Analyse harmonique en dimension infinie : paires de Guelfand généralisées

par Marouane Rabaoui

Thèse de doctorat en Mathématiques

Sous la direction de Angela Pasquale et de Jacques Faraut.

Le président du jury était Sami Mustapha.

Le jury était composé de Jean Ludwig.


  • Résumé

    Dans cette thèse, on commence par démontrer une version généralisée du théorèmede Bochner. Ce résultat concerne les paires sphériques d'Olshanski qui sont définies comme des limites inductives de suites croissantes de paires de Guelfand . En utilisant la théorie de la représentation intégrale de Choquet dans les cônes convexes, on établit une représentation de type Bochner pour toute fonction de l'ensemble des fonctions continues, -biinvariantes et de type positif sur Cette représentation est donnée via une unique mesure positive et bornée par : Ici désigne l'ensemble des fonctions sphériques de type positif sur Ensuite, on considère la paire sphérique où est l'espace des matrices complexes carrées de dimension infinie n'ayant qu'un nombre fini de coefficients non nuls, et est le groupe unitaire de dimension infinie. En utilisant un résultat dû à G. Olshanski et A. Vershik, on détermine l'ensemble pour la paire sphérique considérée. Ce qui nous permet de trouver une version paramétrée du théorème de Bochner généralisé qu'on utilise pour établir une représentation intégrale des fonctions continues de type négatif dans le cas de cette paire

  • Titre traduit

    Infinite dimensionale harmonic analysis : generalized Gelfand pairs


  • Résumé

    In this Thesis, we first prove a generalisation of Bochner theorem. This result deals with Olshanski spherical pairs which are defined as inductive limits of increasing sequences of Gelfand pairs. By using Choquet's theorem, we establish a Bochner type representation of any element in the set of -biinvariant continuous functions of positive type on Such representation is given via a unique, positive and bounded measure by : Here is the set of spherical functions of positive type on Then we consider the spherical pair where is the infinite dimensional space of square complex matrices with only finite non zero coefficients, and is the infinite dimensional unitary group. By using a result of G. Olshanski and A. Vershik, we determine the set of spherical functions of positive type for the considered spherical pair. This enables us to find a parameterized version of the generalized Bochner theorem which we use to establish an integral representation of continuous functions of negative type in this case


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Lorraine. Direction de la documentation et de l'édition. Bibliothèques Metz et Moselle.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.