occurrence of 4-NP in the water system of the city of 

Halle (Germany) between years 2003 and 2006, and concluded it was the consequence of restrictions 

of uses. 

 

 

Figure 4: Temporal trends (2002-2005) in the occurrence and fate of APEO metabolites in the Seine, 

Adour and Gironde estuary. 
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3-4-Role of the Total Suspended Solids (TSS) on macrotidal estuaries 

When talking about estuaries, especially macrotidal estuaries, which are characterized by the 

presence of Turbidity Maximum Zones (TMZ), the question of the role played by suspended solids 

appeared to be prevalent to understand the biogeochemistry of pollutants.  

 

Table 3: APEO metabolites in the suspended solids of estuaries. 

Occurrence (ng.g-1) in the suspended solids of the Adour, Gironde and Seine estuaries and in the Authie Bay. 

Part of the suspended solids in the global contamination of the water column. 

Seine estuary Seine estuary 

C ng.g-1 in SPM min max mean 
Part of SPM in contamination 

(%) 
min max mean 

Honfleur 
4-NP1EO  35 396 211 

Honfleur 
4-NP1EO  26% 82% 46% 

4-NP2EO 32 449 194 4-NP2EO 33% 65% 49% 
4-NP  177 2510 906 4-NP  25% 85% 65% 

Caudebec 
4-NP1EO  173 519 398 

Caudebec 
4-NP1EO  5% 97% 36% 

4-NP2EO 986 1040 1013 4-NP2EO 4% 93% 38% 
4-NP  832 5182 2703 4-NP  20% 99% 57% 

Poses 
4-NP1EO  28 2367 917 

Poses 
4-NP1EO  0% 94% 33% 

4-NP2EO 180 1683 763 4-NP2EO 0% 94% 28% 
4-NP  2015 5453 3799 4-NP  4% 99% 34% 
Adour estuary Adour estuary 

C ng.g-1 in SPM min max mean 
Part of SPM in contamination 

(%) 
min max mean 

Transect 
4-NP1EO  114 179 135 

Transect 
4-NP1EO  22% 26% 24% 

4-NP2EO 30 86 66 4-NP2EO 4% 27% 15% 
4-NP  211 357 304 4-NP  33% 52% 43% 
Gironde estuary Gironde estuary 

C ng.g-1 in SPM min max mean 
Part of SPM in contamination 

(%) 
min max mean 

Transect 
4-NP1EO  11 139 62 

Transect 
4-NP1EO  16% 26% 21% 

4-NP2EO 9 113 60 4-NP2EO 13% 21% 19% 
4-NP  37 567 223 4-NP  30% 56% 40% 

Authie Bay Authie Bay 

C ng.g-1 in SPM min max mean Part of SPM in contamination 

(%) 
min max mean 

 Interseason  
4-NP1EO  21 177 102 

 Interseason 
4-NP1EO  0% 37% 15% 

4-NP2EO 25 89 66 4-NP2EO 0% 67% 20% 
4-NP  51 1337 517 4-NP  7% 92% 46% 

Vilaine Bay: min-max-mean concentration over the period 18/04/06 to the 24/07/06, 

Authie Bay: min-max-mean concentration over the period February and November 2003; February, May, September and 

November 2004, 

Gironde Estuary: min-max-mean concentration during the sampling campaign of 2005, 

Adour Estuary: min-max-mean concentration during the sampling campaign of 2005, 

Seine Estuary: min-max-mean concentration over during the sampling campaign of May 2005. 

 

Trends observed in TSS are the same as those of the dissolved phase, with suspended solids 

of the Seine estuary significantly more contaminated with average concentrations between 3,799 ng.g-1 

to 906 ng.g-1 for 4-NP, between hundreds ng.g-1 to one hundred ng.g-1 for 4-NP1-2EO from Poses to 

Honfleur (Table 3). By comparison the of the 3 other estuaries: the Adour estuary, the Gironde estuary 
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and the Authie bay which present lower levels of contamination all through the system, maximum 4-

NP concentrations of 357 ng.g-1 in the Adour estuary, 567 ng.g-1 in the Gironde estuary and 1,337 

ng.g-1 in the Authie bay. Etcheber et al. (2007) have shown that in the Garonne River, soil and litter 

are the major (90%) Particulate Organic Compounds (POC) sources; on the contrary, in the Seine 

River, soil and litter contribute to 70% of POC and 10% is from human origin. Average contamination 

of estuarine suspended solids vary between few ng.g-1 to few µg.g-1 depending of the compound and 

the site. 4-NP is the predominant metabolite before 4-NP1EO; 4-NP1EC was usually below detection 

limit (<30 ng.g-1, depending on the matrix).  

It appears relevant to consider the part of TSS in the global contamination (which takes into 

account the TSS concentrations). First of all, a huge intrasite variability is observed in the Seine 

estuary where parts of SPM in the total contamination range from 4% (July 2003) to 99% (March 

2003) for 4-NP, 0% (September 2002) to 97% (March 2003) for 4-NP1EO and 0% (May 2005) to 94% 

(March 2003) for 4-NP2EO (5 sampling campaigns) and in the Authie Bay where parts of SPM in the 

total contamination range from 7% (May 2004) to 92% (August 2004) for 4-NP, 0% (May 2004) to 

37% (August 2004) for 4-NP1EO and 0% (May 2004) to 67% (August 2004) for 4-NP2EO (6 

sampling campaigns). The part of the suspended solids in the global contamination is lower for the 2 

other estuaries: 52-56% for the 4-NP, 21-37 % for the 4-NP1EO.  

In the Authie Bay or in the Seine estuary, no clear seasonal trends are observed. It is 

assumed that it is intrinsic dynamics of the system. In the Authie Bay, maximum values for 4-NP are 

observed in November 2003 (71%) and in August 2004 (92%) which were stormy periods. By 

consequence some resuspension phenomena may have occurred from sediment to the water column, as 

highlighted by measured TSS: 79 mg.l-1 in November 2003 and 98 mg.l-1 in August 2004, values 

significantly upper than those measured in other seasons (lower than 40 mg.l-1).  

In the Seine estuary, the winter season in 2003 was characterised by high flows (maximum 

of 1,400 m3.s-1) which may have brought some erosion material from agricultural areas to the Seine 

estuary. In fact, sludge spreads are very common procedure in France, sludge have been shown to be 

very contaminated by APEO metabolites and especially 4-NP (Soares et al., 2008). The scrubbing 

phenomenon could bring organic materials with high levels of 4-NP and induced an enhancement in 

the contamination of the suspended matter and thus of their part in the contamination of the water 

column. It can also be explained by the impact of the wastewater treatment loads upstream from the 

estuary. Indeed, when strong pluviometric contributions occured, hydraulic residence time in the 

plants are shortened, consequently the effluents could be characterized by high levels of strongly 

contaminated suspended matter (Lardy-Fontan et al., submitted).  

In the Seine estuary, from the upstream area to the mouth, a significant increase of the part of 

the suspended solids to the global contamination, e.g. 34-65% for 4-NP (Table 3). In the Adour and 

Gironde estuaries; the part of the SPM in the contamination remained constant along the estuary. 
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Although the 3 estuaries are macrotidal estuaries, these results seemed to highlight specific trends in 

the fate of APEO metabolites; one hypothese could be the influence of the Turbidity Maximum Zone. 

The partitioning of organic compounds between water and organic matter is generally 

controlled by hydrophobicity. The in situ organic carbon-normalized particle-water partition 

coefficient (K′oc) was calculated using the AP concentration in dissolved phase and particulate phase 

and organic carbon contents in the particles as mentioned in the equation (1) 

K′oc =Cs/Caq/foc         (1) 

Where Cs is the solid-phase concentration on a unit weight basis (ng.kg-1), Caq is the aqueous phase 

concentration on a unit volume basis (ng.l-1), and foc is the mass fraction of organic carbon on the 

particles. 

Schwarzenbach et al. (1993) found that there is a linear correlation between Kow and Koc (i.e., 

organic carbon–normalized particle–water partition coefficient) in a laboratory sorption experiment 

using natural sediments as mentioned in equation (2) 

Log Koc = 0.82×log Kow+0.14       (2) 

 

The log K′oc values determined (eq 1) in the Adour Estuary, the Gironde estuary and the 

Seine estuary water samples are: 5.8±0.3, 5.4±0.4 and 5.1±0.1 for 4-NP; 5.5±0.2, 5.1±0.4 and 5.11 ± 

0.13 for 4-NP1EO, respectively. They are 1 order of magnitude higher than the predicted log Koc: 3.81 

for 4-NP and 3.55 for 4-NP1EO (eq 2); meaning that APEOs partition more to particulate phase than 

expected from their hydrophobicity. Furthermore they are in the same order of magnitude than 

previous published data which brought back average values of 6.0±0.6 for 4-NP in the Rhine estuary 

and 5.9±0.6 for 4-NP in the Scheldt estuary (Jonkers et al., 2003). The average log K′oc are similar in 

the 3 estuaries and remain constant along each one of them. It implies that the particulate APEO 

metabolites could play a significant role in their transport in the aquatic environments especially in the 

context of the transfer from estuarine to marine systems.  

 

3-5-Chemical risk linked to the presence of APEOs among French estuaries 

Estuaries are ecosystems of high productivity, crucial in the life of many fish, invertebrates 

(Mc Lusky, 1989). French estuaries show a widespread contamination by APEO metabolites. The 

values of Predicted No Effect Concentrations (PNEC) for 4-NP and 4-t-OP have been established 

starting from chronic toxicity data (INERIS) and are equal to 330 ng.l-1 and 61 ng.l-1 in fresh waters, 

respectively (33 ng.l-1 and 6.1 ng.l-1 in marine water, by correction). By comparing the values of 

PNEC fresh water with those measured in the Seine, the Adour and the Gironde Estuaries; it appears that 



Publications 

 Page 394 
 

except for the Seine estuary, which presents ratios between Measured Environmental concentrations 

(MEC) and PNEC higher than 1 in some points, the estuaries of the Gironde and the Adour showed, 

for their part, ratios MEC/PNEC lower than 1. In the same way, if one compares the values measured 

in the Vilaine Bay and Authie Bay with the values of PNECmarine water, the ratios MEC/PNEC are higher 

than 1 concerning 4-NP and also for the 4-t-OP (Vilaine Bay). Thus, it appears that the toxic effects 

related to the presence of the degradation metabolites of APEOs are likely to occur in the Seine 

estuary as well as on the level of the coastal zones. 

APEOs are well known endocrine disruptors towards aquatic species (Lintelmann et al., 

2003; review by Mills and Chichester, 2005). Although no studies succeeded in linking APEOs 

occurrence to observed effects in natural systems, nevertheless it can be assumed that APEOs 

metabolites can be involved in global disruption phenomena. Verslycke et al. (2005), in a multi 

thematic survey in the Scheldt estuary, showed evidence of the estrogenic potencies of both water and 

sediments; interestingly APEO metabolites were quantified in significant amounts in the system 

(Water, Sediments and Mysids shrimps). Peck et al. (2007) have recently put in evidence the potential 

for accumulation of exogenous 17-β-estradiol and nonylphenol in Dreissena polymorpha tissues 

(sampled in various Rivers: the Darrent River, the Deule River and the Seine River), they concluded 

that bivalves could be susceptible to estrogenic compounds. In the same manner, Minier et al. (2000) 

revealed that 8% of male European flounder (Platichtys flesus) sampled in the Seine estuary had 

intersex. Mouneyrac et al. (2008) in a multisite study on Scrobicularia plana observed higher levels of 

17-β-estradiol in the Seine estuary than in the pristine site of the Authie Bay.  

A chemical risks linked to the ubiquity of APEO metabolites exist especially in the Seine 

estuary. It is important to consider that it is not because measured concentrations are lower than the 

PNEC values that adverse effects do not occur. 

The estuaries play a crucial part in the history of life of a great number of species, in 

particular by their role of nursery. Arslan and Parlak (2007) concluded that 4-NP and 4-t-OP can cause 

the normal sea urchin and that of other invertebrates’ development, to be inhibited at low 

environmental concentrations as these compounds represent an ecological hazard for the population 

level given the cumulative effects of other environmental pollutants. Bistodeau et al. (2006) recently 

demonstrated that larvae exposure to 4-NP or effluent reconstituted APEO mixture can affect 

competitive behavior. They conclude that APEO mixtures have an effect on the reproductive 

competence of previously exposed male fathead minnows. In addition, 4-nonylphenol concentrations 

utilized in all exposures were below EPA regulatory guidelines, suggesting that the evaluation of 4-NP 

alone may not be sufficient to identify potentially adverse effects usually found as mixtures in the 

aquatic environment. Canesi et al. (2007, 2008) exposed mussels Mytilus galloprovincialis to a 

mixture of endocrine disruptors (17-β-estradiol, Ethynilestradiol, 4-NP, 4-NP1EC and benzophenone) 

and highlighted that it can affect their immune system by interfering with their lysosomal function, 

redox related enzyme activities and gene transcription of digestive glands. Guerit et al. (2008) have 



Publications 

 Page 395 
 

recently conducted a work which faced the European TGD to an in situ application focusing on 

pesticides. They concluded that as the accuracy of PNEC derivation is the decisive criterion when 

applying the TGD approach to in situ data, there is a need of prioritization of ecotoxicological data on 

target species endemic in the place of study, especially regarding the high complexity and specificity 

of estuarine ecosystems. 

These considerations let us assume that the consideration of 4-NP, alone, allows an 

underestimation of the risks linked to the ubiquity of some biodegradation metabolites, especially 4-

NP1EC which is, in most cases, the dominant metabolite of the aqueous phase. Furthermore, it 

highlight than even if the average measured concentrations are lower than the predicted no effect 

concentrations, for individual compound; some toxic effects are susceptible to occur in the estuarine 

system, especially by consequence of exposure, to highly complex mixtures of compounds, at some 

crucial key time of the development.  

 

4-Conclusion  

Four years of investigations on five French estuaries highlight a chronic state of 

contamination by APEO metabolites, especially by aerobic biodegradation products. By far, the Seine 

estuary is the most impacted system with average concentrations between hundreds ng.l-1 to µg.l-1. The 

Adour estuary, the Gironde estuary, the Authie bay and the Vilaine bay also display a chronic state of 

contamination by APEO metabolites but in less extent. Each system seems to show intrinsic dynamic 

of functioning. Interseason and interannual studies do not highlight any seasonal trends. Despite their 

prohibition of a wide range of uses, temporal trends do not reflect a decrease in their occurrence in 

French aquatic systems. This work highlights significant contamination of the suspended solids by 

APEO metabolites (between tens ng.g-1 to more than µg.g-1 depending of the compound, the 

localization and the system), thus future work should focus on their role in the fate and occurrence in 

the marine environment, especially in the dispersion of compounds through marine water. 

Furthermore, MECs are near the PNEC values, thus, some toxic effects related to the presence of 

degradation metabolites of APEOs are likely to occur in the French estuaries as well as in the level of 

the coastal zones under influence, taking into consideration the contributions of estuarine systems to 

marine environment. 
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Résumé : 

A notre connaissance, cette étude met en évidence les premières données sur la présence et le 

devenir des métabolites d'APEO sur la côte méditerranéenne française. Elle montre que la côte 

méditerranéenne française présente une contamination chronique des eaux et des sédiments, qui 

laissent penser que des effets néfastes sont susceptibles de se dérouler. Cette hypothèse a été 

confirmée par la quantification des  merlus qui met en évidence une contamination chronique et 

répandue des espèces aquatiques. D'un point de vue « mécanistique», ces résultats prouvent que les 

phases solides en suspension sont un vecteur important de la contamination dans les systèmes marins 

par les métabolites d'APEO et jouent un rôle significatif dans les phénomènes de dispersion. De 

futures études devraient se concentrer sur ce point spécifique. 
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Abstract  

To the best of our knowledge, this study highlights the first data on the occurrence and fate 

of APEO metabolites on the French Mediterranean coast. It shows that the French Mediterranean coast 

shows a widespread contamination of waters and sediments, which allows us to think that some 

adverse effects might occur. This idea has been emphasized by the quantification of European hake, 

which shows a chronic and widespread contamination of aquatic species. From a “mechanistic” point 

of view, these results show that suspended solids are a major contributor to the contamination of the 

marine system by APEO metabolites and play a significant role in dispersion phenomena. Further 

studies should focus on this specific point 

 

1-Introduction 

The Mediterranean Sea is a large semi-enclosed sea with a total surface area of approximately 

2.5 millions km2 and an 80 year water renewal time. It is shared by 20 states, and one projection 

suggests that the population in the Mediterranean area can be expected to increase from 323 million in 

1980 to 547 million by 2025 (UNEP, 1989). In addition, the Mediterranean attracts some 200 million 

tourists every year. Many human activities result in environmental stresses and human health 

problems, such as high nutrient concentrations and eutrophication, increasing incidences of algal 

blooms, as well as high levels of hazardous substances (Stanners and Bourdeau, 1995; EEA, 1998). 

Conscious of the pressure on the Mediterranean Sea, 16 Mediterranean countries adopted the 

Mediterranean Action Plan (MAP) in 1975 and The Barcelona Convention in 1976. Although its aim 

was firstly focused on marine pollution, over the years, its activities gradually widened to coastal 
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management leading to the adoption and amendment of the Barcelona Convention, renamed 

Convention For the Protection of The Marine Environment and the Coastal Regions of the 

Mediterranean. Its strength lies in the close interactions among countries’ organizations and actions. 

Faced with a widespread deterioration of waters, European countries decided to implement the Water 

Framework Directive WFD (2001) whose objectives are the achieving of a good ecological and 

chemical status by the year 2015. For more than half a century a general awareness has emerged about 

the contamination of natural systems by pollutants called emerging pollutants, whose uses or abuses 

are linked with our way of life. Numerous monitoring surveys whose purpose was to screen the 

ubiquity and occurrence of pollutants have been held (Lopez de Alda et al., 2003; Vethaak et al., 

2005a; Cespedes et al., 2006; Ko et al., 2007). Among the most prevalent ones: alkylphenol-

polyethoxylates (APEOs) are found. APEOs are a class of non-ionic surfactants that have been largely 

produced and used since the 1960’s for a wide range of applications (Renner, 1997). Their noteworthy 

characteristics are their biodegradation properties which lead to the formation of persistent metabolites 

and the loss of amphiphilic properties through a complex scheme (Ahel, 1994; Di Corcia et al., 1998; 

Hayashi et al., 2005); their ubiquity, APEOs especially octylphenol-polyethoxylates (OPEOs) and 

nonylphenol-polyethoxylates (NPEOs) have been detected and quantified in various ecosystems 

(atmosphere, groundwater, freshwater, marine water, sediments, soils, fauna and flora) from ppt to 

ppm (Soares et al., 2008). Metabolites (alkylphenols: nonylphenol (NP) and octylphenol (OP); 

alkylphenol-mono and di-ethoxylates; alkylphenoxypolyethoxyacetic acid (APEC)) have been shown 

to display moderate bioamplification and bioaccumulation properties (Vazquez-Duhalt et al., 2006; 

Soares et al., 2008) as well as huge metabolisation (Servos, 1999; Vazquez-Duhalt et al., 2006; Soares 

et al., 2008 ). Thus, APEO metabolites have became of first interest since they have been shown to 

display endocrine disruption properties, both in vitro and in vivo, and that at realistic environmental 

concentrations (Soares et al., 2008; Vazquez-Duhalt et al., 2006; Mills and Chichester, 2005). 

 

2-Material and methods 

2-1-Investigated sites 

The North western Mediterranean Sea is the recipient of extensive urban, industrial water 

from bordering countries as well as a natural discharge for major European Rivers. At the French 

level, 2 main areas can be pointed out as representative of pressures: The Gulf of Lion and the Rade of 

Marseilles. 

2-1-1 The Rade of Marseilles 

The Marseilles shore is strongly urbanized and industrialized; various sources of chemical 

contaminations have been identified (domestic activities, agricultural activities, harbor, maritime and 

industrial activities). The Rade of Marseilles is the receptacle of several cleansing networks one of the 
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most important of France. The Wastewater Treatment Plant, whose capacity is of 1,600,000 

equivalent-inhabitants and uses a physicochemical process (primary decantation and lamellar 

decantation). The effluent load flows towards the Rocky Inlet of Cortiou. 2 sampling campaigns 

(coastal oceanic ship Europe, IFREMER) were carried out. The first campaign was held in November 

2004; its goal was to study the local influence of the effluent of the WWTP of Marseilles in a semi 

closed semi medium: the Rocky Inlet of Cortiou. Sampling waters were taken out in sub-surface 

(depth 0.1m) in the plume of dilution of the effluent (Figure 1). In parallel, surface sediments were 

sampled in the rocky inlet periphery using a Reineck bucket (Figure 1).  

The second sampling campaign was held in November 2006. Its aim was first to supplement 

data from the first sampling campaign in the Rocky Inlet of Cortiou (Figure 1). For this purpose, 

sampling waters were taken out in sub-surface (depth 0.1m) in the plume of dilution of the effluent. 

Moreover some surface sediments were drawn out of the plume using a Reineck bucket. Secondly, 

some samples were taken out to characterize the contamination profile of the Rade of Marseilles 

(Figure1); 3 sites were investigated for both water and sediment according to the same methodology as 

previously described, namely: the Planier (marine site without direct anthropic influences), the sites of 

Huveaune and Chantier (sites under direct anthropic impacts).  

 

 

Figure 1: Location of the sampling sites in the Rade of Marseilles 

a)  Localisation of the sampling sites of European hake. Sites I, III, IV and TECPEC (2005), sites VI, VII, XVII 

(2006).  

b)  Location of the sampling sites in the Rade of Marseilles. Sampling points in the Rocky inlet of Cortiou in 

2004 (left one) and 2006 (right one).  
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2-1-2 The Gulf of Lion 

The Gulf of Lion (42–44°N, 3–6°E) has a large crescent shaped continental shelf.  More than 

10 rivers with a total watershed area of about 125,000 km2 deliver significant water discharges into the 

gulf. The Rhone River on the northwestern part of the gulf delivers about 90% of the total riverine 

water inputs. The shoreline is heavily urbanized (1.5 million inhabitants), with one of the largest 

French cities, Marseilles, at the northeastern tip of the shelf. Terrestrial sources of nutrients from 

sewage treatment waters, runoff and rivers bring a significant supply of nutrients to the Gulf in the 

form of nitrate and phosphate (Durrieu, 2003), leading to an extensive productive area.  

The european hake (Merluccius merluccius) is a very common demersal marine fish in the 

Mediterranean Sea (30-1,075 m depth) and of particular interest due to its high commercial value. 2 

sampling campaigns have been held: the first campaign occurred in May 2005 in the continental 

margin (30-100m depth): sampling areas were located near the mouth of the Rhone River and in the 

central part of the Gulf of Lion (Stations I, III, IV, TEC PEC; Figure 1). The second sampling 

campaign occurred in October 2006 in the deep part of the Gulf of Lion (200-400 m depth, Stations 

VI, VII, XVII; Figure 1). After collection, fish was immediately dissected; fish bile was extracted 

from gall bladders, immediately frozen in liquid nitrogen and then stored at -80°C.  

 

2-2-Standards and Reagents 

The compounds were selected taking into their ubiquity, their persistence and toxic potential. 

Unlabeled p-n-nonylphenol (98%+, p-n-NP), p-n-nonylphenol monoethoxylate (95%+, p-n-NP1EO), 

nonylphenoxyacetic acid (ring chain isomers) (98%+, 4-NP1EC) were purchased from Promochem. 

(Molsheim, France) (100 µg.ml-1 in nonane, respectively). 4-nonylphenol (100%, 4-NP, technical), 4-

tert-octylphnol (4-t-OP; 98%), 4-nonylphenol-monoethoxylate (99.5%, 4-NP1EO) and 4-nonylphenol-

diethoxylate (99.5%, 4-NP2EO) were purchased from Sigma Aldrich (Saint Quentin Fallavier, France). 

The spiked solutions were prepared in methanol at concentrations of 1 µg.ml-1 of each compound. 

Methanol (MeOH) for the analysis of pesticide residues was from Merck (VWR 

international, Strasbourg, France). Dichloromethane (DCM) for organic residue analysis was from 

J.T.Baker; water used for LC/MS analysis was from J.T. Baker (Atlantic Labo, Bruges, France). All 

the above solvents were used without further purification. Water used for solid phase extraction was 

Evian water in glass bottles and has been tested for low level of NP before (<5 ng.l-1) (France 

Boisson, France). Hydrochloric acid (purity 37%) was purchased from VWR international 

(Strasbourg, France). Ammonium acetate (minimum purity 98%) was purchased from Sigma Aldrich 

(Saint Quentin Fallavier, France). All the chemicals were tested for background levels for the 

compounds of interest. 
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Due to the ubiquitous occurrence of alkylphenols and alkylphenol polyethoxylates (materials in 

plastics and detergents), glassware was chosen to avoid contamination of the sample. Furthermore, all 

the glassware and sampling apparatus required special treatment prior to use. All the glassware was 

washed and then heated at 450oC for 6 h prior to use. Whatman GF/F glass fibre filters (pore size 0.7 

µm) were purchased from VWR International (Fontenay-sous-Bois, France) and were also heated at 

450oC for 6 h prior to use. 200 mg Bondelut® C18 cartridges and 500 mg HF-Bondelut® PSA 

cartridges were purchased from Varian (Courtabœuf, France). 

 

2-3 Analytical methodologies for abiotic matrices 

The protocols have been published previously (Pan et al., submitted). Briefly, between 1 l 

and 4 l of water samples were filtered through GF/F glass fiber filters (which was heated at 450°C, 6 

hours)(0.7 µm). The treatment of the dissolved phase occurred in the 24 hours following the sampling 

in order to prevent biodegradation phenomena. After acidification (pH 2, HCl), between 0.5 to 1 l of 

water was passed through Bondelut® C18 cartridges (200 mg, 3 cc, Varian). The elution was achieved 

by 5ml of a mixture of methanol/dichloromethane (50/50; v/v). Solid materials were stored at -20°C 

until freeze-drying. Sediments were then passed through a sieve (0.2 mm) and homogenized before 

being stored in a glass amber vial, at room temperature. Extraction (0.1 g of sediment, d.w.; Total 

Suspended Solids: equivalent of 2 l to 4 l  of water filtrate) was carried out by microwave assisted 

extraction MAE (Prolabo, france) with a mixture of methanol/dichloromethane (40 ml; 3/1; v/v). The 

extracts were then filtered, evaporated to less than 500 µl and redissolved in 60 ml of water (pH 2) to 

undergo a purification step on C18 cartridges (Lardy-Fontan et al., submitted). The extracts were 

evaporated and redissolved in methanol to a final volume of 100-200 µl.  

Identification and quantification were performed with reversed phase liquid chromatography 

coupled to electrospray mass spectrometry (LC-MS) (Agilent 1100 series, Palo Alto), in Single Ion 

Monitoring mode (Pan et al., submitted). 

 

2-4-Analytical methodologies for biotic matrices 

Samples (100 µl) were first treated with 20 µl of a β-glucuronidase-aryl-sulfatase mixture 

(Sigma-Aldrich, Saint Quentin Fallavier, France), 100000 and 7500 units.ml-1 respectively, for 

enzymatic deconjugation. To this purpose, samples were buffered to pH 5 (acetate buffer made up of 

sodium acetate and acetic acid in water) and were then placed in an oven at 40°C for 2h according to 

Martin-Skilton et al. (2006). The samples were then acidified to pH 2 (HCl) to undergo the C18 

extraction. The extracts were then reconcentrated under a nitrogen stream, transfered into methanol 

(100-200 µl) and characterized by LC-MS. 
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2-5-Quality assurance-Quality control 

All chemicals were tested for background levels for the compounds of interest. Due to the 

ubiquitous occurrence of alkylphenol materials in plastics and detergents, glassware and sampling 

apparatus required special treatment prior to use. All the glassware was washed and then heated at 

450oC for 6 h prior to use.  

The quantification was performed by an internal calibration (p-n-NP; p-n-NP1EO). To each 

extraction series a protocol blank was joined in order to show evidence of contamination during the 

different analytical steps. Small amounts of 4-NP have been quantified in some cases, while for the 

other analytes blank signals were absent. Moreover, spiked water (100ng.l-1, individual compound), 

which follows all the experimental procedures, was joined to each extraction series. Reported 

concentrations were corrected for the blank value and the method recovery. Developped analytical 

methodologies show recovery rates higher than 80% with relative standard deviations of 20%. 

Furthermore, optimized methodology displays good sensitivity 1-5 ng.l-1 for the dissolved phase, tens 

of ng.g-1 for suspended solids (Pan et al., submitted; Lardy-Fontan S. et al., submitted) 

 

3-Results and Discussion 

3-1 Occurrence and fate of APEO metabolites in the rocky inlet of Cortiou  

Table 1 sums the occurrence of APEO metabolites in the rocky inlet of Cortiou during the 

two sampling campaigns of 2004 and 2006. It presents minimal, maximal and median measured 

concentrations as well as frequency of detection of the investigated compounds. Firstly, the ubiquity of 

anaerobic metabolites of biodegradation (4-NP1EO, 4-NP2EO) as well as ultimate biodegradation 

products (NP) of NPEOs with 100% of detection can be assumed. Interestingly, 4- NP1EC is under the 

limit of detection (frequency of detection of 0%, for detection limits of the range of ng.l-1). NP1EC is 

the ultimate biodegradation product of NPECs which are aerobic biodegradation metabolites of 

NPEOs. NPECs have been shown to be the predominant aqueous metabolites of WWTP secondary 

effluents and their receiving waters. Furthermore, previous works highlighted the fact that shorter 

chain APECs were persistent in the aquatic environment (Ahel, 1994; Di Corcia et al., 1998; Hayashi 

et al., 2005). The WWTP of Marseilles has a primary treatment of raw waters, thus the non detection 

of 4-NP1EC in the effluents appeared to be consistent. Nevertheless, what is relevant here is the fact 

that natural systems do not seem to show adaptation capabilities to ensure aerobic biodegradation of 

APEOs. As most environmental monitoring focused on NP and OP, few are the data reporting the 

occurrence and the fate of APECs in marine waters. Monitoring works which have focused on these 

metabolites were held in coastal areas impacted by biological wastewater treatment plant loads, thus 

the comparability of observed trends did not appeared to be relevant. In the Rocky Inlet of Cortiou, 4-

NP1EO and 4-NP2EO are the prevalent forms in the dissolved phase with median concentrations of 
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141 ng.l-1 and 94 ng.l-1 in 2004 and 283 and 233 ng.l-1 in 2006, respectively; 4-NP at hundreds of ng.l-

1. 

Table 1: Concentrations of APEO metabolites in the dissolved phase of the rocky inlet of Cortiou 

ng .l-1 Sampling campaign 2004 Sampling campaign 2006 

 
Min Max Median 

Frequency 

of detection 
Min Max Median 

Frequency 

of detection 

4-NP1EC <1-2 <1-2 <1-2 - <1-2 <1-2 <1-2 - 

4-NP 42 489 165 100% 182 17 109 100% 

4-NP1EO 49 287 141 100% 471 21 283 100% 

4-NP2EO 64 141 94 100% 452 26 233 100% 

4-t-OP NA NA NA NA <5 <5 <5 - 

 The Table sums the minimal (min), maximal (max), median-measured concentrations as well as the frequency 

of detection of each compound; NA : not analyzed 

 

APEO metabolites are quantified in suspended solids: <lod to 1.88µg.g-1 for 4-NP, <lod to 

1.78 µg.g-1 for 4-NP1EO; no clear distribution pattern is observed in the plume. The fact that places 

which have got marine characteristics do not show any 4-NP, 4-NP1EO and 4-NP2EO in their 

suspended solid phase can be pointed out. By far, previous monitoring studies have highlighted the 

occurrence of APEO metabolites in marine TSS (Isobe et al., 2001; Wang et al., 2006; Xu et al., 2006; 

Li et al., 2008). Further explanations can be put forward: a punctual desorption of compounds linked 

with a modification of water physico-chemistry due to the changeover from brackish water to marine 

water (salinity, pH, conductivity) can be put forward. In fact, the sorption/desorption phenomena of 

pollutants have been shown to be dependent on physico-chemistry; Xu et al. (2008) highlighted the 

fact that sorption of BPA to marine sediments was linked with physico-chemistry, an increase of 

salinity results in the desorption of BPA. Furthermore the sorption of short chain ethoxymers has been 

shown to be strongly dependent on organic carbon contents (Hou et al., 2006). 

Figure 2 shows the fate of APEOs in the plume of Marseilles effluents in the Rocky Inlet of 

Cortiou. The part of each phase in the global contamination is shown in ng.l-1 as a function of the 

salinity (psu) (Sampling campaign of November 2006). First, we can observe a general decrease in 

measured concentrations as a function of salinity; meaning that the first phenomenon which occurs in 

the rocky inlet is dilution. Interestingly, by looking at the correlation between global aqueous 

contamination and salinity (e.g. dilution), it appears that it is sturdier for 4-NP (R2=0.935) than for 4-

NP1EO (R2=0.8182) and 4-NP2EO (R2=0.6993). Higher biodegradation rates for short chain 

ethoxylates (NP2EO, NP1EO) than for 4-NP can be put forward as one hypothesis. In fact, the longer 

the ethoxy chain, the faster the biodegradation (Ahel, 1994; Di Corcia et al., 1998; Hayashi et al., 

2005; Soares et al., 2008).  
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Figure 2: Fate of APEO metabolites in the Rocky Inlet of Cortiou. 

Concentrations of each phase are expressed in ng.l-1 as a function of salinity (sampling campaign of November 

2006). Diss: dissolved phase (<0.7µm); TSS: Total suspended solids (>0.7µm). 

 

The sediments of the Rocky Inlet (S1 to S6 November 2004, C1 to C5 November 2006) 

reveal significant contamination by APEO metabolites which is very heterogeneous in term 

occurrence and distribution: from < lod to 2,713 µg.kg-1 for 4-NP, < lod to 2,840 µg.kg-1 for 4-NP1EO, 

< lod to 2,091 µg.kg-1 for 4-NP2EO. Subjected to various influences, continental as well as marine, the 

coastal sediments present characteristics and thus capacities to retain the contaminants which are 

highly variable. The particles of continental origin brought by freshwaters are mainly charged with 

manganese and iron oxyhydroxydes, conferring them new properties for the sorption of chemicals; 

once at sea, these particles undergo modifications, in particular they are impoverished in organic 

carbon. The particles of marine origin (various organic refuses, tests, minerals in situ) generally give 

way to deposits richer in silica and carbonates. Among the properties of the sediments, granulometry 

is a parameter usually associated because it is usual to partly explain the natural variability in the 

sediments. Indeed, the more the percentage in fine particles is important, the more the capacity of the 

sediment has to absorb the contaminants is strong. From the point of view of granulometry, the marine 

sediments are divided into two categories: - The fine sediments (lutites), made up of lower particles 

(<63 µm of diameter: clays, silts). - The coarse sediments (arenites and rudites), made up of elements 

whose granulometry is higher than 63 µm (sands (> 63 µm to 2 mm) and gravels (>2 mm)). Generally 

low in organic matter, these sediments display poor sorption properties. The sorption of short chain 

APEOs and APs has been shown to rely on both hydrophobic interactions with organic matter and 

hydrophilic interactions with mineral components (John et al.,2000) which lead to the ubiquity and 

heterogeneity of the distribution of APEOs in the sediments. 

As it is observed for the aqueous phase, a general decrease in sediment contaminations 

(Figure 3) can be observed from the outfall to the open sea (maximum distance of 1 km). Sarrazin et 

al. (2005) published similar trends for linear alkybenzene sulfonate (LAS) whose concentrations 

ranged from 12.19 µg.g-1 to 0.47 µg.g-1 in sediments from the Cortiou area and were strongly 

influenced by the liguro-provençal current. They concluded to a significant contamination as far as 2.5 
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km from the outfall. Similarly, Wafo et al. (2006)) reported a five zone sub-division based on the 

sediment contamination profile in polychlorinated biphenyls and DDT residues. 

 

 

Figure 3: Fate and occurrence of APEOs in the sediments of the Rocky Inlet of Cortiou. 

Concentrations are expressed in µg.kg-1 (fresh weight) (S1 –S6: November 2004; C1-C5: November 2006) 

 

3-2-Occurrence and fate of APEO metabolites in the Rade of Marseilles 

 

Table 2: Occurrence of APEO metabolites in the Rade of Marseilles. 

  Huveaune Chantier Planier 

  
Dissolved phase 

(ng.l-1) 

TSS 

(µg.g-1)  

Sediment 

(µg.g-1)  

Dissolved 

phase (ng.l-1) 

TSS 

(µg.g-1)  

Sediment 

(µg.g-1) 

Dissolved phase 

(ng.l-1) 

TSS 

(µg.g-1)  

Sediment 

(µg.g-1)  

4-NP1EC <1-2 <0.03 <0.03 <1-2 <0.03 <0.03 <1-2 <0.03 <0.03 

4-NP 11 18.88 0.85 34 8.27 0.82 8 3.48 1.74 

4-t-OP < 5 0.32 <0.1 < 5 4.52 <0.1 < 5 1.91 <0.1 

4-NP1EO 7 0.57 0.33 13 0.84 <0.1 5 1.09 <0.1 

4-NP2EO 12 0.06 0.27 20 0.55 0.143 11 0.41 0.43 

TSS 

 (mg.l-1) 
- 2.50 - - 2.29 - - 1.95 - 

  

The Rade of Marseilles is under direct and indirect anthropogenic releases, leading to the 

ubiquity of APEO metabolites in the Rade of Marseilles as highlighted by the Table 2 which presents 

the contamination in metabolites in the dissolved phase (ng.l-1), suspended solids (µg.g-1) and 

sediments (µg.g-1). The contamination of the dissolved phase appears to be homogenous in terms of 
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occurrence and distribution with concentrations ranging from few ng.l-1 to tens of ng.l-1. As in Cortiou, 

4-t-OP and 4-NP1EC are below detection limits (1-2 ng.l-1). On the contrary, the contamination of 

suspended solids appears to be discriminated. The site of Huveaune presents the highest contamination 

in 4-NP with a value of 18.9 µg.g-1 and the lowest value of NP1-2EO. This site is located near the 

outfall of the Huveaune stream which flows on a 500 km2 catchment area. For ten years, the major part 

of the river has been deviated towards the WWTP of Marseilles because it polluted the beaches of the 

city located near its mouth. When strong precipitations occur, the excesses which cannot be absorbed 

by the WWTP are evacuated by the old natural bed. Thus relevant amounts of compounds can be 

linked with the loads of highly charged suspended matter. The site of Chantier also displays a high 

proportion of 4-NP with concentration of 8,277 µg.g-1 and high concentration of 4-t-OP of 4,518 µg.g-

1. The occurrence of these compounds at high concentrations seems to show the existence of different 

sources of contamination. In fact, the site of Chantier is located near industrial areas and harbor 

activities which may release APs. A significant decrease of the contamination profile of TSS is 

observed from the coast to the open sea; on the contrary to sediments whose concentrations are higher 

in the site of Planier than in the sites of Huveaune and Chantier, in any case lower than those of TSS 

(Table 2). Sedimentation processes may occur in the Rade of Marseilles leading to the deposits of 

highly charged solids. 4-NP has been shown to be poorly biodegradated in sediments with half-life 

which can reach more than ten years (Shang et al., 1999). Furthermore, degradation rates have been 

shown to be dependent on the distance from sources, organic matter contents (Li et al., 2008); the site 

of Planier is located in the open-sea. As it has been discussed in previous section, the sorption of 

APEOs is a function of the nature and structure of solids. Thus, the hypothesis of heterogenic 

materials can be assumed to display variable sorption capabilities towards APEO metabolites. 

 

 

Figure 4: Global contamination expressed in ng.l-1 in the Rade of Marseilles. Weight of each 

phase, dissolved phase and suspended solids, in the global contamination (Diss: Dissolved phase (<0.7 

µm); Sol: Solid phase (>0.7 µm)). 
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3-3-French NW costal Mediterranean contamination by APEO metabolites in a global context 

When replacing the observed trends from the French Mediterranean to the general 

Mediterranean Sea contamination by APEOs and their metabolites. It can be assumed that there is 

nothing to compare with the Israelian context reported by Zöller since numerous years (Zoller et al., 

2004; Zoller, 2006a; Zoller, 2006b; Zoller, 2008) which highlight huge contamination of all the water 

systems with concentrations reaching more than tens of µg.l-1. Petrovic et al. (2002) reported 

concentrations which can attempt µg.l-1 in the dissolved phase and mg.kg-1 in harbor sediments. 

Gonzalez et al. (2004) studied the contamination profiles of the Barcelona and Tarragona coasts: they 

found significant concentrations with maximum values of 9.2 µg.l-1 for 4-NP1EO, 0.21 µg.l-1 for 4-

NP, 0.22 µg.l-1 for 4-NP1EC for the dissolved phase. Pojana et al. (2007) evaluated the contamination 

of the Venice lagoon; they reported concentrations ranging from <0.5 to 211 ng.l-1 for 4-NP and <0.1 

to 82 ng.l-1 for 4-NP1EC in the dissolved phase; 47 to 192 µg.kg-1 for 4-NP in sediments. Thus, the 

concentrations reported in this study were significantly lower in the dissolved phase, with the 

exception of the plume of the WWTP of Marseilles; and in the same order of magnitude regarding 

sediments. The profile of contamination was significantly different from those described by studies 

focusing on north and west European estuaries (Bester et al., 2001; Jonkers et al., 2005; Vethaak et al., 

2005b; Cailleaud et al., 2007) which highlighted significant levels of 4-NPEC in the dissolved phase.  

In Europe, the implementation of the WFD leads to the determination of Environmental 

Quality Standards expressed as an annual average value (EQS-AA); for 4-NP this value has been fixed 

at 330ng.l-1, which is the value of Predicted Non- effect Concentration PNEC in freshwater (INERIS). 

In the Rade of Marseilles, 4-NP was quantified at levels of tens of ng.l-1, tenfold lower than the PNEC, 

with the exception of the plume where concentrations were found to be higher than hundreds of ng.l-1. 

Thus, it appeared that the adverse effects which might be linked with the presence of 4-NP were 

limited to the area close to the outfall. The situation appeared to be drastically different for sediments. 

In fact, a chronic PNEC for sediments based on partition coefficients has been estimated  at 39 µg.kg-

1(f.w.) (INERIS)). In the Rade of Marseilles, the ratios MEC/PNEC were higher than 1, suggesting 

that adverse effects linked with the presence of NP might happen in the sediments of the Rade of 

Marseilles and that the risks were worse for the Rocky Inlet of Cortiou. 

 

3-4-Occurrence of free APEO metabolites in the bile of the European hake (Merluscius merluscius) 

5 samples of bile were divided into two aliquots of 100 µl. One set underwent the 

deconjugation protocol before the C18 extraction; on the contrary the second set of samples only 

underwent the C18 extraction. It leads to the determination of free alkylphenolic compounds and 

conjugated forms of alkylphenolic compounds. As presented in Table 3, only 4-NP and 4-NP2EO 

were detected and quantified in the bile (µg.g-1 of bile) whatever the conditions (with or without 
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deconjugation). The quantities of measured compounds were significantly higher when deconjugation 

was achieved (0.08±0.06 µg.g-1 by comparison to 0.34±0.19 µg.g-1 for 4-NP) showing that  more than 

75% of 4-NP were conjugated in the bile which is in agreement with previous works on atlantic 

salmon (Arukwe et al., 2000). The successful methodology was applied to the determination of free 

and conjugated forms of alkylphenolic compounds in the bile of mediterranean Merluccius 

merluccius. 

 

Table 3: Alkylphenolic compound in the bile of Merluscius merluscius 

µg.g-1 Free metabolite Conjugate. metabolite 

4-NP 0.08±0.06 0.34± 0.19 

4-t-OP <0.01 <0.01 

4-NP1EC <0.01 <0.01 

4-NP1EO <0.01 <0.01 

4-NP2EO 0.91±0.89 1.11±0.66 

Mean±standard devition, n=5 

 

The obtained results were applied to a significant set of samples in different locations on the 

Gulf of Lion. The results are presented in Figure 5 and focus on 4-NP. These results demonstrate a 

significant contamination of biles by 4-NP with total measured concentrations (sum of free and 

conjugated forms) from hundreds µg.g-1 to more than 5 µg.g-1. A chronic exposition of aquatic species 

and thus a widespread state of contamination of the Mediterranean Sea can be assumed. In this study, 

the results highlighted high inter-individual variability, which were also observed by Martin-Skilton et 

al. (2006) in a study of the Red mullet (Mullet barbatus) in the north western Mediterranean Sea. 

Variability could be linked to variability of exposure and metabolisation efficiency. Furthermore, 

inter-site variability can be observed; maximum concentrations are measured in sites II, XVII and  I 

(maximum values higher than µg.g-1); these sites are located near the mouth of the Rhone River and 

are under direct anthropic pressures; on the contrary, individuals from the sites V,VI and TECPEC 

show lower levels of contamination with concentrations tenfold lower which was consistent with the 

fact that those areas are located in the open sea and at high depth.  
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Figure 5: Contamination of the bile of Merluscius merluscius by 4-NP. 

 (Concentrations are expressed in µg.g-1 of bile). 

4-Conclusion and Perspectives  

To the best of our knowledge, this study highlights the first data on the occurrence and fate 

of APEO metabolites on French Mediterranean coasts. It shows that the French Mediterranean coast 

show a widespread contamination of waters and sediments; which allows us to think that some adverse 

effects might occur. This idea has been emphasized by the quantification of the European hake, which 

showed a chronic and widespread contamination of aquatic species. From a “mechanistic” point of 

view; these results show that suspended solids are the major contributor to the contamination of 

marine systems by APEO metabolites and play a significant role in dispersion phenomena. Further 

studies should focus on this specific point.   

Furthermore, since February, the new cleansing unit “Geolide” has been implemented. Now, 

the WWTP of Marseilles is equipped with the last generation processes of biological treatment. Thus, 

future works should concentrate on the impact of this new tool at a local scale: the Rocky inlet of 

Cortiou, and on a large scale; the Rade of Marseilles. 
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Résumé: 

Seize composés pharmaceutiques à usage humain ont été étudiés pour leur présence et leur 

devenir dans la phase dissoute, les matières en suspension et les sédiments dans la région de Marseille. 

Une contamination généralisée de tous les sites étudiés a été mise en évidence, principalement 

dominée par les anti-inflammatoires non stéroïdiens, le gemfibrozil et la caféine qui sont présents 

partout. Une contamination significative des phases dissoutes (valeur maximale supérieure au µg.l-1) et 

des sédiments (valeur maximale supérieur au µg.g-1, poids sec) a été mise en évidence, mais reste 

cependant insuffisante pour exercer des effets toxiques sur les organismes aquatiques. Néanmoins, 

cela ne signifie pas qu'il n'y ait aucun risque toxique lié à la présence de substances pharmaceutiques 

associées à d'autres molécules organiques, particulièrement dans la calanque de Cortiou. Par ailleurs, 

les résultats ont mis en évidence que les phases solides en suspension pouvaient être d’importants 

vecteurs pour la dispersion des molécules pharmaceutiques dans les écosystèmes marins. 
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Abstract 

16 human pharmaceutical compounds were studied for their occurrence and fate in the 

dissolved phase, suspended matter and sediments in the Marseilles area. A widespread contamination 

of all investigated sites was highlighted, mainly dominated by Non Steroidal Anti-Inflammatory 

Drugs, gemfibrozil and caffeine which were present everywhere. Significant contamination of water 

(maximum value more than µg.l-1) and sediments (maximum value more than µg.g-1, d.w.) was 

highlighted but nevertheless lower than expected to exert toxic effects on aquatic organisms. 

Nevertheless, it did not mean that there was no toxic concern linked with the presence of 

pharmaceuticals mixed with other organic compounds, especially in the rocky inlet of Cortiou. 

Moreover, the findings highlighted suspended solids as significant vectors for dispersion of 

pharmaceutical compounds in marine water.  

 

1-Introduction 

The Mediterranean Sea is a large semi-enclosed sea with a total surface area of 

approximately 2.5 million km2 and an 80 year water renewal time. Many human activities result in 

environmental stresses and human health problems, such as high nutrient concentrations and 

eutrophication, increasing incidences of algal blooms, as well as high levels of hazardous substances 

(Stanners and Bourdeau, 1995; EEA, 1998). Aware of the pressure on the Mediterranean Sea, 16 

Mediterranean countries adopted on Mediterranean Action Plan (MAP) in 1975 and The Barcelona 

Convention in 1976. Although its aim was first focused on marine pollution, over the years, its 

activities gradually widened to coastal management, leading to the adoption and amendment of the 

Barcelona Convention, renamed Convention For the Protection of The Marine Environment and the 

Coastal Region of the Mediterranean. It is shared by 20 states and one projection suggests that the 
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population in the Mediterranean area can be expected to increase from 323 million in 1980 to 547 

million by 2025 (UNEP, 1989). In addition, the Mediterranean attracts some 200 million tourists every 

year, leading to the release of a cocktail of more than 3,000 pharmaceutical compounds (among the 

most prescribed in European countries) through wastewater treatment loads or direct release into 

aquatic systems. For more than five years an exponential interest has been taken in the study of the 

occurrence and fate of PhACs in various treatment schemes and receiving environments. PhACs are 

regarded as potential hazardous compounds because of their: 1) Ubiquity- In fact, a wide range of 

PhAC compounds has been identified and quantified in drinking water, surface waters and marine 

waters in concentrations ranging from low ng.l-1 to a few µg.l-1 (reviews Enick and Moore, 2007; 

Khetan and Collins, 2007). Nevertheless, one should note that data dealing with the occurrence and 

fate of PhACs in marine water are scarce (Heemken et al., 2001, Weigel et al., 2002; Weigel et al., 

2004; Kasprzyk-Hordern et al., 2008; Comeau et al., 2008; Togola and Budzinski, 2008); 

2) Persistence- In fact, PhACs display various degradation properties. In WWTP, some compounds 

like acetaminophen, caffeine, present average removal of more than 90% in any case, contrary to 

carbamazepine, diazepam, nordiazepam or diclofenac (<10%) which are poorly removed by 

conventional treatment (Garric and Ferrari, 2005). In natural waters, the fate of pharmaceuticals is 

controlled by biotic (biodegradation) and abiotic (mainly photolysis) processes (Garric and Ferrari, 

2005). Consequently, PhACs display a wide range of stability: low stability for ibuprofen, caffeine or 

bezafibrate (with half-life less than 1 week), moderate stability for ciprofloxacin, atenolol (with half-

life of more than ten days), prolonged stability for erythromycin or carbamazepine (with half-life of a 

hundred days to more than a year) (Zuccato et al., 2005); 3) Biological activity- Although maximum 

measured concentrations in the environment are one or two orders of magnitude lower than those 

expectd to exert chronic toxic effects. Nevertheless, this does not preclude the possibility of other 

biological effects on marine organisms such as endocrine disruption and synergetic or additive toxicity 

effects from the multitude of other PhAC/metabolites and pollutants possibly present in the area (Fent 

et al., 2006). 

The main aim of the undertaken work was to determine the occurrence of 16 PhACs in the 

Rade of Marseilles and in a smaller scale on the Plume of the WWTP of the City in the inlet rock of 

Cortiou. It will lead to the generation of among the first data referring to the fate and occurrence of 

PhACs in French marine water. Furthermore this work took a specific interest in 3 abiotic 

compartments: dissolved phase, suspended solids and sediments  

 

2-Material and methods 

2-1 Sites of investigation 
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The Northern west Mediterranean Sea is the recipient of extensive urban, industrial water 

from bordering countries as well as natural discharges of major European Rivers. At the French level, 

the area of the Rade of Marseilles can be pointed out as representative of pressures. 

The Marseilles’ coastline is heavily urbanized and industrialized; various sources of 

chemical contamination have been identified (domestic activities, agricultural activities, harbor, 

maritime and industrial activities). The Rade of Marseilles is the receptacle of several cleaning 

networks and industrial and agricultural wastes. The Wastewater Treatment Plant of Marseilles 

displays a capacity of 1,600,000 equivalent-inhabitants and applies a physicochemical process 

(primary decantation and lamellar decantation). Effluent loads are found towards the rocky inlet of 

Cortiou.  

A sampling campaign (coastal oceanic ship Europe, IFREMER) was carried out in 

November 2006. Its aim was first to supplement data from the first sampling campaign in the rocky 

inlet of Cortiou (Togola and Budzinski, 2008). For this purpose, sampling waters were taken out in the 

sub-surface (depth 0.1 m) in the plume of dilution of the effluent (Cw0-Cw5), moreover some surface 

sediment were found in the plume using a Reineck bucket (C1-C5). Secondly, some samples were led 

to characterize the contamination profile of the Rade of Marseilles (Figure 1); the 3 sites were 

investigated for both waters and sediments following the same methodology as previously discribed, 

namely: the Planier (marine site without direct anthropic influences), the sites of Huveaune and 

Chantier (sites under direct anthropic impacts).  

 

 

Figure 1: Location of the sampling sites in the Marseilles area. 

Sampling points in the Rocky inlet of Cortiou in 2006. 
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2-2 Chemical and reagents 

The 16 pharmaceutical compounds were obtained from Sigma Aldrich (St Quentin Fallavier, 

France; purity > 98%) and are presented with their chemical structures in Table 1.

 

Table 1: Presentation of the 16 selected pharmaceutical compou

Therapeutic Class 

Stimulant  

Bronchodilatators 

β-stimulants

β-stimulants

NSAID 

 

 

 

 

Analgesics 
 

 

Lipid regulator agent  

Antidepressants/ 
Anxiolytics 

Normothymic

Antidepressants 
imipraminics

Anxiolytics 
(Benzodiazepines)

 
 

Deuterated products (diazepam

quantification were purchased from Euriso

The 16 pharmaceutical compounds were obtained from Sigma Aldrich (St Quentin Fallavier, 

France; purity > 98%) and are presented with their chemical structures in Table 1.

Table 1: Presentation of the 16 selected pharmaceutical compounds.

Molecules 

Caffeine 
CAFF 

stimulants Salbutamol 

SALBU 

stimulants Terbutaline 

TERBU 

Ibuprofen 
IBU 

Naproxen NAPROX 

Ketoprofen KETO 

Diclofenac 
DICLO 

Aspirin 
ASP 

Paracetamol PARA 

Gemfibrozil 
GEMF 

Normothymic Carbamazepine 
CARBA 

Antidepressants 
imipraminics 

Imipramine 
IMI 

Amitriptyline 
AMI 

Doxepine 

DOX 

Anxiolytics 
(Benzodiazepines) 

Diazepam 

DZP 

Nordiazepam 
NDZP 

Deuterated products (diazepamd5, amitryptilined6, nordiazepamd5) used for pharmaceutical 

quantification were purchased from Euriso-Top (St Aubin, France; purity > 98%). Surrogate standards 
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The 16 pharmaceutical compounds were obtained from Sigma Aldrich (St Quentin Fallavier, 

France; purity > 98%) and are presented with their chemical structures in Table 1. 

nds. 

Analysis 

GC-EI-MS 

GC-EI-MS 
(derivatization MSTFA) 

GC-EI-MS 
(derivatization MSTFA) 

GC-EI-MS 
(derivatization MSTFA) 

GC-EI-MS 
(derivatization MSTFA) 

GC-EI-MS 
(derivatization MSTFA) 

GC-EI-MS 
(derivatization MSTFA) 

GC-EI-MS 
(derivatization MSTFA) 

GC-EI-MS 
(derivatization MSTFA) 

GC-EI-MS 
(derivatization MSTFA) 

GC-EI-MS 

GC-EI-MS 

GC-EI-MS 

GC-EI-MS 

GC-EI-MS 

GC-EI-MS 

) used for pharmaceutical 

Top (St Aubin, France; purity > 98%). Surrogate standards 
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Pyrene and 1-hydroxypyrene, used as recovery determination standards, were purchased from Sigma 

Aldrich (St Quentin Fallavier, France; purity > 98%). Acetone, acetonitrile, ethyl acetate (HPLC 

reagent grade, Scharlau) were purchased from ICS (Belin-Beliet, France); ammonium hydroxide (ACS 

Reagent, Sigma Aldrich) was purchased from Sigma Aldrich (St Quentin Fallavier, France). 

Hydrochloric acid 37% (reagent grade) was obtained from Atlantic Labo (Eysines, France). Ultrapure 

deionised water was obtained with a Milli-Q system (Millipore, Molsheim, France). 60 mg Oasis 

MCX® cartridges were purchased from Waters (St Quentin en Yvelines, France). MSTFA (n-methyl-

n(trimethylsylil)trifluoroacetamide, purity > 97%; Acros Organics, Noisy-le-Grand, France) was used 

as the sylilation agent for GC-MS analysis. GF/F glass fibre filters (pore size 0.7 µm) were purchased 

from VWR International (Fontenay-sous-Bois, France). 

 

2-3 Analytical treatment of dissolved phases 

The protocol previously described (Togola and Budzinski, 2008) was used for 

pharmaceutical compound extraction. Briefly, the filtered water (GF-F) was acidified at pH 2 and 

between 0.5 and 1 l was loaded on an OASIS MCX® cartridge. The cartridges were then dried under 

vacuum and successively eluted with 3ml of ethyl acetate, 3 ml of an ethyl acetate/acetone mixture 

(50/50; v/v) and 3 ml of an ethyl acetate/acetone/NH4OH mixture (49/49/2; v/v/v). The extracts were 

evaporated under a nitrogen flux to a final volume of 100 µl prior to GC-EI-MS analysis (SIM mode) 

for neutral compound analysis. After a derivatization step (30 µl of MSTFA, incubation 35 min at 

65°C) the extracts were analysed (GC-EI-MS analysis in SIM mode) for acidic drug analysis. 

 

2-4 Analytical treatment of solid phases 

Suspended solids and sediments were freeze-dried in order to remove water. Sediments were 

then sieved (<0.2 mm) and homogenized before being stored in an amber glass bottle, at ambient 

temperature. SPM (equivalent of 2 to 4.5 l of filtered water) or sediments (0.1 g dw) were extracted 

using microwave assisted extraction (MAE, Prolabo, Fontenay sous bois, France) with a mixture of 

acetonitrile/water pH 2 (70/30, v/v). After filtration, the extracts were evaporated (Rapidvap, 

Bioblock, Fontenay sous bois, France) before being redissolved in 60 ml water pH 2 to undergo SPE 

extraction as previously explained. 

 

2-5 Quality assurance and quality control 

All the chemicals were tested for background levels of compounds of interest. All the 

glassware was washed and then heated at 450oC for 6 h prior to use. Glass microfiber filters (GF/F, 0.7 

µm nominal, φ 47mm, Whatman) were also heated at 450oC for 6 h prior to use. 



Publications 

 Page 422 
 

A two step quantification was held: The quantification was performed by internal calibration 

(diazepam d5, amitryptiline d6, nordiazepam d5) added before the extraction (50 to 200 ng, individual 

compound: methanolic solution 1 µg.g-1). Furthermore, the recovery of the internal standard was 

checked by syringe standards, added before the chromatographic analysis. Average recovery rates of 

the compounds ranged from 75% to 97 % except for salbutamol and Terbutaline which show lower 

recovery rates, standard deviation is lower than 15%, thus the methodologies show good repeatability 

and good within-laboratory reproducibility. All additions were gravimetrically controlled. To highlight 

contaminations which might occur during analytical procedures, a protocol blank was added to each 

extraction series as well as spiked samples. 

 

3- Results and discussion 

3-1 Occurrence of PhACs in the rocky inlet of Cortiou 

Table 2 presents the measured concentrations of PhACs in the dissolved phase, expressed in 

ng.l-1 (Table 2) and in sediments, expressed in µg.kg-1 (Table 2), and sums up frequency of detection 

and minimal and maximal concentrations. 

 

Table 2: Occurrence of Pharmaceutical compounds in the rocky inlet of Cortiou 

 
Dissolved phase Suspended solids Sediments 

 

Min Max % Min Max 
% detection 

Min Max 
% detection 

(ng.l-1) (ng.l-1) detection (µg.kg-1 dw) (µg.kg-1 dw) (µg.kg-1 dw) (µg.kg-1 dw) 

CAFF 1.1 912 100% 10 532 100% 40 6,222 100% 

CARBA <Lod <Lod 100% <Lod <Lod 0% <Lod 36 40% 

AMI <Lod 138 100% <Lod 80 83% <Lod 3 20% 

IMI <Lod <Lod 0% <Lod <Lod 0% <Lod <Lod 0% 

DOX <Lod 1 67% <Lod <Lod 0% <Lod <Lod 0% 

NDZP 0.6 2 100% <Lod <Lod 0% <Lod 43 20% 

DZP <Lod 1 17% <Lod 8 17% <Lod <Lod 0% 

ASP 16.1 1,989 100% 506 6,463 100% 182 1,87 100% 

IBU 0.8 433 100% <Lod 21 33% 11 64 100% 

PARA 1.3 541 100% 3 9 100% 14 28 100% 

GEMF 0.5 39 100% <Lod 15 83% <Lod 12 60% 

NAPRO 0.6 133 100% <Lod 86 83% 61 279 100% 

DICLO 0.9 107 100% <Lod 167 33% <Lod <Lod 0% 

TERBU 0.4 3 100% <Lod 7 67% <Lod 7 40% 

SALBU <Lod 2 67% <Lod 7 33% <Lod 3 20% 

KETO 1.5 461 100% 52 318 100% <Lod 611 40% 

Table 2 presents minimal and maximal measured concentrations and frequency of detection in the dissolved 

phase (ng.l-1) and the sediment (µg.kg-1) from the plume of the WWTP effluent of Marseille in the rocky inlet of 

Cortiou. Abbreviations’ are given in Table 1. 

 



Publications 

 Page 423 
 

In the dissolved phase, out of the 16 investigated PhACs, 12 are detected at a frequency of 

100%, thanks to the method very low detection limit (under ng.l-1), with the exception of imipramine 

(0%), diazepam (17%), salbutamol and doxepine (67%). The distribution is consistent with the 

prescriptions, pharmacokinetics, physicochemical properties and the treatment processes implemented 

in the WWTP of Marseilles. NSAID and caffeine are by far the prevalent PhACs in the plume, which 

is in agreement with the fact that they are largely consumed in France and poorly removed by primary 

treatment. Nevertheless, by comparing the results of this study to those previously reported by Togola 

and Budzinski (2008), the maximal measured concentrations are a ten-fold lower, higher than 100 ng.l-

1 (912 ng.l-1 for caffeine, 1,989 ng.l-1 for aspirin, 432 ng.l-1 for ibuprofen). One can note the 

significantly lower concentrations in paracetamol in this study by comparison with the 200 µg.l-1 

previously reported. Antidepressants, lipid regulators are quantified in the range of ng.l-1. In a first 

time carbamazepine has been identified and quantified, nevertheless the chromatogram appeared 

interfered (in GC-EI-MS, in SIM mode). Consequently, in a second time, all the extracts have been 

analyzed in SCAN mode (m/z range from 50 to 500). Unfortunately, the interference has not been 

determined. Each time carbamazepine was detected, each time the interference was present.Thus, a 

reliable quantification was not possible in some points of the Rocky inlet of Cortiou (near the outfall). 

 Such variations in occurrence can be explained by further hypotheses. Firstly, the effluent 

load was found in a semi-enclosed environment, thus dilution phenomena are important; samples were 

not done in the same locations which may explain some of the trends (Salinity 14.70/00 (Togola and 

Budzinski, 2008) Salinity 220/00, this study). Secondly, it is now well documented that the efficiency of 

WWTP processes towards PhACs are hugely affected by various parameters: physico-chemistry 

(Urase and Kikuta, 2005), temperature (Vieno et al., 2005; Castiglioni et al., 2006); age of sludge 

(Federle et al., 2002; Ternes et al., 2004; Clara et al., 2005a; Clara et al., 2005b). Moreover, Carballa 

et al. (2005) reported that the efficiency of primary treatment is strongly dependent on lipid contents 

but in any case lower than 25%. Considering the fact the WWTP treats more than 1,600,000 

inhabitants pollution, it may be assumed that even a 1% variation in removal efficiency can 

significantly affect the measured concentrations. Such phenomena can explained the temporal trends 

observed for praracetamol (one of the most prescribed and sold compounds in French pharmacies). 

Thirdly, one cannot ignore that the consumption of more than 1 million people can be highly variable. 

The occurrence of PhACs in SPM is also observed with concentrations ranging from <Lod to 

more than a few hundreds of ng.g-1 (for some compounds the maximal measured concentrations were 

higher than µg.g-1), meaning that for some compounds more than half of the contamination is 

associated with SPM. Even if hydrophilic, PhACs can be sorbed to SPM which can represent a 

significant well for PhACs and participate in the dispersion of molecules in marine water. 

In sediments, 5 PhACs belonging to NSAID are detected at 100% frequency (caffeine, ibuprofen, 

naproxen, aspirin, paracetamol). Maximal measured concentrations were as high as 6,222 µg.kg-1 for 



Publications 

 Page 424 
 

caffeine, 1,870 µg.kg-1 for aspirin, only 279 µg.kg-1 for paracetamol. As expected, compounds which 

are below detection limit in the dissolved phase are not detected in sediments (diazepam, imipramine, 

doxepine). The distribution of PhACs appears to be very heterogeneous in the rocky inlet of Cortiou. 

As reviewed by Delle Site (2001) the sorption of organic compounds to solids is linked with 

hydrophobic interactions and strongly dependent on pH for ionizable molecules. Lorphensri reported 

that sorption of neutral compounds such as 17-β-ethinyloestradiol and acetaminophen is controlled by 

the hydrophobicity of the compounds, contrary to those of acidic compounds where ion exchange to 

oppositely-charged surfaces appeared to be the dominant sorption mechanism. That was emphasized 

by Suntisukaseam et al. (2007) who studied the sorption of PhACs to polar and non polar sorbents. 

The sorption of PhACs appeared to rely on both molecular structures and surface properties. Subjected 

to various influences, continental as well as marine, the coastal sediments present characteristics and 

thus capacities to retain contaminants which are highly variable. The particles of continental origin 

brought by freshwaters are mainly charged with manganese and iron oxyhydroxydes, conferring them 

new properties for the sorption of chemicals; once at sea, these particles undergo modifications, in 

particular they are impoverished out of organic carbon. The particles of marine origin (various organic 

refuses, tests, minerals form in situ) which, generally, give place to deposits richer in silica and 

carbonates. Among the properties of the sediments, granulometry is a parameter usually associated 

because it is useful to partly explain the natural variability in sediments. Indeed, the more important 

the percentage in fine particles, the more the capacity of the sediment to absorb the contaminants 

stronger. From the point of view of granulometry, the marine sediments are divided into two 

categories: -1) The fine sediments (lutites), composed of lower particles (<63 µm of diameter: clays, 

silts). 2) The coarse sediments (arenites and rudites), constituted by elements whose granulometry is 

higher than 63 µm (sands (>63 µm to 2 mm) and gravels (>2 mm)). Generally poor in organic matter, 

these sediments display poor sorption properties. Moreover, a gradient in physico-chemical 

components exists in the plume and can also explain some of its heterogeneity. As data reporting the 

occurrence of PhACs in sediments are scarce, comparison appeared tricky. Antonic and Heath (2007) 

studied the occurrence of some NSAID in river sediments along a river impacted by the 

pharmaceutical industry; they found maximum levels of 0.06 µg.g-1 for naproxen and 0.32 µg.g-1 for 

ketoprofen. Rice and Mitra (2007) studied sediments from Lake Erie and found detectable levels (up 

to 104 ng.g-1) of ibuprofen, naproxen and ketoprofen discharged from the WWTP which may result 

from the widespread use of anti-inflammatory and analgesic pharmaceuticals in numerous medical 

situations. 
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3-2-Fate in the plume in the rocky inlet of Cortiou 

 

 

Figure 2: Fate of Pharmaceutical compounds in the plume of the WWTP of Marseilles, in the rocky 

inlet of Cortiou. Concentrations are expressed in ng.l-1 as a function of salinity (0/00) 

 

In the dissolved phase, the main phenomenon to occur in the Rocky inlet of Cortiou was 

dilution. Figure presents the concentrations of some of the 16 PhACs (focus on the PhACs with 100% 

detection frequency) as a function of salinity (which was assumed to represent dilution). Caffeine 

(0.96), aspirin (0.91), ibuprofen (0.96), diclofenac (0.95), nordiazepam (0.85) displayed strong 

correlation, on the contrary to naproxen (0.63) and gemfibrozil (0.79). Naproxen is known to be 

photolabile through direct photolysis. Lin et al. (2006) reported that 40% of the daytime removal of 

naproxen should be attributed to photolysis; Lin and Reinhard (2005) reported the degradation rates of 

PhACs in river water and estimated a half-life of 4.1 hours for ketoprofen, 1.4 hours naproxen and 15 

hours for ibuprofen. In the rocky inlet of Cortiou, even if brackish water displayed significant 

turbidity, photolytic phenomena occurred especially in the context of this sampling campaign which 

was held under sunny conditions. As for the dissolved phase, the concentrations of PhACs in 

suspended solids (expressed in ng.g-1) decreased from the outfall to the open sea. Nevertheless, it is 

interesting to note that the farer the site, the more significant the SPM part in the contamination (1% to 

53% for caffeine, 1% to 72% for aspirin). Comeau et al. (2008) studied the plume of various WWTPs 

in Atlantic coastal receiving waters (Canada). The prevalent PhACs were caffeine, salicylic acid 

(metabolites of aspirin), naproxen, ibuprofen and gemfibrozil with concentrations of tens ng.l-1, they 

were found in one or two order of magnitude lower concentrations than those found in the effluent. 

They assumed that dilution was the prevalent parameter to control their fate in marine water. 

Compared to our study, the distribution and occurrence appeared to be similar; although the 

phenomena of dilution seemed to be faster in the case study reported by Comeau et al. due to the 

existence of tidal phenomena.  
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As highlighted by Figure 3, it was surprising to note that no decreasing trends in the 

contamination of sediments from the outfall to the open sea occurred. Alkylphenols were examined in 

the same study (Lardy-Fontan et al., submitted) and presented a significant decrease in concentrations 

as one moves away from the outfall (Figure 3a). Sarrazin et al. (2005) published same trends for linear 

alkybenzene sulfonate (LAS) whom concentrations ranged from 12.19 µg.g-1 to 0.47 µg.g-1 in 

sediments from Cortiou area and were strongly influenced by the “liguro-provençal” current; they 

concluded there was a significant contamination as far as 2.5 km from the outfall. Similarly, Wafo et 

al. (2006) reported a five zone sub-division based on the sediment contamination profile in 

polychlorinated biphenyls and DDT residues. These 3 classes of organic compounds are from 

midpolar to apolar compounds for which sorption can be assumed to be hydrophobically controlled. In 

the present study, the occurrence of PhACs, especially polar ones (caffeine and aspirin) was quite 

surprising. One clue should be the fact that the presence of such compounds in solids could be 

artefactual. But, in fact, the freeze drying process engenders a loss of water by sublation; consequently 

compounds which were located in the interstitial water could be found in the solids. Moreover as it has 

been shown in sludge by Joss et al. (2005), the sorption of polar and ionizable pharmaceuticals to 

solids cannot be predicted by considering log Kow and thus could be significantly affected by 

physico-chemistry. 

 

 

Figure 3: Trends in the occurrence of PhACs in the sediments in the rocky inlet of Cortiou 

a) Fate and Occurrence of 4-NP in the rocky inlet of Cortiou (extract from Lardy-Fontan et al., submitted). 

 

To sum up, the occurrence of PhAC compounds in the rocky inlet of Cortiou was highlighted 

in all the compartments: dissolved phase, suspended solids and sediments. The context in the rocky 
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compounds in mixtures and significant amounts; nevertheless this worrying situation appeared to be 

confined near the effluent load, thanks to dilution phenomenon, photolytic and biodegradation 

phenomena. The contamination of the solid phase appeared to be highly heterogeneous but 

nevertheless can be considered as a significant well and carrier for PhACs in marine environment. 

 

3-2-Fate and Occurrence of PhACs in the Rade of Marseilles 

PhACs have been quantified in three sites of the Rade of Marseilles; the measured 

concentrations in the dissolved phase and SPM (expressed in ng.l-1) are presented in Table 3. In the 

dissolved phase, except for aspirin which was quantified at a maximum level of 63 ng.l-1 in the site of 

the river Huveaune, all compounds presented maximum concentrations lower than 10 ng.l-1; most of 

them were below detection limit. Trends in the distribution did not appear to be unequivocal; although 

the site of Huveaune appeared as the most impacted (closer to the coast) in front of Chantier (closer to 

harbor activity) and Planier (open sea). The occurrence of PhACs in the SPM was limited to caffeine, 

aspirin, ketoprofen, paracetamol whose concentrations are lower than 10 ng.l-1. As for the dissolved 

phase, SPM from the site of Huveaune appeared to be more contaminated than those of Chantier and 

Planier. As in the inlet of Cortiou, SPM can be the vector of no less than 50% of the contamination. As 

in the SPM, the occurrence of PhACs in sediments is limited to caffeine, aspirin, naproxen, ketoprofen 

and gemfibrozil (Figure 4). The site of Chantier appears to be more contaminated with concentrations 

of 4,772 µg.kg-1 of ketoprofen, 1,026 µg.kg-1 for naproxen; even more impacted than in the inlet of 

Cortiou (as shown in Figure 4). The Rade of Marseilles appeared to be chronically contaminated by 

PhAC compounds; such trends are in accordance with the work held in parallel focusing on 

alkylphenol-polyethoxylates and highlighting a widespread contamination of the Rade of Marseilles 

by persistent metabolites 4-NP, 4-NP1EO and 4-NP2EO (Lardy-Fontan et al., submitted).  

The widespread occurrence of caffeine and aspirin in the marine environment reported by 

Comeau et al. (2008) on the Canadian Atlantic coast was assumed to be linked with defective septic 

systems and direct releases of untreated waters. It can also occur in the Marseilles area, because the all 

raw waters are not collected via cleansing networks. Verenitch and Mazumder (2008) focused on the 

occurrence of caffeine in various systems and measured concentrations ranging from 4.5 to 149 ng.l-1. 

Carrara et al. (2008) reported the fate of some PhACs in three septic plumes and observed that 

naproxen, gemfibrozil and ibuprofen were the compounds which were transported at the highest 

concentrations and over longer distances, especially under anoxic conditions. The outfall of the 

Huveaune Stream which flows on a 500 km2 catchment area occurs in the Rade of Marseilles. For ten 

years, the major part of the river has been deviated towards the WWTP of Marseilles because it 

polluted the beaches of the city located near its mouth. When strong precipitations occurred, the 

overflow which cannot be absorbed by the WWTP is evacuated by the old natural bed. Although the 
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study took place in dry conditions, the fall season characterized by extensive precipitations which may 

have occurred before our sampling campaign leading to the load of raw waters into the system (highly 

contaminated). Moreover, Marseilles is located at the northeastern tip of the Gulf of Lions into which 

the Rhône River delivers about 90% of the total riverine water inputs. Although French data are 

scarce, some of them have reported environmental occurrence in WWTP effluents and the receiving 

streams and rivers of the South East of France: - Comoretto and Chiron (2005) studied the occurrence 

of ibuprofen, carbamazepine and bezafibrate in the Arc River basin (near the city of Aix-en-Provence) 

and concluded to continuous loads of molecules in the aquatic system; - Togola and Budzinski (2008), 

in addition of the preliminary study in the Rocky inlet of Cortiou, reported a widespread 

contamination of the Hérault watershed (Rabiet et al., 2006), the western side of the Gulf of Lions, by 

PhACs (mainly caffeine, paracetamol, ketoprofen, naproxen, carbamazepine); - Feitosa-Felizzola et al. 

(2007) applied a powerful SPE-LC-MS-MS methodology to the study of a wide range of antibiotics in 

various effluents (domestic, hospital, etc…) in the Marseilles area and obtained positive matches. 

Moreover, upstream of the Rhône River, significant loads of various classes of PhACs have been 

highlighted to occurr by Andreozzi et al. (2003)). They described that effluent (WWTP of Pierre 

Benite, Lyons) was dominated by NSAID, carbamazepine, gemfibrozil with concentrations ranging 

from ng.l-1 to µg.l-1 (1.62 µg.l-1 for ketoprofen, 1.2 µg.l-1 carbamazepine, 0.06 µg.l-1 gemfibrozil, 

etc….). Miege et al. (2006) investigated the occurrence of 5 betablockers in the area of Lyons; 

although they highlighted widespread loads to the environment they concluded to negligible risks for 

the receiving waters (Rhône and Saône rivers). 

 

 

Figure 4: Occurrence of PhAC compounds in the sediments of the 3 sites of the Rade of Marseilles. 

Comparison with the site of Cortiou (expressed in µg.kg-1) 

Cortiou: occurrence of PhACs at point C5, referring to the more distant ones (true marine environment)  
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4-Conclusions 

To sum up, a widespread occurrence of PhACs in the French Mediterranean coast has been 

highlighted. As it has been reported by previous works in Spain (Kuster et al., 2006; Gomez et al., 

2007), Greece (Koutsouba et al., 2003; Botitsi et al., 2007) or Italy (Zuccato et al., 2005; Zuccato et 

al., 2006; Zuccato et al., 2008), continuous loads of PhACs occur in catchment areas whose final 

receiving system is the Mediterranean sea or under direct release of PhAC compounds into the system, 

as shown in the Rocky inlet of Cortiou. Non-Steroidal Anti Inflamatory Drugs and caffeine were by 

far the prevalent compounds in terms of frequency of detection and concentrations. Interestingly, this 

work highlighted their occurrence in solid phases: SPM and sediments. Both appeared as significant 

vectors and wells for PhACs; some more works should focus on this specific point to understand the 

fate of PhACs in the environment especially in marine water. 

Although the reported data in this work are once or twice fold lower, this does not preclude 

the possibility of other biological effects on marine organisms such as endocrine disruption and 

synergetic or additive toxicity effects from the multitude of other PhACs/metabolites and pollutants 

possibly present in the area. Although ppt–ppb concentrations may not induce adverse effects or 

represent ecological risks, it is not well documented whether other receptors in non-target organisms 

are sensitive. On the other hand, it is also recognized that even though individual concentrations of any 

drug might be low, the combined concentrations of drugs sharing a common mechanism of action 

could induce additive or synergetic effects (Besse and Garric, 2008). In this sense, there is an 

increasing demand for information on the potential toxicity of drug residues. However, there is a lack 

of data concerning their effects on terrestrial or aquatic fauna (Besse and Garric, 2008). 

Since February 2008, the new cleaning unit of the city of Marseilles “Geolide” has been 

implemented. Now, the WWTP of Marseilles displays the latest generation processes of biological 

treatment. Thus, future works should concentrate on the impact of this new tool at a local scale; the 

Rocky inlet of Cortiou, and on a large scale; the Rade of Marseilles. 
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ANNEXE I Glossaire 
 

AMPc : Adénosine monophosphate cyclique 

Bassin d’aération : Ouvrage dans lequel les eaux brutes et les boues activées sont mélangées et aérées 

Bioaccumulation : capacité des organismes aquatiques à concentrer et à accumuler les substances chimiques à des 

concentrations supérieures à celles où elles sont présentes dans l'eau qui les environne. 

Bioamplification  (ou biomagnification) : augmentation des concentrations lorsque l'on passe d'un maillon trophique 

inférieur à un maillon trophique supérieur ou bien au sein d'une même espèce. 

Biodisponibilité :  la concentration totale d'un contaminant dans le milieu est rarement suffisante pour évaluer son 

effet sur les organismes vivants. Ce ne sont que certaines formes (c.f. Spéciation) qui pourront être assimilées par les 

organismes. 

Bouchon vaseux : zone de turbidité maximale particulière aux estuaires, comprise entre des eaux douces peu 

chargées en matières de suspension à l'amont et les eaux salées marines. Sa situation n'est pas stable car il évolue au 

gré des conditions hydrologiques (débits, cycles de marée). 

Boues activées  (dans une station d'épuration des eaux usées) : ce traitement consiste à mélanger, agiter, aérer les 

eaux usées et des boues riches en bactéries dans le bassin d'aération. A la sortie de cet ouvrage, le mélange est séparé 

par décantation dans le clarificateur. L'eau épurée est dirigée vers le milieu récepteur ou vers un traitement 

complémentaire. Les boues décantées sont éliminées ou remises en circulation dans le bassin. 

Clarificateur  ( Ou décanteur secondaire) : Ouvrage de station d'épuration où l'on sépare l'eau des boues activées par 

l'effet de la gravité (les boues, étant plus denses que l'eau, se retrouvent au fond de l'ouvrage). 

DBO : Consommation en oxygène des micro-organismes leur permettant d'assimiler les substances organiques 

présentes. La DBO constitue en une mesure de la pollution des eaux usées par les matières organiques.  

DCO : consommation en oxygène par les oxydants chimiques forts pour oxyder les substances organiques et 

minérales de l'eau. Elle permet d'évaluer la charge polluante des eaux usées.  

Carbone organique total ou C.O.T. : Dans un échantillon donné, il désigne le carbone total contenu ayant une 

origine organique (donc y compris le carbone des os, des tests ou des coquilles)  

Equivalent habitant  (ou Eq./Hab.) : c’est une unité d’évaluation de la pollution correspondant à celle d’un habitant 

réel, soit en moyenne : DCO = 120 g par habitant.jour-1,  DBO5 = 60 g par habitant.jour-1, MES = 90 g par 

habitant.jour-1, NTK = 15 g par habitant.jour-1 (NTK = azote total Kjeldahl), PT = 4 g par habitant.jour-1 (PT = 

phosphore total). 

Estuaire : zone de transition à l'embouchure d'un fleuve entre les eaux douces (cours d’eau) et les eaux côtières 

(mer). Il présente une forme évasée de la terre vers la mer et une bathymétrie croissante vers la mer. En l’absence de 

marée, on parle de delta. La pénétration continentale de l’estuaire correspond à l’extension maximale vers l’amont de 

la zone d’inversion des courants des marées. Ces milieux de transition, dont la masse d’eau oscille entre terre et mer, 

se caractérise par une grande biodiversité et par des phénomènes hydrodynamiques comme par exemple le bouchon 

vaseux. La directive 2000/60/CE du 23/10/2000 de l’Union européenne précise les limites extérieures (vers la mer) 

des estuaires : elles sont définies en fonction des besoins par les Etats membres. La limite interne (vers l'amont) est la 

limite des eaux douces.  

 

   



Annexes 

 Page 437 
 

Filtration par membrane :  la filtration par membrane consiste en une filtration tangentielle, c’est-à-dire que le 

liquide coule parallèlement aux membranes et non à travers. Mis à part cet élément, la filtration à membrane est 

très semblable à la filtration « traditionnelle », avec une membrane ayant une porosité de 1 à 100 nm. 

Filtration par osmose inverse : la filtration par osmose inverse consiste à inverser le flux osmotique (d’un 

endroit plus concentré vers un moins concentré) en augmentant la pression du liquide le plus concentré. 

Filtres à charbons actifs : les charbons actifs sont utilisés pour l’extraction des traces de contaminants dans 

l’eau. On distingue deux techniques : les charbons actifs fixes ou les charbons actifs disséminés dans l’eau sous 

forme de petites particules. 

Fixation (ou l’adsorption) : fixe les substances à éliminer sur une substance plus grande. Ces substances, qui 

sont plus faciles à extraire de l’eau, emportent les polluants avec elles. 

Floculation : le but de cette méthode est d’accélérer le processus de décantation gravitaire des substances 

présentes dans l’eau. Le principe de fonctionnent consiste en une neutralisation des forces électrostatiques et en 

une formation de composés plus grands. Ces deux principes ont pour effet d’augmenter la vitesse à laquelle les 

substances présentes dans l’eau se déposent au fond. 

Lit Bactérien :  Ouvrage rempli de matériau grossier dans lequel les eaux usées préalablement décantées 

percolent et sont épurées (grâce au film biologique implanté sur le matériau support). 

Ozonation (ou Oxydation à l’aide d’ozone) : consiste à injecter de l’ozone dans les eaux à épurer. L’ozone se 

décompose en radicaux OH- qui vont attaquer et oxyder les substances organiques. Les substances résultantes 

sont diverses. 

Photocatalyse : méthode plus complète que celle des seuls ultraviolets, elle consiste à rajouter un catalyseur 

dans l’eau, comme par exemple, le dioxyde de Titane (TiO2) ou l’oxyde de Fer. On peut aussi ajouter de l’ozone 

ou de l’eau lourde pour améliorer le procédé. 

Prétraitements : Premiers procédés de traitement de l'eau dans une usine de traitements des eaux usées pour 

éliminer les éléments grossiers les plus faciles à retenir. 

Toxicité aiguë : caractère d’un produit chimique qui va avoir des effets néfastes sur la santé de l’animal ou de 

l’homme après une seule exposition de courte durée à ce produit. 

Toxicité chronique : caractère d’un produit chimique qui va avoir des effets néfastes sur la santé de l’animal ou 

de l’homme après plusieurs expositions et à long terme 
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ANNEXE II Assainissement-Contexte National 
 

 

A/ LES STATIONS D’EPURATION : DONNEES DE FONCTIONNE MENT 

L’établissement d’un réseau d’assainissement d’une agglomération doit répondre à 2 

contraintes : assurer le transit vers l’épuration des eaux usées et le cas échéant des eaux résiduaires 

industrielles et assurer l’évacuation des eaux pluviales. 

 

On distingue 3 grands systèmes : 

- Le système unitaire : évacuation de l’ensemble des eaux pluviales et usées par un unique réseau ; 

- Le système séparatif : un premier réseau est affecté à l’évacuation des eaux usées (domestiques et 

industrielles), l’évacuation de toutes les eaux pluviales est assurée par un deuxième réseau ; 

- Les systèmes mixtes : ils sont constitués en partie en système unitaire et en partie en système 

séparatif, selon les zones d’habitation. Ce type de système est majoritaire en France (60%) (IFEN). 

-  

Les filières de traitements des eaux et des boues reposent sur la combinaison de différents 

mécanismes (Figure 1, Tableau 1) dont les principes sont détaillés ci après. 

 

Figure 1 : Etapes de traitement des eaux usées. 
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Tableau 1 : Classification des traitements par leurs mécanismes (d'après Bruchet et al., 2006). 

Mécanisme 

Chimique 

- dégradation 

- adsorption 

Biologique 

- absorption 

- dégradation 

Mécanique 

- adsorption 

- cisaillement 

Thermique 

-dégradation 

Filière eau 

Décantation φ-χ 

 

Boues activées : 

� Faible Charge 

� Moyenne Charge 

� Aération Prolongée 

 

 

  

Traitement tertiaire 

Biofiltres : 

�Lits bactériens 

�Cultures fixées 

 

Décantation  

Désinfection 
Bioréacteurs à membrane 

 
Agitation  

 Lagunage   

Filière boues 

Chaulage Digestion anaérobie Déshydratation Séchage 

Polymère Digestion aérobie Séchage thermique Prétraitement 

Traitement acide Compostage Ultra sons Hydrolyse 

 Lagunage Broyage  

 

Les différentes étapes du processus de traitements des eaux usées sont exposées ci-après. 

I/ Le prétraitement  

Le but est de séparer les matières les plus grossières et les éléments susceptibles de gêner les 

étapes ultérieures du traitement. Il comprend 3 étapes : 

- Le dégrillage qui consiste en la rétention des déchets volumineux, 

- Le dessablage qui consiste en l’abattement des particules dont la granulométrie est supérieure à 100 

µm, 

- Le dégraissage-déshuilage qui consiste en la séparation des huiles et des graisses de l’effluent brut. 

 

II/ Le traitement primaire 

Les processus de traitement primaire sont physiques et physico-chimiques. Les objectifs sont 

d’une part d’éliminer 60 à 80 % des matières en suspension décantables dans l’eau et d’autre part de 

réduire les caractéristiques dimensionnelles avales d’élimination de la pollution carbonée. On 

distingue : 

-Les procédés de décantation physique : ce sont des procédés de séparation solide-liquide par la 

pesanteur, 
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-Les procédés de décantation chimique : coagulation-floculation, flottation. 

 

III/ L’élimination de la pollution carbonée 

Le schéma de fonctionnement des traitements secondaires obéit au processus suivant : 

- Les micro-organismes des boues se développent et se nourrissent des matières organiques, 

- Les micro-organismes sont contenus dans des bassins de stockage où ils forment des communautés, 

- La masse biologique qui épure l’eau polluée trouve son substrat dans les boues provenant des 

clarificateurs. 

Schématiquement l’épuration biologique des eaux usées urbaines repose sur 2 principes : la 

sédimentation partielle des matières en suspension et l’activité biologique des bactéries qui se 

multiplient en dégradant les matières organiques. 

 

III-1/ Les procédés biologiques naturels  

�Le lagunage naturel ou bassin de stabilisation  

Ce procédé repose sur l’écoulement naturel des eaux usées au sein d’excavation qui 

ressortent, sans intervention extérieure, dans un état juger sans risques pour milieu récepteur. Le 

fonctionnement d’un lagunage naturel peut être résumé comme suit : 

 

III-2/ Les procédés biologiques artificiels 

� Les lits bactériens  

Cela consiste à faire ruisseler les eaux usées sur une masse de matériaux (poreux ou 

caverneux) qui sert de support aux micro-organismes. Le film biologique ou mucilage comporte des 

bactéries aérobies en surface et des bactéries anaérobies près du fond (renouvellement en 3 semaines, 

température=25°C). 

� Les boues activées  

Ces systèmes fonctionnent comme des lagunes naturelles. L’aération est également 

artificielle. La différence se situe au niveau de la recirculation des organismes actifs = boues activées 

du décanteur secondaire vers le bassin d’aération. Ceci a pour conséquence : un temps de séjour des 

eaux plus court et un temps de séjour des organismes actifs plus élevé que le temps de séjour de l’eau 

(le contrôle du temps de séjour des boues est un paramètre important pour maîtriser la capacité 

nitrifiante et le degré d’oxydation des matières organiques solides).  

Eaux usées + oxygène Bactérie                    Boues + effluent traité

Sels minéraux + CO2+lumière Végétaux Masse végétale+oxygène
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La population bactérienne, présente en son sein, est sensible à de nombreux paramètres : 

- Le rapport entre la nourriture et la population bactérienne, 

- La nature de la biomasse, 

- La teneur des eaux brutes en oxygène, 

- La température et le pH des eaux, 

- Les interactions entre populations bactériennes, 

L’élimination de la charge polluante est maximale pendant les premières minutes de contact 

boues-rejets, elle correspond à l’initiation des phénomènes d’adsorption et de floculation des matières 

organiques. 

�La biofiltration (cultures fixées)  

Ce procédé repose sur l’action des micro-organismes aérobies fixés sur un support granulaire 

immergé dans un bassin. Le biofiltre comporte une zone biologique aérée qui est favorable à 

l’accrochage des micro-organismes. Cette zone est superposée à une zone d’anoxie. L’opération 

consiste à la fois à retenir les matières en suspension et à traiter biologiquement la pollution carbonée 

et azotée dans le même filtre. 

 

IV/ L’élimination de l’azote et du phosphore- les traitements complémentaires 

Les traitements complémentaires constituent un complément d'épuration des eaux usées. Les 

usages des eaux après traitement tertiaire sont variés : appoint pour les besoins d'une ville, restitution 

au milieu récepteur ou recharge des nappes d'eaux souterraines destinées à l'alimentation, irrigation 

agricole, alimentation des plans d'eaux, usage industriel, réduction de l'eutrophisation. 

Les différents types de traitement sont les suivants : 

- les traitements physiques : décantation, filtration, tamisage, microfiltration ; 

- les traitements chimiques: chaux, floculation, extraction de l'azote et du phosphore ; 

- les traitements biologiques : lagunage, boues activées, rejet dans le sol ; 

- les traitements bactériologiques : chlore, ozone, charbon actif, rayonnement UV, membranes. 

 

IV/A Elimination de la pollution azotée  

Les mécanismes d'élimination biologique de l'azote s'effectuent en 3 étapes qui suivent le 

cycle biogéochimique de l'azote :  

� L’ammonification : 

Le processus d’ammonification quit la règle suivante : 

Norg    NH4++ OH-+ produits carbonés 

� L’assimilation :  
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Il s'agit de la transformation de la matière azotée minérale ou organique présente dans les 

eaux en matière vivante (biomasse épuratrice). 

�La nitrification et la dénitrification : 

La nitrification s'effectue en 2 étapes : l’étape 1 est l’étape de nitritation qui est l’étape 

d’oxydation des ions ammonium en nitrites, l’étape 2 est l’étape de la nitratation qui est l’étape 

d’oxydation des nitrites en nitrates. 

La dénitrification, qui conduit à l'élimination totale de l'azote, est une réduction des nitrites et 

nitrates en azote gazeux. 

Les cinétiques de ces 2 mécanismes sont dépendantes d'un certain nombre de paramètres : 

conditions extérieures (pH, température,…), les concentrations en substrats, l'âge des boues, l'oxygène 

dissous. 

 

IV/B Elimination de la pollution phosphorée  

Les mécanismes d'élimination biologique du phosphore reposent sur l'accumulation de 

phosphore à l'intérieur de bactéries qui seront évacuées par les boues.  

 

IV/ C Les traitements complémentaires  

-  La désinfection : désinfection au chlore, désinfection au brome, ozonation, rayonnement UV ; 

- Les traitements des odeurs. 

 

V/ Le traitement et l'élimination des boues 

Le traitement des boues a pour objectif de réduire la fraction organique afin de diminuer le 

pouvoir fermentescible des boues et les risques de contamination, et de diminuer le volume total des 

boues afin de réduire leur coût d'évacuation. 

 

V/A Caractérisation des boues urbaines 

On distingue : 

- Les boues primaires obtenues au niveau du décanteur primaire après la séparation physique des 

matières en suspension ; 

- Les boues physico-chimiques  engendrées par la formation d'un complexe entre la quasi-totalité de la 

pollution particulaire et colloïdale de l'eau et le réactif injecté ; 

- Les boues biologiques issues du métabolisme de la pollution organique biodégradable. Ces boues 

peuvent être classées en trois sous-classes : les boues fraiches mixtes  issues d'un mélange entre boues 

primaires et boues biologiques, les boues activées issues d'une station fonctionnant en aération 
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prolongée, les boues digérées issues de la digestion, aérobie et anaérobie, des boues primaires et des 

boues fraiches mixtes. 

V/B Nature et structure des boues urbaines 

Les principales caractéristiques des boues sont les suivantes : la concentration en matières 

sèches, la teneur en matières volatiles, la teneur en matières minérales, la composition élémentaire 

pondérale, l'aptitude des boues à l'épaississement, la viscosité, la composition du liquide interstitiel 

(salinité, pH, DCO, DBO5, …). 

 

V/C Les filières de traitements et d'élimination des boues 

Les principales étapes de traitement et destination des boues sont résumées dans la Figure 2. 

 

 

 

B/ DONNEES GENERALES SUR LE PARC DE STATION D’EPURATION EN FRANCE 

(d'après IFEN, 2006) 

Stabilisation

Epaississement

Stockage Valorisation 
agricole

déshydratation

déshydratation Compostage

Valorisation 
agricole

EpaississementCompostage
Valorisation 

agricole

Boues 

liquides

Boues 

solides

déshydratation séchageEpaississementséchage
Valorisation 

agricole

Epaississement

Epaississement

Incinération

Incinération

Boues 

liquides

Boues 

solides

déshydratation
Mise en 
décharge

Mise en 
décharge

La valorisation agricole

Le compostage et le séchage

Incinération et mise en décharge

Figure 2 : Les principales étapes de traitement des boues et leur destination (D'après Satin, 2001) 
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L'IFEN a réalisé en 2006, un bilan sur l'assainissement des eaux résiduaires urbaines en 

France. Les principales données concernant les stations d'épuration en France (traitements et milieu 

récepteur) sont résumées dans la Figure 3. Le traitement des eaux résiduaires est assuré par près de 

17 300 stations d’épuration. En avril 2006, les performances de 68 % des stations d'épuration des 

grandes agglomérations (>10 000 habitants) et 72 % de leurs flux étaient conformes aux objectifs de la 

directive européenne sur les eaux résiduaires urbaines (IFEN, 2006). 

 

C/ CONTEXTE REGLEMENTAIRE 

 

I/ Directive du conseil du 21 mai 1991 relative au traitement des eaux usées urbaines résiduaires 

(91/271/CEE)  

 

Tableau 1 : Prescriptions relatives aux rejets provenant des stations d'épuration des eaux urbaines 

résiduaires et soumises aux dispositions des articles 4 et 5 de la présente directive. On appliquera la 

valeur de la concentration ou le pourcentage de réduction. 

Paramètres Concentration 
Pourcentage minimal 

de réduction (1) 
Méthode de mesure de référence 

Demande biochimique en 

oxygène (DB05 à 20°C) 

sans nitrification (2) 

25 mg.l-1 O2 

70-90 

40 aux termes de l'article 

4 paragraphe 2 

Echantillon homogénéisé, non filtré, non décanté. 

Détermination de l'oxygène dissous avant et après 

une incubation de 5 jours à 20° C ± 1°C, dans 

l'obscurité complète. Addition d'un inhibiteur de 

nitrification. 

Figure 3 : Distribution des Processus de traitements dans les stations françaises 
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Demande chimique en 

oxygène (DCO) 
125 mg.l-1 O2 75 

Echantillon homogénéisé, non filtré, non décanté. 

Bichromate de potassium. 

Total des matières solides 

en suspension 

35 mg.l-1 (3) 

35 aux termes de l'article 4 

paragraphe 2 (plus de 

10000 EH) 

60 aux termes de l'article 4 

paragraphe 2 (de 2000 à 

10000 EH) 

90 (3) 

90 aux termes de l'article 

4 paragraphe 2 (plus de 

10000 EH) 

70 aux termes de l'article 

4 paragraphe 2 (de 2000 

à 10000 EH) 

- Filtration d'un échantillon représentatif sur une 

membrane de 0,45 µm, séchage à 105°C et pesée. 

- Centrifugation d'un échantillon représentatif 

(pendant 5 minutes au moins, avec accélération 

moyenne de 2800 à 3200g), séchage à 105°C, pesée. 

(1) Réduction par rapport aux valeurs à l'entrée. 

(2) Ce paramètre peut être remplacé par un autre : carbone organique total (COT) ou demande totale en oxygène (DTO), si une relation peut 

être établie entre la DB05 et le paramètre de substitution. 

(3) Cette exigence est facultative. 

Les analyses relatives aux rejets provenant du lagunage doivent être effectuées sur les échantillons filtrés ; toutefois, la concentration du total 

des matières solides en suspension dans les échantillons d'eau non filtrée ne doit pas dépasser 150 mg.l-1. 

 

Tableau 2 : Prescriptions relatives aux rejets provenant des stations d'épuration des eaux urbaines 

résiduaires et effectués dans des zones sensibles sujettes à eutrophisation, telles qu'identifiées à 

l'annexe II point A lettre a). En fonction des conditions locales, on appliquera un seul paramètre ou les 

deux. La valeur de la concentration ou le pourcentage de réduction seront appliqués. 

Paramètres Concentration 

Pourcentage 

minimal de 

réduction (1) 

Méthode de mesure de référence 

Phosphore 

total 

2 mg.l-1 P (EH compris entre 1000 et 100 000) 

1 mg. l-1  P (EH de plus de 100 000) 
80 

Spectrophotométrie par absorption 

moléculaire 

Azote total (2) 

15 mg. l-1  N (EH compris entre 10 000 et 100 

000) 

10 mg. l-1 N (EH de plus de 100 000) (3) 

70-80 
Spectrophotométrie par absorption 

moléculaire 

(1) Réduction par rapport aux valeurs à l'entrée. 

(2) Azote total signifie le total de l'azote obtenu par la méthode de Kjeldahl (azote organique + NH3), de l'azote contenu dans les nitrates 

(N01) et de l'azote contenu dans les nitrites (NO2) 

(3) Autre possibilité : la moyenne journalière ne doit pas dépasser 20 mg. l-1  N. Cette exigence se réfère à une température de l'eau de 12° C 

au moins pendant le fonctionnement du réacteur biologique de la station d'épuration. La condition concernant 

 

II/La Réglementation des boues d’épuration 

Le régime juridique des boues est déterminé par le décret 97-1133 du 8 décembre 1997 

relatif à l'épandage des boues issues du traitement des eaux usées. Selon l'article 2 du décret, les boues 
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ont le caractère de déchet au sens de la loi du 15 juillet 1975, laquelle précisait « est considéré comme 

un déchet tout résidu d'un processus de production, de transformation ou d'utilisation (...) que son 

détenteur destine à l'abandon ou qu'il est tenu d'abandonner».  

Les conditions d'épandage définies par le décret recouvrent cinq opérations : le stockage, les 

études préalables à l'épandage, le programme prévisionnel d'épandage qui consiste à planifier les 

périodes d'épandage, un registre d'épandage qui doit être tenu par l'agriculteur, un bilan annuel.  

Des restrictions d'usages résultent de la directive du Conseil du 12 décembre 1991 relative à 

la protection des eaux contre la pollution par les nitrates d'origine agricole. Cette directive a été 

transposée par les décrets du 27 août 1993 et du 4 mars 1996. La directive et les décrets de 

transposition définissent des « zones vulnérables » associées à des restrictions d'épandage. Une 

restriction des périodes d'épandage en fonction du rapport carbone/azote des boues et du type de 

culture réceptrice. Concrètement pour les boues liquides et déshydratées qui présentent un rapport 

carbone/azote inférieur à 8, la période d'épandage se limite au printemps, ce qui entraîne des besoins 

de stockage conséquent.  

 Une restriction des surfaces d'épandage en interdisant l'épandage sur certaines productions et sur 

certains types de sol.  

-Un accroissement des contraintes par le biais de programmes d'actions départementaux.  

Le décret 97-1133 ne s'applique cependant pas «aux produits composés en tout ou partie de boues qui, 

au titre de la loi du 13 juillet 1979, bénéficient d'une homologation ou à défaut, d'une autorisation 

provisoire de vente ou sont conformes à une norme rendue d'application obligatoire» Ainsi, il est 

explicitement prévu que les boues sont aussi des matières fertilisantes qui relèvent de la loi du 13 

juillet 1979. Les matières fertilisantes, réalisées en tout ou partie à partir de boues, doivent être 

conformes à des normes (normes NFU 44-041 et 44-051) et faire l'objet d'une homologation ou d'une 

autorisation provisoire de vente. L'ambiguïté demeure sur la qualification de compost. Certains 

souhaiteraient qualifier de compost une boue simplement séchée qui aurait certaines qualités 

fertilisantes. D'autres souhaitent réserver la qualification de compost aux boues mélangées à des 

supports carbonés (bois ou déchets verts).  
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ANNEXE III ANNEXE AMPERES 
 

La constitution d’un échantillon de stations d’épuration urbaines et rurales représentatif du 

parc français / européen actuel et des années à venir a été réalisée. L’échantillonnage a couvert aussi 

bien des stations de taille importante conçues pour les rejets en milieu sensible que des filières de 

traitement des eaux usées de petites collectivités (<2000 P.E), dont l’impact local sur le milieu 

récepteur est très important en milieu rural. Les critères de sélection des filières ont intégré : le type 

(en lien avec les mécanismes de traitement des composés cibles), la taille, la localisation (milieu 

récepteur), la qualité de l’exploitation, la possibilité de disposer d’un historique du fonctionnement de 

l’installation et d’effectuer des prélèvements et mesures complémentaires.  

Sur chaque site des bilans massiques entrée / sortie de stations accompagnés de mesures dans 

les boues ont été réalisés. Les différentes étapes du traitement ont été différenciées et considérées.  

Au total, un nombre de 16 stations d’épuration a été arrêté et étudié, seules 7 seront 

considérées dans ce manuscrit. 

Les caractéristiques de fonctionnement ainsi que les plans d’échantillonnages sont présentés 

pour chacune des stations d’épuration considérées. Pour satisfaire à une close de confididentialité, les 

noms et localisations des stations d’puration ne seront pas spécifiés. 

 

Station d’épuration SE-1 

 

A-Présentation de la station 

�Capacité (Equivalents Habitants) : 36 000 EH 

�Type de réseau : pseudo séparatif 

�Typologie des rejets traités :  

- Rejets industriels : oui, faible 

- Rejets hospitaliers : non 

- Rejets urbains : oui 

�Type de traitement appliqué dans la filière eaux : boues activées (C, N, P) 

�Type de traitement appliqué dans la filière boues : centrifugation directe 

�Dates de la campagne : 26 février- 1 mars 2007 

 

B-Campagne d’échantillonnage 

Les données concernant la campagne de prélèvement sont résumées dans le Tableau 1et la Figure 1. 
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Tableau 1: Campagnes d’échantillonnage sur le site de la station d’épuration SE1. 

Filière eau 
Entrée STEP 

(eaux brutes après dégrillage) 
Retour de tête 

Sortie STEP 

(eaux traitées) 

J1 
Prélèvement moyenné 24 heures 

proportionnel au débit 
NR 

Prélèvement moyenné 24 heures 

proportionnel au débit 

J2 
Prélèvement moyenné 24 heures 

proportionnel au débit 
Echantillon moyen 

Prélèvement moyenné 24 heures 

proportionnel au débit 

J3 
Prélèvement moyenné 24 heures 

proportionnel au débit 
NR 

Prélèvement moyenné 24 heures 

proportionnel au débit 

Filière boue Entrée filière boue  Sortie filière Boue 

J2 Oui reconstitué  Oui reconstitué 

 

Figure 1 : Schéma de la station SE-1, localisation des points d’échantillonnage.  

 

Station d’épuration SE-2 

A- Présentation de la station 

�Capacité (Equivalents Habitants) : 250 000 EH 

�Type de réseau : faux séparatif 

�Typologie des rejets traités :  

- Rejets industriels : oui, importants 

- Rejets hospitaliers : oui 

- Rejets urbains : oui 

�Type de traitement appliqué dans la filière eaux : décantation primaire, boues activées (C, N, P) 

�Type de traitement appliqué dans la filière boues : épaississement, digestion anaérobie, 

centrifugation, chaulage 

�Dates de la campagne : 24-26 avril 2007. 

 

Dégrilleur
Désab leur
Déshuileur

Eau 
brute

M ilieu 
récepteur

SE1

Traitement physico-
chimique et biologiquePrétraitements

Traitement boues

1 1 
3 3 
55

Bassin 
aération

Clar ificateur

2 2 
4 4 
66

Boues

Centrifugeuse

Ajout 
FeCL3

99

88
PrélèvementsPrélèvements
1 1 –– EB J1EB J1

2 2 –– ET J1ET J1

3 3 –– EB J2EB J2

4 4 –– ET J2ET J2

5 5 –– EB J3EB J3

6 6 –– ET J3ET J3

7 7 –– RETRET

8 8 –– B B biolbiol

9 9 –– B B DéshydrDéshydr

77

Polymère
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B-Campagne d’échantillonnage 

Les données concernant la campagne de prélèvement sont résumées dans le Tableau 2 et la Figure 2. 

 

Tableau 2 : Campagnes d’échantillonnage sur le site de la station d’épuration SE 2. 

Filière 

eau 

Entrée STEP 

(eaux brutes après 

dégrillage) 

Eau décantée 
Sortie STEP 

(eaux traitées) 

Retour de 

tête global 

Retour de 

tête 

centrat 

Retour de 

tête curage 

Matières de 

vidange 

J1 NR NR NR 
oui 

reconstitué 

oui 

reconstitué 

oui 

reconstitué 

oui 

reconstitué 

J2 

Prélèvement 

moyenné 24 

heures 

proportionnel au 

débit 

Prélèvement 

moyenné 24 

heures 

proportionnel 

au débit 

Prélèvement 

moyenné 24 

heures 

proportionnel 

au débit 

    

J3 

Prélèvement 

moyenné 24 

heures 

proportionnel au 

débit 

Prélèvement 

moyenné 24 

heures 

proportionnel 

au débit 

Prélèvement 

moyenné 24 

heures 

proportionnel 

au débit 

    

 

Filière boue Entrée filière  Boue intermédiaire (digérée) Boue sortie 

J1 OUI (2voies) reconstitué OUI reconstitué OUI reconstitué 

 

 

Figure 2 : Schéma de la station SE-2, localisation des points d’échantillonnage. 

 

Dégrilleur
Désab leur
Déshuileur

Eau 
brute

M ilieu 
récepteur

SE2

Traitement biologiquePrétraitements

Traitement boues

Bassin 
aération

Clarificateur

19 19 
2222

Boues

Décanteur

Traitement 
primaire

Digestion 
anaérob ie

Chaulage

1010

1212

1111

1313

18 18 
2121

20 20 
2323

PrélèvementsPrélèvements
10 10 –– B B PrimPrim

11 11 –– B B Bio lBio l

12 12 –– B B digdig

13 13 –– B B chaulchaul

14 14 –– RET globalRET global

15 15 –– RET RET centratcentrat

16 16 -- RET curageRET curage

17 17 –– Mat Mat vidvid

18 18 –– EB J1EB J1

19 19 –– ET J1ET J1

20 20 –– EI J1EI J1

21 21 –– EB J2EB J2

22 22 –– ET J2ET J2

23 23 –– EI J2EI J2

M at 
vidange

Centrifugeuse

1515

14141717

Poly mère

M at 
curage

1616

Epaississeur Flo ttateur
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Station d’épuration SE-3  

A-Présentation de la station 

�Capacité (Equivalents Habitants) : 50 000 EH 

�Type de réseau : pseudo séparatif 

�Typologie des rejets traités :  

- Rejets industriels : oui, importants 

- Rejets hospitaliers : oui 

- Rejets urbains : oui 

�Type de traitement appliqué dans la filière eaux : boues activées (C, N, P) 

�Type de traitement appliqué dans la filière boues : flottation, centrifugation, séchage 

�Dates de la campagne : 11-14 juin 2007 

 

B-Campagne d’échantillonnage 

Les données concernant la campagne de prélèvement sont résumées dans le Tableau 3 et la Figure 3. 

 

Tableau 3 : Campagnes d’échantillonnage sur le site de la station d’épuration SE 3. 

Filière eau 
Entrée STEP 

(eaux brutes après dégrillage) 
Eau intermédiaire 

Sortie STEP 

(eaux traitées) 
Retour de tête  

J1 NR NR NR oui reconstitué 

J2 
Prélèvement moyenné 24 

heures proportionnel au débit 

Prélèvement moyenné 

24 heures 

proportionnel au débit 

Prélèvement moyenné 

24 heures proportionnel 

au débit 

 

J3 
Prélèvement moyenné 24 

heures proportionnel au débit 

Prélèvement moyenné 

24 heures 

proportionnel au débit 

Prélèvement moyenné 

24 heures proportionnel 

au débit 

 

indépendante    oui reconstitué 

 

Filière boue Entrée filière Point intermédiaire Boue sortie filière Boues avant séchage 
Boue après 

séchage 

J1 
OUI 

reconstitué 

OUI 

reconstitué 

OUI 

reconstitué 
  

indépendante    
OUI 

reconstitué 

OUI 

reconstitué 
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Figure 3 : Schéma de la station SE-3, localisation des points d’échantillonnage. 

 

Station d’épuration SE-4 

A-Présentation de la station 

�Capacité (Equivalents Habitants) 110 000  EH 

�Type de réseau : pseudo séparatif 

�Typologie des rejets traités :  

- Rejets industriels : oui 

- Rejets hospitaliers : oui 

- Rejets urbains : oui 

�Type de traitement appliqué dans la filière eaux : boues activées (C, N) 

�Type de traitement appliqué dans la filière boues : centrifugation directe 

�Dates de la campagne : 10-13 septembre 2007 

 

B-Campagne d’échantillonnage 

Les données concernant la campagne de prélèvement sont résumées dans le Tableau 4 et la Figure 4. 

 

 

 

 

Dégrilleur
Désab leur
Déshuileur

Eau 
brute

M ilieu 
récepteur

SE3

Traitement biologique
Prétraitements

Traitement boues

28 28 
3131

Bassin 
aération

Clarifica teur

Boues

Séchage thermique

Décanteur 
rap ide

Traitement 
tertiaire

30 30 
3333

29 29 
3232

2727

2424

3636

PrélèvementsPrélèvements
24 24 –– B B Bio lBio l

25 25 –– B B DéshydrDéshydr

26 26 –– RET globalRET global

27 27 –– B B terttert

28 28 –– EB J1EB J1

29 29 –– EI J1EI J1

30 30 –– ET J1ET J1

31 31 –– EB J2EB J2

32 32 –– EI J2EI J2

33 33 –– ET J2ET J2

34 34 –– B entrée sécheurB entrée sécheur

35 35 –– B séchéeB séchée

36 36 –– RET RET séchenurséchenur

36bis 36bis –– Lav sécheurLav sécheur

Centrifugeuse

2525

2626

35353434

Flo tta teur
Condense 
buées du 
sécheur

36bis36bis
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Tableau 4 : Campagnes d’échantillonnage sur le site de la station d’épuration SE 4. 

Filière eau 
Entrée STEP 

(eaux brutes après dégrillage) 

Sortie STEP 

(eaux traitées) 

Retour de tête fosse 

toutes eaux 
Graisses traitées 

J1 NR NR oui reconstitué oui reconstitué 

J2 
Prélèvement moyenné 24 heures 

proportionnel au débit 

Prélèvement moyenné 24 

heures proportionnel au débit 
NR NR 

J3 
Prélèvement moyenné 24 heures 

proportionnel au débit 

Prélèvement moyenné 24 

heures proportionnel au débit 
NR NR 

Filière boue Entrée filière  Boue sortie 

J1 OUI reconstitué OUI reconstitué 

 

 

Figure 4 : Schéma de la station SE-4, localisation des points d’échantillonnage. 

 

Station d’épuration CA-1  

A-Présentation de la station 

�Capacité (Equivalents Habitants) : 2 900 EH 

�Type de réseau : unitaire 

�Typologie des rejets traités :  

- Rejets industriels : oui 

- Rejets hospitaliers : oui  

- Rejets urbains : oui 

�Type de traitement appliqué dans la filière eaux : boues en aération prolongée faible charge, 

décantation 

�Type de traitement appliqué dans la filière boues : lit de séchage planté avec plancher aérant 

 

Dégrilleur
Désab leur
Déshuileur

Eau 
brute

M ilieu 
récepteur

SE4

Traitement biologique
Prétraitements

Traitement boues

40 40 
4444

Bassin 
aération

Boues

Clarificateur

41 41 
4545

PrélèvementsPrélèvements
37 37 –– B entrée B entrée 

38 38 –– B chauléeB chaulée

39 39 –– RETRET

40 40 –– EB J1EB J1

41 41 –– ET J1ET J1

42 42 –– Graisses Graisses 
traitéestraitées

43 43 –– Mat VidMat Vid

44 44 –– EB J2EB J2

45 45 -- ET J2ET J2

Centrifugeuse

3939

38383737

FeCl3

Poly mère
chau x

Bio lix

Bâche 
boues

Traitement des 
graisses

Graisse

externe

M at 
vidange

4343

4242
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�Dates de la campagne : 5-8 février 2007 

 

B-Campagne d’échantillonnage 

Les données concernant la campagne de prélèvement sont résumées dans le Tableau 5 et la Figure 5. 

 

Tableau 5 : Campagnes d’échantillonnage sur le site de la station d’épuration CA 1. 

Filière eau 
Entrée STEP 

(eaux brutes après dégrillage) 
Retour de tête 

Sortie STEP 

(eaux traitées) 

J1 
Prélèvement moyenné 24 heures 

proportionnel au débit 
NR 

Prélèvement moyenné 24 heures 

proportionnel au débit 

J2 
Prélèvement moyenné 24 heures 

proportionnel au débit 
Echantillon moyen 

Prélèvement moyenné 24 heures 

proportionnel au débit 

J3 
Prélèvement moyenné 24 heures 

proportionnel au débit 
NR 

Prélèvement moyenné 24 heures 

proportionnel au débit 

Filière boue Entrée filière boue  Sortie filière Boue 

J2 oui reconstitué  oui reconstitué 

 

 

Figure 5 : Schéma de la station CA-1, localisation des points d’échantillonnage. 

 

Station d’épuration CA-2  

A-Présentation de la station 

�Capacité (Equivalents Habitants) 13 000 EH 

�Type de réseau : unitaire 

�Typologie des rejets traités :  

Dégrilleur
Désab leur
Déshuileur

Eau 
brute

M ilieu 
récepteur

CA1

Traitement biologique
Prétraitements

Traitement boues

201 201 
203 203 
208208

Bassin 
aération

Clarificateur

Lit de 
séchage

206206

205205

202 202 
204 204 
209209

207207

PrélèvementsPrélèvements
201 201 –– EB J1EB J1

202 202 –– ET J1ET J1

203 203 –– EB J2EB J2

204 204 –– ET J2ET J2

205 205 -- RETRET

206 206 –– B B Bio lBio l

207 207 –– B B DéshydrDéshydr

208 208 –– EB J3EB J3

209  209  -- ET J3ET J3
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- Rejets industriels : NR 

- Rejets hospitaliers : non 

- Rejets urbains : oui 

�Type de traitement appliqué dans la filière eaux : boues en aération prolongée faible charge (C, N), 

décantation 

�Type de traitement appliqué dans la filière boues : lit de séchage planté (SINT) 

�Dates de la campagne : 19-22 mars 2007 

 

B-Campagne d’échantillonnage 

Les données concernant la campagne de prélèvement sont résumées dans le Tableau 6 et la Figure 6. 

 

Tableau 6 : Campagnes d’échantillonnage sur le site de la station d’épuration CA-2 

Filière eau 
Entrée STEP 

(eaux brutes après dégrillage) 
Retour de tête 

Sortie STEP 

(eaux traitées) 

J1 
Prélèvement moyenné 24 heures 

proportionnel au débit 
NR 

Prélèvement moyenné 24 heures 

proportionnel au débit 

J2 
Prélèvement moyenné 24 heures 

proportionnel au débit 
Echantillon moyen 

Prélèvement moyenné 24 heures 

proportionnel au débit 

J3 
Prélèvement moyenné 24 heures 

proportionnel au débit 
NR 

Prélèvement moyenné 24 heures 

proportionnel au débit 

Filière boue Entrée filière boue  Sortie filière Boue 

J1 NR  Oui reconstitué 

J2 Oui reconstitué  NR 

 

 

Figure 6 : Schéma de la station CA-2, localisation des points d’échantillonnage. 

Dégrilleur
Désab leur
Déshuileur

Eau 
brute

M ilieu 
récepteur

CA2

Traitement biologique
Prétraitements

Traitement boues

210 210 
212 212 
217217

Bassin 
aération

Clarificateur

Lit de 
séchage

215215

214214

211 211 
213 213 
218 218 

216216

PrélèvementsPrélèvements
210 210 –– EB J1EB J1

211 211 –– ET J1ET J1

212 212 –– EB J2EB J2

213 213 –– ET J2ET J2

214 214 -- RETRET

215 215 –– B B Bio lBio l

216 216 –– B B DéshydrDéshydr

217 217 –– EB J3EB J3

218  218  -- ET J3ET J3
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Station d’épuration CA-3  

A-Présentation de la station 

�Capacité (Equivalents Habitants) 700 000 EH 

�Type de réseau : unitaire 

�Typologie des rejets traités :  

- Rejets industriels : oui 

- Rejets hospitaliers : oui 

- Rejets urbains : oui 

�Type de traitement appliqué dans la filière eaux : décantation primaire, boues activées moyenne 

charge, biofiltres (15%) 

�Type de traitement appliqué dans la filière boues : centrifugation, polymères 

�Dates de la campagne : 21-24 mai 2007 

 

B-Campagne d’échantillonnage 

Les données concernant la campagne de prélèvement sont résumées dans le Tableau 7 et la Figure 7. 

 

Tableau 7 : Campagnes d’échantillonnage sur le site de la station d’épuration CA 3. 

Filière 

eau 

Entrée STEP 

(eaux brutes après 

dégrillage) 

Point intermédiaire 

Retour de tête 
Sortie STEP 

(eaux traitées) 

J1 

Prélèvement moyenné 24 

heures proportionnel au 

débit 

Prélèvement moyenné 24 

heures proportionnel au débit 
Echantillon moyen 

Prélèvement moyenné 24 

heures proportionnel au 

débit 

J2 NR 
Prélèvement moyenné 24 

heures proportionnel au débit 
NR 

Prélèvement moyenné 24 

heures proportionnel au 

débit 

J3 

Prélèvement moyenné 24 

heures proportionnel au 

débit 

Prélèvement moyenné 24 

heures proportionnel au débit 
NR 

Prélèvement moyenné 24 

heures proportionnel au 

débit 

 

Filière boue 
Entrée 

filière  

Point intermédiaire 

décanteur Iaire 

Point intermédiaire 

Bassin biologique 

Point intermédiaire 

Eau sale biofiltre 
Sortie filière  

J1 
OUI 

reconstitué 

OUI 

 reconstitué 

OUI 

reconstitué 

OUI 

 reconstitué 

OUI 

reconstitué 
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Figure 7 : Schéma de la station CA-3, localisation des points d’échantillonnage. 
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Déshuileur

Bio filtre

Centr ifugeuse
Benne 

stockage

Eau 
brute

M ilieu 
récepteur

Boues 
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CA3

Traitement 
biologiquePrétraitements
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Traitement boues
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228228
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Décanteur

Traitement 
primaire

Bassin 
aération

Clarificateur
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85%

222 222 
226 226 
229229

223 223 
227 227 
230230

PrélèvementsPrélèvements
221 221 –– EB J1EB J1

222 222 –– EI J1EI J1

223 223 –– ET J1ET J1

224 224 –– RETRET

225 225 –– EB J2EB J2

226 226 –– EI J2EI J2

227 227 –– ET J2ET J2

228 228 –– EB J3EB J3

229 229 -- EI J3EI J3

230 230 –– ET J3ET J3

224224

Silo

Épaississeur

Eau lavage

233233

231231
235235

234234

Polymère

231 231 –– B 1aireB 1aire

232 232 –– B sortieB sortie

233 233 –– B entréeB entrée

234 234 –– B bioB bio

235 235 –– B lavageB lavage
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ANNEXE IV Le Bassin versant de la Seine 
 

Tableau 1 : Principales caractéristiques du bassin versant de la Seine. 

LE BASSIN DE LA SEINE 
Superficie totale 97 000 km2 

Population 17 250 000 habitants 
Densité 35-20 000 habitants.km-2 

 

 

Pressions domestiques : 

84 % population raccordée au réseau 

d’assainissement collectif 

Pressions industrielles 

14 000 industries (énergies, métaux lourds, 

chimie) 

Pressions agricoles : 

104 000 exploitations 

34 % production céréalière nationale 

17 % cheptel ovin 

 

 

Tableau 2: Caractéristiques des principaux affluents de l’estuaire de Seine. 

Nom 
Surface du Bassin versant 

(km2) 

Population 

(habitants) 

Stations d’épuration 

(nombre de rejets dans le milieu) 

L’Andelle 750 50 000 3 

L’Eure (aval) 900 110 000 14 

La Risle 147 - 13 

Le Commerce 225 50 000 2 

La Seine 

2000 800 000 

25 

Le Rançon 1 

L’Austreberthe 3 

Le Cailly 3 

Le Robec - 

La Sainte-Gertrude 1 

 

 

 

 

 

 

 

 

Eaux pluviales
4%

Collectivités
64%

Industries
20%

Agriculture
12%

Rejets nets en DCO dans les eaux de surface 
du bassin de la Seine
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ANNEXE V Le Bassin versant de la Garonne 
 

Tableau 1 : Principales caractéristiques du bassin versant de la Garonne et de ses affluents. 

 

 

 

 

 

 

 

 

 

 

 

 

 

LE BASSIN DE LA GARONNE 

Superficie totale 

29 500 km2 
Vallée de la Garonne 6050 km2 

Rivières de Gascogne et Neste 7390 km2 
Ariège 4170 km2 

Population 2 500 000 habitants 
Densité 84 habitants/ km2 

 

 

 

 

-  Pression domestique : 

Principales agglomérations (habitants, recensement 1999): 

Toulouse 741 120 

Bordeaux 735 337 

Agen 69 488 

Marmande 23 046 

Auch 21 836 

- Pressions Industrielles : 

Industrie chimique 

Industrie de pointe 

Aéronautique 

Agroalimentaire : valorisation des produits régionaux 

- Pression agricole 

oui 

55 % des masses d’eaux reconnues en bon état chimique 

Pollution nette rejetée DBO5 dans les eaux de surface 
(hors pollution agricole) Garonne

3%
18%

14%
65%

Rejets des dispositifs d'assainissement autonome

Rejets industriels non raccordés

Rejets des stations d'épuration
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ANNEXE VI Le Bassin versant de l’Adour 
 

Tableau 1 : Principales caractéristiques du bassin versant de l’Adour et de ses affluents. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LE BASSIN DE L’ADOUR 

Superficie totale 

16 880 km2 

Adour 5 780 km2 

Midouze 3 590 km2 

Gaves 5 400 km2 

Nives 2 110 km2 

Population 944 700 habitants 

Densité 54 habitants/ km2 

 

 

-  Pressions  domestiques 

Principales agglomérations (habitants, recensement 1999): 

Pau : 181 413 

Bayonne 178 965 

Tarbes 77 414 

Mont de Marsan 36 653 

Dax 29 297 

Lourdes 15 554 

- Pressions industrielles  

335 établissements industriels, dont 37 % agroalimentaires 

- Pression agricole 

27 000 exploitations 

704 000 hectares de surface agricole utilisable 

54 % des masses d’eaux reconnues en mauvais état chimique  

Pollution nette rejetée dans les eaux de surface 
(hors pollution agricole) Adour total

4%

36%

14%

46%

Rejets des dispositifs d'assainissement autonome
Rejets industriels non raccordés
Rejets des stations d'épuration
Pertes des réseaux d'assainissement collectifs (après transferts)
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ANNEXE  VII  Analyse des APEO par CL-SM 
 

Les analyses sont réalisées à l’aide d’une CLHP 1100 couplée à un spectromètre de masse 

GV 1946 VL (Agilent Technologies, Palo Alto, USA). Le système est alimenté en azote par un 

générateur d’azote UHPLCMS18E et un compresseur d’air Junair 2000-25M (Domnik Hunter, 

Gateshead, England). 

I /Chromatographe en phase liquide :  

- Injecteur : injecteur automatique  

- Colonne : ZORBAX (SB-C 18) ; 150mm x 2,1mm ; diamètre de pores 3,5 µm 

- Température de la colonne : 21°C 

- Gradient de séparation : 

 

 Ionisation Négative (NI) Ionisation Positive (PI) 

Solvant A Water : MeOH (2 :1, v/v, 3,5 mM acétate ammonium) 

Solvant B MeOH 

Débit (ml.min-1) 0.150 0.150 

Gradient  

0 min  60 % voie B 

2 min 60 % voie B 

7 min  80 % voie B 

25 min 80 % voie B 

26 min  60 % voie B 

36 min 60 % voie B 

0 min  60 % voie B 

2 min 60 % voie B 

7 min  80 % voie B 

35 min 80 % voie B 

38 min  60 % voie B 

52 min 60 % voie B 

 

II/ Spectromètre de masse 

- Mode d’ionisation : Electrospray (ESI) 

- Nature du gaz séchant : Azote 

- Débit du gaz séchant (L.h-1) : 600 

- Température du gaz séchant : 350 °C 

- Température de la source : 120 °C 

- Température du quadrupole : 150 °C 

- Mode d’acquisition : sélection d’ions (SIM) 

 Ionisation Négative (NI) Ionisation Positive (PI) 

Tension capillaire (kV) 3.5 4.0 

Pression de nébulisation () 30 30 
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Analyse des molécules en Ionisation Négative (NI) 

Composés   Quantification 

  

Masse moléculaire 

(g.mol-1) 

m/z 

quantification Etalon interne 

Masse moléculaire 

(g.mol-1) 

m/z 

quantification 

4-nonylphénol 220 219 

p-n-nonylphénol 220 219 4-tert-octylphénol 206 205 

acide nonylphénoxyacétique 278 277 

Analyse des molécules en Ionisation Positive (PI) 

Composés   Quantification 

  
Masse moléculaire 

(g.mol-1)  

m/z 

quantification 
Etalon interne 

Masse moléculaire 

(g.mol-1) 

m/z 

quantification 

4-nonylphénol monoéthoxylé 264 282 
p-n-nonylphénol monoéthoxylé 264 282 

4-nonylphénol diéthoxylé 308 331 
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ANNEXE  VIII  Analyse des substances pharmaceutiques par CG-SM 
 

Les analyses sont réalisées à l’aide d’un chromatographe 6890 couplé à un spectromètre de 

masse 5973 (Agilent Technologies, Palo Alto, USA) 

 

I/ Chromatographe en phase gazeuse  

- Injecteur : Injecteur automatique en mode splitless non pulsé 

- Gaz vecteur : Hélium 6.0 (Linde gas) 

- Débit du gaz vecteur : 1,3 ml.min-1 

- Température de l’interface : 280°C 

- Colonne : HP-5MS Agilent technologies : 30m ; ∅ interne 0,25mm ; 0,25µm épaisseur de phase 

stationnaire constituée de 5% de diphényl -95 % diméthyl-polysiloxane. 

- Programme de température : 70°C pendant 2 min puis 70°C-250°C à 10°C.min-1 puis isotherme 

pendant 5min. 

 

II/Spectromètre de masse  

- Mode d’ionisation : Impact électronique (EI), 70 eV 

- Température de la source : 230 °C 

- Température du quadrupole : 150 °C 

- Mode d’acquisition : sélection d’ions (SIM) 

- Nombre de cycles par seconde : 1,67 
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Analyse des molécules non dérivées 

Composés Quantification Traceur d'injection 

 

Masse 

moléculaire 

(g.mol-1) 

m/z 

quantification 
Etalons internes 

Masse 

moléculaire 

(g.mol-1) 

m/z 

quantification 
 

Masse 

moléculaire 

(g.mol-1) 

m/z 

quantification 

Caféine 194 194 

Diazépam d5 286 261 

Pyrène 202 202 

Diazépam 284 256 

Carbamazépine 236 193 

Amitriptyline 277 58 

Amitriptyline d6 287 64 Imipramine 280 234, 58 

Doxépine 279 58 

Nordiazépam 270 242 Nordiazépam d5 276 247 

Analyse des molécules dérivées (MSTFA) 

Composés Quantification Traceur d'injection 

 

Masse 

moléculaire 

(g.mol-1) 

m/z 

quantification 
Etalons internes 

Masse 

moléculaire 

(g.mol-1) 

m/z 

quantification 
 

Masse 

moléculaire 

(g.mol-1) 

m/z 

quantification 

Aspirine 180 195 

Diazépam d5 286 261 1-hydroxy-Pyrène 218 290 

Ibuprofène 206 160 

Kétoprofène 254 282 

Naproxène 230 185 

Paracétamol 151 206 

Diclofénac 295 214 

Gemfibrozil 250 201 

Salbutamol 239 369 

Clenbutérol 276 335 

Terbutaline 225 356 
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ANNEXE IX Analyse des substances pharmaceutiques par CL-SM-SM 
 

I/Liste des molécules  

 

Classe thérapeutique Nom molécules Mode ionisation 

Stimulants 
Caféine ESI+ 

Théophylline ESI+ 

Bronchodilatateurs 
β-stimulants Salbutamol ESI+ 

β-stimulants Clenbutérol ESI+ 

β-stimulants Terbutaline ESI+ 

AINS 

Ibuprofène ESI- 

Naproxène ESI- 

Kétoprofène ESI- 

Diclofénac ESI- 

Analgésiques 
Aspirine ESI- 

Paracétamol ESI+ 

Hypolipémiants Gemfibrozil ESI- 

Antidépresseurs/Anxiolytiques 

Normothymique Carbamazépine ESI+ 

Antidépresseurs 
imipraminiques 

Imipramine ESI+ 

Amitriptyline ESI+ 

Doxépine ESI+ 
Antidépresseurs 

non imipraminiques 
Fluoxétine ESI+ 

Anxiolytiques 
(Benzodiazépines) 

Diazépam ESI+ 

Nordiazépam ESI+ 

Alprazolam ESI+ 

Bromazépam ESI+ 

Etalons analytiques 

Ibuprofène d3 
Gemfibrozil d6 

ESI- 

Diazépam d5 
Nordiazépam d5 

Amytriptyline d6 
Paracétamol d4 

Caféine c13 
Salbutamol d3 

Imipramine d4 

ESI+ 
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II/Paramètre de séparation  

 

 Paramètres de la source 

 Mode ESI - Mode ESI+ 

Colonne (L.min-1) 11 

Voie A Eau Eau+ 0,1% acide formique 

Voie B Acétonitrile Acétonitrile+ 0,1% acide formique 

Débit  

T° C 

0,6 ml.min-1 

30 °C 

0,6 ml.min-1 

30 °C 

Gradient  

 

 

 

 

 

 

0 min 0% voie B 

10 min 65 % voie B 

11 min 100 % voie B 

12 min 100 % voie B 

13 min 0 % voie B 

18 min 0 % voie B 

 

36 min 60 % voie B 

0 min 0% voie B 

10 min 65 % voie B 

11 min 100 % voie B 

12 min 100 % voie B 

13 min 0 % voie B 

18 min 0 % voie B 

 

 

III/Paramètre d’analyse de masse  

 

 Paramètres de la source 

 Mode ESI - Mode ESI+ 

Débit du gaz de désolvatation gaz (L.min-1) 11 11 

Température du gaz séchant (oC) 300°C 300°C 

Nébuliseur 30 30 

Extracteur (kV) 3,0 3,0 

 

IV/Paramètre de détection  

 

����Mode ESI- 

 MRM Energie de Cône Energie Collision 

DICLOFENAC 
294.13>249.9 20 18 

294.13>214 20 20 

NAPROXENE 
229.07>169.9 15 16 

229.07>184.9 15 8 

GEMFIBROZIL 
249.22>120.8 20 14 

249.22>126.8 20 10 

KETOPROFENE 253.16>209 15 8 

ASPIRINE 
136.8>92.6 25 16 

136.8>64.9 25 26 

IBUPROFENE 205.16>160.9 15 8 

IBUPROFENE-D3 208.17>163.9 15 8 

GEMFIBROZIL-D6 255.36>120.8 20 20 
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����Mode ESI+ 

 

 MRM Energie de fragmentation (V) Energie Collision (V) 

DOXEPINE 
280>107 120 24 

280>84,1 130 24 

DIAZEPAM 
285>154 120 28 

285>256,7 120 22 

NORDIAZEPAM 
271>140 130 27 

271>164,7 130 30 

ALPRAZOLAM 
309>281 120 26 

309>205 130 42 

BROMAZEPAM 
316,1>182 120 34 

316,1>209 130 28 

FLUOXETINE 
310,1>43,8 100 22 

310,1>148 110 8 

CARBAMAZEPINE 
237>194 130 20 

237>192 120 20 

IMIPRAMINE 
281>86 120 20 

281>57,6 110 30 

AMITRYPTILINE 
278>91 110 24 

278>232,4 130 20 

SALBUTAMOL 
240>148 100 18 

240>166 110 15 

TERBUTALINE 
226>152 100 14 

226>125 110 24 

CLENBUTEROL 
277>203 110 16 

277>259 110 12 

CAFEINE 
195>138 130 18 

195>41,7 130 30 

THEOPHYLLINE 
181>124 110 18 

181>96 120 26 

PARACETAMOL 
152>110 100 16 

152>93 110 26 

CAFEINE- C13 196>139 130 20 

PARACETAMOL-D4 156>114 100 18 

DIAZEPAM- D5 290>154 120 30 

NORDIAZEPAM- D5 276>140 120 30 

AMITRIPTYLINE- D6 284.3>233 120 20 

SALBUTAMOL-D3 243>151 100 18 

IMIPRAMINE- D4 285>85,7 120 22 
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