Dissociation des bouchons d'hydrates de gaz dans les conduites pétrolières sous-marines

par Duc Nguyen Hong

Thèse de doctorat en Génie des Procédés

Sous la direction de Jean-Michel Herri.

Soutenue en 2005

à Saint-Etienne, EMSE .


  • Résumé

    Dans les conduites pétrolières sous-marines ou dans celles de gaz, la formation des hydrates de gaz est un problème majeur. La présence de nouvelles particules solides formées à partir des molécules d'eau et des hydrocarbures légers (méthane, éthane. . . ) sous haute pression et basse température au sein d’un effluent qui au départ est liquide, a pour effet d’augmenter brutalement la viscosité de l’ensemble, ce qui gène encore le flux dans son écoulement. Au bout du compte on peut observer un blocage complet de la conduite. Pour les éliminer après leur formation, on peut avoir recours à un procédé de dépressurisation symétrique. Pour étudier ce problème, nous avons utilisé deux appareillages. Avec ces deux systèmes, nous avons obtenu des bouchons de différentes tailles (7 cm, 10,75 cm et 12 cm de diamètre). Ils ont une porosité entre 0,25 et 0,9. Nous avons proposé un modèle numérique qui est basé sur la méthode d’enthalpie en milieu infini selon l’axe de symétrie radiale et pour des coordonnées cylindriques. Le modèle utilise une équation de la loi de Fourier modifiée afin de déterminer l’enthalpie en toutes positions de la phase liquide. Ce modèle intègre la porosité du bouchon, la structure des hydrates ainsi que la géométrie de la conduite. Ce modèle est validé par les données expérimentales présentes dans la littérature et nos résultats expérimentaux. Une méthode quasi-stationnaire est aussi proposée permettant de simplifier l’estimation de la durée de dissociation. L’erreur moyenne du temps de dissociation obtenu entre les deux méthodes est environ de 2,7 % pour une température comprise dans l’intervalle [273,15 K; 277,15 K] et une porosité entre 0,3 et 0,9.

  • Titre traduit

    Hydrates plugs dissociation in pipelines.


  • Résumé

    Natural gas hydrates plugs cause problems during drilling, well operations, production, transportation and processing of oil and gas. Especially, it is a very serious problem in off-shore oil transportation where low temperature and high pressure become more and more favourable to gas hydrate formation as the new production wells are more and more deeper. Up to now, although many studies have been developed concerning the possibility of preventing pipe plugging, there is limited information in open literature on hydrate plugs dissociation and all models in literature are numerically complicated. In this study, hydrate plugs are formed from water in n-dodecane mixture with addition of a dispersant E102B in two different experimental apparatus in order to obtain hydrates plugs with different sizes (diameter of 7, 10. 75 and 12 cm). Then, the plugs are dissociated by the method of two-sided depressurisation. In this paper, we propose a numerical model which describes the dissociation of gas hydrate plugs in pipelines. The numerical model, which is constructed for cylindrical coordinates and for two-sided pressurisation, is based on enthalpy method. We present also an approximate analytical model which has an average error 2. 7 % in comparison with the numerical model. The excellent agreement between our experimental results, literature data and the two models shows that the models give a good prediction independently of the pipeline diameter, plug porosity and gas. The simplicity of the analytical model will make it easier in industrial applications.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 volume (155 pages)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliographie pages 121-124

Où se trouve cette thèse ?

  • Bibliothèque : Ecole nationale supérieure des mines. Centre de documentation et d'information.
  • Disponible pour le PEB
  • Cote : 532 NGU
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.