Copules dynamiques : applications en finance & en économie

par Daniel Totouom Tangho

Thèse de doctorat en Économie et finance

Sous la direction de Margaret Armstrong.

Soutenue en 2007

à Paris, ENMP .

  • Titre traduit

    Dynamic copulas : applications to finance & economics


  • Pas de résumé disponible.


  • Résumé

    Les dérivés de crédit ont connu en quelques années un développement fulgurant en finance : les volumes de transactions ont augmenté exponentiellement, de nouveaux produits ont été créés. La récente crise du sub-prime a mis en évidence l’insuffisance des modèles actuels. Le but de cette thèse est de créer de nouveaux modèles mathématiques qui prennent en compte la dynamique de dépendance (« tail dependence ») des marchés. Après une revue de la littérature et des modèles existants, nous nous focalisons sur la modélisation de la « corrélation » (ou plus exactement la dynamique de la structure de dépendance) entre différentes entités dans un portefeuille de crédit (CDO). Dans une première phase, une formulation simple des copules dynamiques est proposée. Ensuite, nous présentons une seconde formulation en utilisant des processus de Lévy à spectre positif (i. E. Gamma Ornstein-Uhlenbeck). L’écriture de cette nouvelle famille de copules archimédiennes nous permet d’obtenir une formule asymptotique simple pour la distribution des pertes d’un portefeuille de crédit granulaire. L’une des particularités du modèle proposé est sa capacité de reproduire des dépendances extrêmes comparables aux phénomènes récents de contagion sur les marchés comme la crise du « subprime » aux Etats-Unis. Une application sur l’estimation des prix des tranches de CDOs est aussi présentée. Dans cette thèse, nous proposons également d’utiliser des copules dynamiques pour modéliser des migrations jointes des qualités de crédit afin de prendre en compte les co-migrations extrêmes. En effet, les copules nous permettent d’étendre notre connaissance des processus de migration mono-variable à un cadre multi-variables. Afin de tenir compte de multiples sources de risques systémiques, nous développons des copules dynamiques à plusieurs facteurs. Enfin, nous montrons que la brique élémentaire de structure de dépendance induite par une mesure du temps aléatoire « Time Changed Process » rentre dans le cadre des copules dynamiques.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (158 p.)
  • Annexes : Bibliographie

Où se trouve cette thèse ?

  • Bibliothèque : Mines ParisTech. Bibliothèque.
  • Disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.