Dérivations et extractions de hamiltoniens modèles pour l'étude de composés à propriétés électroniques remarquables

par Roland Bastardis

Thèse de doctorat en Physicochimie théorique

Sous la direction de Nathalie Guihery.

Soutenue en 2007

à Toulouse 3 .


  • Résumé

    L'objectif de cette thèse est d'identifier les mécanismes microscopiques responsables des propriétés macroscopiques de quelques composés magnétiques moléculaires et cristallins. Une première partie est consacrée aux méthodes ab initio explicitement corrélées permettant l'étude de ces composés. Nous proposons une méthode originale pour introduire les effets de la polarisation dynamique par une série de calculs SCF contraints. Dans un second temps, nous montrons comment la méthode des fragments immergés combinée à la théorie des hamiltoniens effectifs permet d'extraire de façon rationnelle et contrôlée des hamiltoniens modèles susceptibles de reproduire les propriétés macroscopiques. Nous nous intéressons tout d'abord aux déviations isotropes des hamiltoniens de Heisenberg pour lesquelles nous proposons un nouveau hamiltonien incluant un opérateur à trois corps susceptible de changer les propriétés collectives. Le chapitre suivant compare les capacités des hamiltoniens de double échange, de Heisenberg, et de Hubbard à reproduire la physico-chimie des manganites dopés. Il est démontré que la physique d'un hamiltonien de Hubbard est contenue dans les hamiltoniens plus simples de double échange et de Heisenberg, dans le cas d'un dimère de Mn ponté par un oxygène, et que les expressions des énergies obtenues avec ces deux derniers hamiltoniens sont équivalentes. Enfin, nous montrons que seul un hamiltonien de double échange, tenant compte à la fois des états non-Hund et d'une contribution antiferromagnétique de type Heisenberg, décrit correctement la physique de ces composés.

  • Titre traduit

    Derivations and extraction of model hamiltonians apply to remarquable electronic properties compounds


  • Résumé

    The goal of this thesis is to identify the microscopic mechanisms responsible for the macroscopic of molecular and crystalline magnetic compounds. A first part is devoted to the explicitly correlated ab initio methods allowing the study of such compounds. We propose an original method to introduce the dynamical polarization effects though a series of constrained SCF calculations. Then we show how the embedded cluster method combined with the effective Hamiltonian theory makes possible the rational and controlled extraction of model Hamiltonians likely to reproduce the macroscopic properties. We are interested in the isotropic deviations from Heisenberg behavior and propose a new Hamiltonian including a three-body operator susceptible to change the collective properties. The following chapter compares the capabilities of the double exchange, Heisenberg and Hubbard Hamiltonians to reproduce the chemical physics of doped-manganites. It is shown that the physics of a Hubbard Hamiltonian is contained in the simpler double exchange and Heisenberg Hamiltonians, in the case of a Mn dimer bridged by an oxygen, and that the energy expressions obtained from these last two Hamiltonians are analytically identical. Finally, we show that only a double exchange Hamiltonian, taking account both non-Hund state effects and a Heisenberg antiferromagnetic contribution, accurately describes the microscopic physics of these compounds.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (155 p.)
  • Annexes : Bibliogr. p. 151-155

Où se trouve cette thèse ?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Disponible pour le PEB
  • Cote : 2007TOU30170
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.