Chaos et ergodicité pour une famille de modèles de neurones

par Marc Senneret

Thèse de doctorat en Concepts fondamentaux de la physique

Sous la direction de Maurice Courbage.

Soutenue en 2007

à Paris 7 .

  • Titre traduit

    Chaos and ergodicity for a family of models of neuronal activity


  • Pas de résumé disponible.


  • Résumé

    Cette thèse porte sur l'analyse mathématique de modèles décrivant l'activité neuronale. Dans une première partie, un rappel des principaux résultats concernant la biologie des neurones est fait. Nous analysons ensuite les deux modèles principaux de neurone que sont le modèle de Hodgkin-Huxley et celui de FitzHugh-Nagumo. Par une méthode de section de Poincaré, nous créons un modèle plus simple, linéaire par morceaux, conservant les propriétés essentielles de l'excitabilité. La thèse se poursuit avec l'étude numérique et analytique complète de la dynamique de deux de ces modèles couplés. La seconde partie présente les démonstrations rigoureuses montrant l'existence de mesure invariante de type SRB pour des systèmes modélisés par des applications affines par morceaux dans Rn, comme notre modèle précèdent. On utilise pour cela une méthode basée sur l'opérateur de Perron-Frobenius et l'inégalité de Lasota-Yorke. Ces résultats fournissent les fondations rigoureuses aux résultats de la première partie.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (130 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : 55 réf.

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris Diderot - Paris 7. Service commun de la documentation. Bibliothèque Universitaire des Grands Moulins.
  • PEB soumis à condition
  • Cote : TS (2007) 078
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.