Noyaux reproduisants et critères de contraste pour l'élaboration de détecteurs à structure imposée

par Fahed Abdallah

Thèse de doctorat en Optimisation et sûreté des systèmes

Sous la direction de Régis Lengellé et de Cédric Richard.

Soutenue en 2004

à Troyes , dans le cadre de Ecole doctorale Sciences pour l'Ingénieur (Troyes, Aube) .


  • Résumé

    Les travaux réalisés pendant cette thèse sont relatifs à la synthèse de détecteurs à partir d'une base d'exemples étiquetés. La théorie développée fait appel aux espaces de Hilbert à noyaux reproduisants pour l'élaboration de détecteurs linéaires généralisés dans des espaces transformés de dimension importante, voire infinie, sans qu'aucun calcul n'y soit effectué explicitement. Elle repose sur l'optimisation du meilleur critère de contraste pour le problème traité, après s'être assuré que de telles mesures de performance permettant l'obtention sous des conditions restrictives assez faibles, à une statistique équivalente au rapport de vraisemblance. Pour une meilleure prise en compte de phénomènes tels que la malédiction de la dimensionnalité, l'approche proposée s'appuie sur la théorie de l'apprentissage. Celle-ci lui permet d'offrir des garanties de performances en généralisation. On propose ainsi des méthodes qui permettent le contrôle de complexité des détecteurs obtenus. Les résultats obtenus sur des données synthétiques et réelles montrent que notre approche est en mesure de rivaliser avec les structures de décision les plus étudiées actuellement que sont les Support Vector Machines

  • Titre traduit

    Reproducing kernels and contrast criteria for constrained structure detection


  • Résumé

    In this thesis, we consider statistical learning machines with try to infer rules from a given set or observations in order to make correct predictions on unseen examples. Building upon the theory of reproducing kernels, we develop a generalized linear detector in transformed spaces of high dimension, without explicitly doing any calculus in these spaces. The method is based on the optimization of the best second-order criterion with respect to the problem to solve. In fact, theoretical results show that second-order criteria are able, under some mild conditions, to guarantee the best solution in the sense of classical detection theories. Achieving a good generalisation performance with a receiver requires matching its complexity to the amount of available training data. This problem, known as the curse of dimensionality, has been studied theoretically by Vapnik and Chervonenkis. In this dissertation, we propose complexity control procedures in order to improve the performance of these receivers when few training data are available. Simulation results on real and synthetic data show clearly the competitiveness of our approach compared with other state of the art existing kernel methods like Support Vector Machines

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : VI-121 p.
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. 111-121

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Technologie. Service commun de la documentation.
  • Disponible pour le PEB
  • Cote : THE 04 ABD

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université de Lille. Service commun de la documentation. Bibliothèque universitaire de Sciences Humaines et Sociales.
  • Non disponible pour le PEB
  • Cote : 2004TROY0002
  • Bibliothèque : Université Paris-Est Créteil Val de Marne. Service commun de la documentation. Section multidisciplinaire.
  • PEB soumis à condition
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.