Approche probabiliste et homogénéisation d'équations aux dérivées partielles

par Ahmadou Bamba Sow

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Étienne Pardoux et de Gane Samb Lô.

Soutenue en 2005

à Aix-Marseille 1 , en partenariat avec Université de Provence. Section sciences (autre partenaire) .


  • Résumé

    Les travaux exposés dans cette thèse entrent d'une manière générale dans l'étude des équations aux dérivées partielles aux moyens d'outils stochastiques. Dans une première partie, nous résolvons un système d'équations différentielles stochastiques progressives rétrogrades couplé avec un processus de Poisson puis nous en déduisons une résolution d'un système d'EDP parabolique quasilinéaires non dégénéré avec un opérateur du second ordre différent d'une ligne à l'autre du système. Ce travail utilise des estimations analytiques de la norme du gradient de solution d'EDP et nécessite l'uniforme ellipticité comme hypothèse principale. Dans une seconde partie, nous établissons des résultats d'homogénéisation d'EDP semilinéaires en milieu périodique. Nous montrons essentiellement que les résultats précédemment établis avec condition d'uniforme ellipticité de la diffusion demeurent si celle-ci est substituée par une condition plus faible dite de Doeblin. A cette fin nous utilisons les solutions de l'équation de Poisson en un sens généralisé, celles-ci nous permettant au moyen d'une régularisation adéquate d'user de la formule classique d'Ito pour identifier les coefficients de l'EDP limite. Nous exploitons essentiellement des techniques de convergence faible et de théorie ergodique

  • Titre traduit

    Probabilistic approach and homogenization of partial differential equations


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (131 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliographie p.127-131

Où se trouve cette thèse ?

  • Bibliothèque : Université d'Aix-Marseille (Marseille. St Charles). Service commun de la documentation. Bibliothèque universitaire de sciences lettres et sciences humaines.
  • Disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.