Réalisation de métriques sur les surfaces compactes

par Francois Fillastre

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Bruno Colbois et de Jean-Marc Schlenker.

Soutenue en 2006

à Toulouse 3 en cotutelle avec Neufchâtel, Suisse .


  • Résumé

    Un polyèdre fuchsien de l'espace hyperbolique est une surface polyédrale invariante sous l'action d'un groupe fuchsien d'isomètries (c. A. D. Un groupe d'isomètries qui laissent globalement invariante une surface totalement gèodèsique et sur laquelle il agit de manière cocompacte). La métrique induite sur un polyèdre fuchsien convexe est isométrique à une métrique hyperbolique avec des singularités coniques de courbure singulière positive sur une surface compacte de genre$$>1$$. On démontre que ces métriques sont en fait réalisées par un unique polyèdre fuchsien convexe (modulo les isométries globales). Ce résultat étend un théorème célèbre de A. D. Alexandrov. On montre aussi que chaque métrique à courbure constante avec des courbures singulières négatives sur une surface compacte de genre$$>1$$ peut-être réalisée par un unique polyèdre ``fuchsien'' convexe dans un espace modèle lorentzien. Finalement on présente des extensions possibles de ces résultats, ce qui amène à des énoncés généraux sur la réalisation de métriques sur les surfaces.

  • Titre traduit

    Realisation of metrics on compact surfaces


  • Résumé

    A Fuchsian polyhedron in hyperbolic space is a polyhedral surface invariant under the action of a Fuchsian group of isometries (i. E. A group of isometries leaving globally invariant a totally geodesic surface, on which it acts cocompactly). The induced metric on a convex Fuchsian polyhedron is isometric to a hyperbolic metric with conical singularities of positive singular curvature on a compact surface of genus$$>1$$. We prove that these metrics are actually realised by exactly one convex Fuchsian polyhedron (up to global isometries). This extends a famous theorem of A. D. Alexandrov. We also prove that any constant curvature metric with conical singularities of negative singular curvature on a compact surface of genus $$>1$$ can be realised by a unique convex ``Fuchsian'' polyhedron in a Lorentzian space-form. Finally we present some possible expansion of these results, and this leads to general statements about realisation of metrics on surfaces.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (137 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. 133-137

Où se trouve cette thèse ?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Disponible pour le PEB
  • Cote : 2006TOU30120
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.