Développement de méthodes de volumes finis pour la mécanique des fluides

par Sarah Delcourte

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Komla Domelevo.

Soutenue en 2007

à Toulouse 3 .


  • Résumé

    Le but de cette thèse est de développer une méthode de volumes finis qui s'applique à une classe de maillages beaucoup plus grande que celle des méthodes classiques, limitées par des conditions d'orthogonalité très restrictives. On construit des opérateurs différentiels discrets agissant sur les trois maillages décalés, nécessaires à la construction de la méthode. Ces opérateurs vérifient des propriétés discrètes analogues à celles des opérateurs continus. La méthode est tout d'abord appliquées au problème Divergence-Rotationnel qui peut être considéré comme une brique du problème de Stokes. Ensuite, le problème de Stokes est traité avec diverses conditions aux limites. Par ailleurs, il est bien connu que lorsque le domaine est polygonal et non-convexe, l'ordre de convergence des méthodes numériques se dégrade. Par conséquent, nous avons étudié dans quelle mesure un raffinement local approprié restaure l'ordre de convergence optimal pour le problème de Laplace. Enfin, nous avons discrétisé le problème non-linéaire de Navier-Stokes, en utilisant la formulation rotationnelle du terme de convection, associé à la pression de Bernoulli. Par un algorithme itératif, nous sommes amené à résoudre un problème de point--selle à chaque itération, pour lequel nous testons quelques préconditionneurs issus des éléments finis, que l'on adapte à notre méthode. Chaque problème est illustré par des cas tests numériques sur des maillages arbitraires, tels que des maillages fortement non-conformes.

  • Titre traduit

    Development of finite volume methods for fluid dynamics


  • Pas de résumé disponible.


  • Résumé

    We aim to develop a finite volume method which applies to a greater class of meshes than other finite volume methods, restricted by orthogonality constraints. We build discrete differential operators over the three staggered tesselations needed for the construction of the method. These operators verify some analogous properties to those of the continuous operators. At first, the method is applied to the Div-Curl problem, which can be viewed as a building block of the Stokes problem. Then, the Stokes problem is dealt with various boundary conditions. It is well known that when the computational domain is polygonal and non-convex, the order of convergence of numerical methods is deteriored. Consequently, we have studied how an appropriate local refinement is able to restore the optimal order of convergence for the laplacian problem. At last, we have discretized the non-linear Navier-Stokes problem, using the rotational formulation of the convection term, associated to the Bernoulli pressure. With an iterative algorithm, we are led to solve a saddle--point problem at each iteration. We give a particular interest to this linear problem by testing some preconditioners issued from finite elements, which we adapt to our method. Each problem is illustrated by numerical results on arbitrary meshes, such as strongly non-conforming meshes.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (214 p.)
  • Annexes : Bibliogr. p. 205-214

Où se trouve cette thèse ?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Disponible pour le PEB
  • Cote : 2007TOU30223
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.