Application des algorithmes évolutionaires à la détermination de modèles de vitesse par inversion sismique

par Vijay Pratap Singh

Thèse de doctorat en Dynamique et ressources des bassins sédimentaires

Sous la direction de Marc Schoenauer.

Soutenue en 2006

à Paris, ENMP .


  • Résumé

    Le but du traitement sismique est de fournir une image structurale et lithologique du sous-sol à partir des ondes enregistrées. Cela requiert un modèle des vitesses de propagation. L'obtention de ce modèle est une difficulté majeure en cas de structures complexes telles que piémonts ou dômes de sel. Le but de cette thèse était de développer une technique d'estimation des vitesses de migration robuste et efficace en utilisant une méthode d'optimisation globale dont le coût de calcul soit raisonnable. Nous avons utilisé comme optimiseur un e-MOEA (MultiObjective Evolutionary Algorithm). Nous avons réduit le temps de calcul en introduisant de la connaissance géologique et géophysique au niveau de la représentation, des algorithmes, des opérateurs de variation, et des fonctionnelles. Dans ce travail, après avoir tenté de concevoir une représentation concise et géologiquement significative, nous avons finalement choisi les grilles régulières pour leur souplesse, malgré le risque de coût de calcul élevé dû au grand nombre de paramètres. Nous avons modifié la fonctionnelle de semblance différentielle et l'avons utilisée de concert avec la fonctionnelle de semblance pour avoir un critère robuste et précis. Nous avons adapté l'algorithme e-MOEA en l'hybridant avec les informations de RMO (Residual MoveOut) et de pendage. Nous avons aussi proposé un nouvel opérateur d'exploitation et une technique optimale de synthèse des parents. La motivation de ces adaptations est d'avoir à la fois la robustesse des méthodes globales et l'efficacité des méthodes locales d'optimisation. Nous présentons des exemples d'analyse de vitesse de migration concernant surtout le modèle Marmousi, mais aussi le bloc L7 en Mer du Nord. Nous avons démontré que notre technique d'analyse automatique des vitesses fonctionne sur des modèles fortement erronés, et qu'elle est, en termes de temps de calcul, aussi efficace que les méthodes de gradient, sauf pour les dômes de sel. Nous espérons une future extension 3D de cet algorithme

  • Titre traduit

    Automatic seismic velocity inversion using multiobjective evolutionary algorithms


  • Résumé

    Goal of seismic data processing is to convert a recorded wave field into a structural or lithological image of the subsurface. This requires a model of the wave propagation velocities of the subsurface. Nevertheless obtaining this model is often the most difficult processing step, in areas of complex structure such as foothill or salt body. The goal of this thesis was to develop a robust and efficient migration velocity estimation technique that uses global optimisation methods and remains computationally tractable. We used e-MOEA (MultiObjective Evolutionary Algorithm) as an optimisation tool. We attempted to reduce the computational cost of EA by adding geological and geophysical knowledge to the component of the algorithms, at the representation level, in the variation operators and in the objective function. In this work, after some effort to design a concise and geologically meaningful representation, we finally concluded that the grid representation was the most flexible one, even though it implies a large number of unknown parameters and induces a high computational cost. We modified the differential semblance function and used it together with the semblance function to have a robust and accurate criterion. We hybridized e-MOEA using RMO (Residual MoveOut) and dip information. We first customize the e-MOEA algorithm itself, and also proposed a new exploitation operator and technique of optimal parent synthesis. The goal of the customization was to strive to have both the robustness of global methods and the efficiency of local optimisation methods. We presented examples of migration velocity analyses mainly on Marmousi model, together with a few results on the North-Sea L7 model. We demonstrated that our automatic velocity analysis technique is able to cope with large velocity errors and, in term of computation cost, it is as efficient as the gradient methods except in salt body. We expect that with some clever adoption this algorithm can be extended for 3D.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (208 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliographie 110 réf.

Où se trouve cette thèse ?

  • Bibliothèque :
  • Disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.