Echantillonnage et maillage de surfaces avec garanties

par Steve Oudot

Thèse de doctorat en Informatique

Sous la direction de Jean-Daniel Boissonnat.

Soutenue en 2005

à Palaiseau, Ecole polytechnique .


  • Résumé

    Dans cette thèse, nous introduisons le concept d'e-échantillon lâche, qui peut être vu comme une version faible de la notion d'e-échantillon. L'avantage majeur des e-échantillons lâches sur les e-échantillons classiques est qu'ils sont plus faciles à vérifier et à construire. Plus précisément, vérifier si un ensemble fini de points est un e-échantillon lâche revient à regarder si les rayons d'un nombre fini de boules sont suffisamment petits. Quand la surface S est lisse, nous montrons que les e-échantillons sont des e-échantillons lâches et réciproquement, à condition que e soit suffisamment petit. Il s'ensuit que les e-échantillons lâches offrent les mêmes garanties opologiques et géométriques que les e-échantillons. Nous étendons ensuite nos résultats au cas où la surface échantillonnée est non lisse en introduisant une nouvelle grandeur, appelée rayon Lipschitzien, qui joue un rôle similaire à lfs dans le cas lisse, mais qui s'avère être bien défini et positif sur une plus large classe d'objets. Plus précisément, il caractérise la classe des surfaces Lipschitziennes, qui inclut entre autres toutes les surfaces lisses par morceaux pour lesquelles la variation des normales aux abords des points singuliers n'est pas trop forte. Notre résultat principal est que, si S est une surface Lipschitzienne et E un ensemble fini de points de S tel que tout point de S est à distance de E au plus une fraction du rayon Lipschitzien de S, alors nous obtenons le même type de garanties que dans le cas lisse, à savoir : la triangulation de Delaunay de E restreinte à S est une variété isotope à S et à distance de Hausdorff O(e) de S, à condition que ses facettes ne soient pas trop aplaties. Nous étendons également ce résultat aux échantillons lâches. Enfin, nous donnons des bornes optimales sur la taille de ces échantillons. Afin de montrer l'intérêt pratique des échantillons lâches, nous présentons ensuite un algorithme très simple capable de construire des maillages certifiés de surfaces. Etant donné une surface S compacte, Lipschitzienne et sans bord, et un paramètre positif e, l'algorithme génère un e-échantillon lâche E de S de taille optimale, ainsi qu'un maillage triangulaire extrait de la triangulation de Delaunay de E. Grâce à nos résultats théoriques, nous pouvons garantir que ce maillage triangulaire est une bonne approximation de S, tant sur le plan topologique que géométrique, et ce sous des hypothèses raisonnables sur le paramètre d'entrée e. Un aspect remarquable de l'algorithme est que S n'a besoin d'être connue qu'à travers un oracle capable de détecter les points d'intersection de n'importe quel segment avec la surface. Ceci rend l'algorithme assez générique pour être utilisé dans de nombreux contextes pratiques et sur une large gamme de surfaces. Nous illustrons cette généricité à travers une série d'applications : maillage de surfaces implicites, remaillage de polyèdres, ondage de surfaces inconnues, maillage de volumes.

  • Titre traduit

    Sampling and meshnig surfaces with guarantees


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. ( 172 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. 114 réf.

Où se trouve cette thèse ?

  • Bibliothèque : École polytechnique. Bibliothèque Centrale.
  • Disponible pour le PEB
  • Bibliothèque : École polytechnique. Bibliothèque Centrale.
  • Disponible pour le PEB
  • Cote : G2A 279/2005/OUD
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.