Propriétés aléatoires des suites d'entiers

par Katalin Gyarmati

Thèse de doctorat en Mathématiques

Sous la direction de Joël Rivat et de András Sárközy.

Soutenue en 2005

à Nancy 1 , en partenariat avec Université Henri Poincaré Nancy 1. Faculté des sciences et techniques (autre partenaire) .


  • Résumé

    La génération de nombres pseudoaléatoires joue un rôle important en mathématiques et en physique, et un rôle crucial en cryptographie. En 1997, C. Mauduit et A. Sárközy ont introduit des nouvelles mesures du caractère pseudoaléatoire des suites binaires finies: les mesure de bonne-distribution et de corrélation. Dans le deuxième chapitre nous définissons une nouvelle mesure: la mesure de symétrie. Dans le troisième chapitre, nous avons construit une grande famille des suites pseudoaléatoires en utilisant le logarithme discret. Les suites dans cette construction ont des propriétés pseudoaléatoires fortes, mais elles peuvent être construites très lentement. Dans le quatrième chapitre nous améliorons la construction en modifiant la suite de manière à pouvoir la construire plus vite. Dans les deux derniers chapitres nous établissons des inégalités entre les mesures du caractère pseudoaléatoire. En particulier, une conjecture de Mauduit est prouvée.


  • Résumé

    The generation of pseudorandom numbers plays an important role in many fields of mathematics and physics, in particular in the problems of cryptography. In 1997 C. Mauduit and A. Sárközy introduced new measures of pseudorandomness of binary sequences: the well-distribution measure and the correlation measure. In the second chapter of the thesis we define a further new measure of pseudorandomness: the symmetry measure. In the third chapter of the thesis we constructed a large family of pseudorandom sequences by using the discrete logarithm. The sequences in this construction have strong pseudorandom properties, but they can be generated very slowly. In the fourth chapter we will improve on this construction by replacing a sequence which can be generated faster. In the last two chapters of the thesis we study inequalities between the measures of pseudorandomness. Among others, a conjecture of C. Mauduit is proved.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol.(XIII-90 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. 88-90

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Lorraine (Villers-lès-Nancy, Meurthe-et-Moselle). Direction de la Documentation - BU Sciences et Techniques.
  • Disponible pour le PEB
  • Cote : SC N2005 1

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université de Lille. Service commun de la documentation. Bibliothèque universitaire de Sciences Humaines et Sociales.
  • Non disponible pour le PEB
  • Cote : 2005NAN10001
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.