Grandes déviations et concentration convexe en temps continu et discret

par Yutao Ma

Thèse de doctorat en Mathématiques

Sous la direction de Nicolas Privault.

Soutenue en 2007

à La Rochelle .


  • Résumé

    Cette thèse est constituée de trois parties: principes de grandes déviations, inégalités de concentration convexe et inégalités fonctionnelles. Dans la première partie, nous obtenons un principe de grandes déviations par rapport à la topologie Tau pour les suites échangeables et un principe de déviations modérées pour les fonctionnelles additives Lipschitziennes des processus de Markov. Dans la deuxième partie nous généralisons formule d'Ito aux martingales progressives et rétrogrades. Par conséquent, nous obtenons des inégalités de concentration convexe pour des intégrales dirigées par des mesures aléatoires de poisson et des mouvements browniens, des martingales normales, des processus symétriques stables ainsi que dans le gaz continu. Dans la troisième partie, nous obtenons une inégalité Fkg sur l'espace de Wiener. Nous obtenons aussi une inégalité de trou spectral et une inégalité de concentration convexe pour les processus de naissance et de mort.

  • Titre traduit

    Large deviation and convex concentration in continuous and discrete time


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (167 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. 161-167

Où se trouve cette thèse ?

  • Bibliothèque : Université de La Rochelle. Bibliothèque universitaire.
  • Disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.