Sur le groupe de Cremona : aspects algébriques et dynamiques

par Julie Déserti

Thèse de doctorat en Mathématiques et applications

Sous la direction de Dominique Cerveau et de Serge Cantat.

Soutenue en 2006

à Rennes 1 .


  • Résumé

    Dans cette thèse nous commençons par décrire le groupe des automorphismes extérieurs du groupe des automorphismes polynomiaux du plan affine : il s'identifie au groupe des automorphismes du corps des complexes. Nous étendons ce résultat au groupe de Cremona ; les techniques utilisées sont différentes, le premier groupe ayant une structure de produit amalgamé ce qui n'est pas connu pour le second. Ensuite nous nous intéressons aux représentations de certains réseaux dans le groupe de Cremona ; nous obtenons un théorème de rigidité pour SL(3,Z) et des obstructions à ce que certains réseaux se plongent dans le groupe de Cremona. Enfin nous exhibons une famille de transformations birationnelles curieuses : bien qu'elles présentent toutes les caractéristiques des transformations réputées sans dynamique les expériences numériques révèlent des orbites chaotiques situées dans le complément de deux zones où les adhérences des orbites sont des tores ou des cercles.

  • Titre traduit

    On the Cremona group : some algebraic and dynamical properties


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (171 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. 39-46 et p. 169-171

Où se trouve cette thèse ?

  • Bibliothèque : Université de Rennes I. Service commun de la documentation. Section sciences et philosophie.
  • Disponible pour le PEB
  • Cote : TA RENNES 2006/72
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.