Etude d'amortisseurs non-linéaires appliqués aux roues aubagées et aux systèmes multi-étages

par Denis Laxalde

Thèse de doctorat en Mécanique

Sous la direction de Fabrice Thouverez.


  • Résumé

    Ce travail porte sur l’étude d’amortisseurs non-linéaires pour les roues aubagées de turbomachines. Les problèmes vibratoires sont de première importance pour les motoristes aéronautiques puisqu’ils sont à l’origine des phénomènes de fatigue et des risques de défaillance associés. L’usage de technologies d’amortissement est donc assez répandu et, parmi celles-ci, les dispositifs non-linéaires de type frottement tiennent une place importante. Ici, on s’intéresse à l’étude de frotteurs circulaires, appelés joncs, pour l’amortissement des structures monoblocs tournantes. Des méthodologies numériques ont été développées dans cet objectif ; il s’agit principalement de méthodes d’analyse non-linéaire dans le domaine fréquentiel adaptées aux structures à symétrie cyclique telles que celles qui nous intéressent. La modélisation des interfaces de contact et son influence sur ces méthodes sont aussi abordées. En outre, une approche modale, permettant l’étude des paramètres modaux (fréquence propre et taux d’amortissement) d’un système non-linéaire en fonction de son énergie (ou de son niveau vibratoire) est proposée. Cette méthode présente plusieurs avantages parmi lesquels la possibilité de quantifier, de façon directe, l’efficacité d’un dispositif d’amortissement non-linéaire ou encore la possibilité de traiter plusieurs types de problèmes (réponses libres ou forcées) de façon unifiée. Ces méthodes sont ensuite appliquées à l’étude de deux types de dispositif d’amortissement. En premier lieu, l’amortissement par joncs de friction des structures monoblocs est étudié d’un point de vue numérique sur des structures industrielles. La phénoménologie du système non-linéaire est décrite en détails ce qui permet d’évaluer les performances de cette technologie ainsi que ses limites. Ensuite, l’étude d’une solution d’amortissement par pompage énergétique est proposée. Le principe du pompage énergétique consiste à utiliser un absorbeur de vibration de faible masse et de caractéristique fortement non-linéaire pour l’amortissement d’une structure principale (généralement linéaire). Ici, l’usage d’un absorbeur à caractéristique hystérétique est envisagé. Sur un système simple, les phénomènes de pompage énergétique – c’est à dire un transfert irréversible et unilatéral de l’énergie vibratoire du système principal vers l’absorbeur – sont étudiés à l’aide de méthodes numériques adaptées. En parallèle des problématiques liées à l’amortissement, nous nous sommes intéressés à la modélisation et l’analyse dynamique des ensembles multi-étages de roues aubagées. Bien que récente, cette problématique est aujourd’hui majeure pour la conception des turbomachines et les méthodes existantes d’analyse en dynamique s’avèrent mal adaptées au problème. Une méthode innovante et efficace de modélisation en symétrie cyclique multi-étage est ici proposée ; elle permet de modéliser un ensemble de structures cycliques par un secteur élémentaire de chaque étage et les analyses peuvent se faire par harmoniques spatiales. Une application non-linéaire de cette méthode est aussi proposée. Enfin, les premiers résultats d’une étude expérimentale de caractérisation de l’amortissement par joncs de friction sont présentés. Le banc d’essais, sa conception et les choix technologiques sont présentés en détails. Suivent les premiers résultats expérimentaux obtenus lors de la phase de déverminage ainsi qu’une comparaison avec les prédictions de simulations numériques.

  • Titre traduit

    A non-linear application of this method is also proposed


  • Résumé

    This study dealswith non-linear damping solutions for turbomachinery bladed disks. Structural dynamics is a major issue in the aircraft engine industry since vibratory phenomena are responsible for fatigue and failure risks. The use of damping technologies is quite common and among these, the friction devices are probably the most popular. Here, we are interested in circular friction dampers, called rings, for single piece structures. Numerical methods have been developed in this view; these are mainly non-linear frequency domain methods adapted to cyclic structures such as the ones we are interested in. The modelling of contact interfaces and its influence on these methods are also addressed. Furthermore, a modal approach to deal with non-linear system is proposed. It makes it possible to calculate the modal parameters (eigenfrequency and modal damping ratio) of a non-linear systemas a function of its energy (or vibratory amplitude). This method has several advantages among which the capabilities to evaluate directly the performances of a damping device and to address several types of dynamical responses (forced or free) in a unified manner. These methods are then applied to study two types of damping devices. First, the damping of friction rings for single piece structures is investigated numerically on industrial case studies. The phenomenological aspects are described in details which allows the performances and limits of this technology to be estimated. Second, a study of energy pumping is proposed. Energy pumping consists in using a small, strongly non-linear, vibration absorber for the damping of a main (generally linear) structure. Here, the use of an absorber with hysteretic behaviour is investigated. Illustrated on a simple phenomenological system, the energy pumping phenomena– that is to say, an irreversible one-way energy transfer from the main system to the absorber – are studied by means of dedicated umerical methods. Apart from the damping issues, we were also interested in the modelling and analysis of multi-stage bladed disks systems. This issue is quite new but tends to become a major one for the design of turbomachinery. In particular, existing methods to analyse the dynamics of such systems are currently of limited use. An original and efficient modelling approach ofmulti-stage cyclic symmetry is here proposed; a multi-stage assembly of cyclic structures can be modelled using one elementary sector of each stage and analysis can be performed on separated spatial harmonics. A non-linear application of this method is also proposed. Finally, the first results of an experimental study of damping using friction rings are presented. The test rig, its design and associated technological features are presented in details. Following some experimental results obtained during the preliminary studies, a comparison with predictions fromnumerical simulations is proposed.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (197 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : 108 références

Où se trouve cette thèse ?

  • Bibliothèque : Ecole centrale de Lyon. Bibliothèque Michel Serres.
  • Disponible pour le PEB
  • Cote : T2096
  • Bibliothèque : Ecole centrale de Lyon. Bibliothèque Michel Serres.
  • Non disponible pour le PEB
  • Cote : T2096 mag
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.