Démonstration, raisonnement et validation dans l'enseignement secondaire des mathématiques en France et en Allemagne

par Richard Cabassut

Thèse de doctorat en Mathématiques appliquées et applications mathématiques

Sous la direction de Bernard Parzysz.

Soutenue en 2005

à Paris 7 .


  • Résumé

    Pour étudier la démonstration nous adaptons le cadre théorique de Toulmin, sur les arguments de plausibilité et de nécessité, à la théorie anthropologique du didactique de Chevallard. Les validations de l'enseignement des mathématiques sont la double transposition des démonstrations de l'institution mathématique (qui produit le savoir) et des validations, argumentations ou preuves, d'autres institutions (comme la "vie quotidienne"). L'étude diachronique des programmes du collège-lycée en France, et du Gymnasium en Bade-Würtemberg, confirmée par l'étude de manuels, montre que la démonstration est devenue explicitement un objet à enseigner, contrairement aux cas des Hauptschule et Realschule. Ces programmes recommandent l'usage de différents types de validation (argumentation, preuve) et d'arguments (pragmatiques, sémantiques, syntaxiques) suivant leurs fonctions et les moments ; on retrouve dans des leçons sur la démonstration l'influence des fonctions de la validation dans les différents genres de tâche (découvrir, contrôler, changer de registres. . . ). Malgré les difficultés linguistiques, institutionnelles et culturelles liées à la comparaison, l'examen des validations de théorèmes de cours dans les manuels et de démonstrations produites par des élèves montre des similitudes quant à la cohabitation des différents types d'arguments et différentes fonctions de la validation. On observe des différences sur les types de technologie ou de technique mis en œuvre et sur le poids donné aux types d'arguments et aux registres utilisés, avec une explication liée aux conditions institutionnelles (moment considéré, contrat, fonction privilégiée, organisation de l'enseignement. . . ).


  • Résumé

    For the study of the proof we adapt Toulmin's theoretical frame on arguments of plausibility and arguments of necessity to Chevallard's anthropological theory of didactics. The validations of mathematic teaching are the double transposition of proofs from the mathematical institution (producing the knowledge) and validations (argumentations and proofs) from other institutions (like the "daily life"). The diachronic study of curricula of French “collège-lycée” and of German Gymnasium (in Baden-Württemberg), confirmed by the study of textbooks shows that proof is explicitly taught as opposed to the cases of Realschule and Hauptschule. These curricula advise the use of different types of validation (argumentation, proof. ) and arguments (pragmatic, semantic, syntactic) depending on the functions and when they are introduced: The influence of the functions of validation on the different types of tasks (discovering, controlling, changing registers. . . ) is also observed in lessons on proof. In spite of linguistic, institutional, and cultural difficulties in comparing France and Germany, the study of validations, of class theorems in textbooks, and of proofs produced by students, shows similarities about combining different types of arguments as well as different types of functions. Differences are observed on the types of technology and technique involved in the validation and on the weight given to different types of arguments and registers used, with an explanation related to the institutional conditions (moment of introduction, didactical contract, function, educational system. . . ).

Autre version

Cette thèse a donné lieu à une publication en 2005 par IREM, Univ. Paris 7 Denis Diderot à Paris

Démonstration, raisonnement et validation dans l'enseignement secondaire des mathématiques en France et en Allemagne


Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (514 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : 212 ref.

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris Diderot - Paris 7. Service commun de la documentation. Bibliothèque Universitaire des Grands Moulins.
  • PEB soumis à condition
  • Cote : TL (2005) 014

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Bibliothèque interuniversitaire de la Sorbonne (Paris).
  • Non disponible pour le PEB
  • Cote : MC 8484
  • Bibliothèque : Bibliothèque interuniversitaire de la Sorbonne (Paris).
  • Non disponible pour le PEB
  • Cote : MC 8334
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.
Cette thèse a donné lieu à 1 publication .

Consulter en bibliothèque

Cette thèse a donné lieu à une publication en 2005 par IREM, Univ. Paris 7 Denis Diderot à Paris

Informations

  • Sous le titre : Démonstration, raisonnement et validation dans l'enseignement secondaire des mathématiques en France et en Allemagne
  • Détails : 1 vol. (514 p.)
  • Notes : Thèse soutenue le 27 mai 2005.
  • ISBN : 2-86612-269-0
  • Annexes : Bibliogr. p. 417-424. Notes bibliogr.
La version de soutenance de cette thèse existe aussi sous forme papier.

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.