Hamiltoniens quantiques et symétries

par Roch Cassanas

Thèse de doctorat en Mathématiques et applications

Sous la direction de Roman Novikov.

Soutenue en 2005

à Nantes .


  • Résumé

    On étudie le comportement semi-classique d'hamiltoniens quantiques dont le symbole de Weyl est invariant par un groupe de symétries. La réduction quantique consiste à restreindre le hamiltonien aux sous-espaces de symétrie de L 2 (R n ) donnés par la décomposition de Peter-Weyl. Les opérateurs restreints sont appelés hamiltoniens quantiques réduits. Pour un groupe fini, on donne une formule de Gutzwiller pour le hamiltonien réduit qui fait intervenir la symétrie d'orbites périodiques classiques du niveau d'énergie étudié. On l'interprète dans l'espace de phase réduit lorsque le groupe agit librement. Pour un groupe de Lie compact, on donne une asymptotique de Weyl de la fonction de comptage des valeurs propres du hamiltonien réduit. On interprète géométriquement le premier terme. On obtient ici aussi une formule de type Gutzwiller impliquant des orbites périodiques de l'espace de phase réduit qui correspondent à des orbites quasi-périodiques de R 2n.


  • Résumé

    We study the semi-classical behavior of a quantum Hamiltonian whose Weyl symbol has some symmetries coming from a compact group G. The quantum reduction is done by restricting the operator to subspaces of L 2 (R n ) The quantum reduction is done by restricting the operator to subspaces of L 2 (R n ) called symmetry subspaces, coming from the Peter Weyl decomposition. The restrictions are called the reduced quantum Hamiltonians. For a finite group, we give a Gutzwiller formula for the reduced Hamiltonian, involving the symmetry of periodic orbits of the energy shell. We interpret this formula in the classical reduced space when G acts freely. For a compact Lie group, we give a Weyl asymptotic formula of the eigenvalue counting function of the reduced Hamiltonian, for which we calculate the first term. Oscillations of the spectral density are also described by a Gutzwiller formula involving periodic orbits of the reduced space, corresponding to quasi-periodic orbits of R 2n.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (176 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. 173-176

Où se trouve cette thèse ?

  • Bibliothèque : Université de Nantes. Service commun de la documentation. Section Sciences.
  • Disponible pour le PEB
  • Cote : 2005 NANT 2010
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.