Étude asymptotique de certains systèmes désordonnés

par Sérgio de Carvalho Bezerra

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Samy Tindel.

Soutenue en 2007

à Nancy 1 .


  • Résumé

    Cette thèse porte principalement sur deux types de systèmes désordonnés, à savoir les verres de spins et les polymères dirigés en environnement aléatoire. Ces deux thèmes de recherche peuvent s'aborder à l'aide de certains outils communs, même s'ils se distinguent fortement par la nature des interactions envisagées, et des structures géométriques qu'ils engendrent. Voici un résumé succint des résultats obtenus : Pour le modèle de Sherrington-Kirkpatrick de verres de spins, une étude asymptotique des recouvrements multiples, qui généralisent de manière naturelle les recouvrements de deux configurations, couramment étudiés dans ce contexte. Un théorème central de la limite pour la fonction de partition d'un modèle de Sherrington-Kirkpatrick localisé en espace. Une étude fine de la fonction de partition ainsi qu'un résultat de surdiffusivité pour un modèle de polymère dirigé brownien en environnement aléatoire gaussien.

  • Titre traduit

    Asymptotic Study of Some Disorder Systems


  • Résumé

    This thesis basically study two kinds of disorder systems. The first one the spin glasses and second one the directed polymers into a random environment. These two research themes can be solved by the utilization of the same tools. Although they are strongly different by the nature of the interactions and the geometry structure that they create. In few words, we give a summary: For the Sherrington-Kirkpatrick Spin Glasses model, we make an asymptotic study of the multiple overlap function which generalizes the typical two configuration overlap function. Afterward, we develop a central limit theorem for the partition function of a localized Sherrigton-Kirkpatrick model. At the end, we obtain a study of the partition function and a result of super-diffusivity for a brownien directed polymer model into an random gaussian environment.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Annexes : Bibliogr.

Où se trouve cette thèse ?

  • Bibliothèque : Université de Lorraine. Direction de la documentation et de l'édition. BU Ingénieurs.
  • Accessible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.