Champs de Lévy multifractionnaires

par Céline Lacaux

Thèse de doctorat en Mathématiques. Probabilités

Sous la direction de Serge Cohen.

Soutenue en 2004

à Toulouse 3 .


  • Résumé

    Dans un premier temps, nous introduisons une classe de champs réels appelés champs de Lévy multifractionnaires au moyen d'une représentation harmonisable. Cette classe contient à la fois celle des champs de Lévy fractionnaires et le mouvement brownien multifractionnaire (MBM en abrégé). Elle fournit notamment des exemples de champs non gaussiens du second ordre ayant des propriétés semblables à celles du MBM. En particulier, les champs de Lévy multifractionnaires sont localement autosimilaires et leur exposant de Hölder ponctuel peut varier le long d'une trajectoire. Par ailleurs, leurs propriétés sont gouvernées par leur fonction multifractionnaire. Par suite, d'un point de vue statistique, un problème naturel est l'identification de cette fonction. Comme le dans le cas du MBM, elle peut être identifiée au moyen des variations quadratiques localisées et généralisées. Dans la deuxième partie, nous nous sommes intéressés à la simulation de la partie non gaussienne d'un champ de Lévy multifractionnaire. La méthode proposée est basée sur une représentation en série de bruits généralisés. Cependant, dans certains cas, on approche aussi une partie du champ de Lévy multifractionnaire par un MBM. Enfin, la dernière partie introduit un champ localement autosimilaire avec un comportement atypique en 0. . .

  • Titre traduit

    Multifractional Levy Motions


  • Résumé

    In a first part, the class of Real Harmonizable Multifractional Lévy Motions, in short RHMLMs, is introduced. This class is a generalization of the Multifractional Brownian Motion, in short MBM, and of the class of Real Harmonizable Fractional Lévy Motions. This class contains some non-Gaussian second order fields which share many properties with the MBM. Especially, RHMLMs are locally asymptotically self-similar and their pointwise Hölder exponent is allowed to vary along the trajectory. Moreover, their properties are governed by their multifractional function which can be estimated with the localized generalized quadratic variations as in the case of the MBM. The second part deals with the simulation of the non-Gaussian part of a RHMLM. Actually, the method for generating the sample paths of RHMLMs is based on a generalized shot-noise series expansion. . .

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 131 p.
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. 127-131

Où se trouve cette thèse ?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Disponible pour le PEB
  • Cote : 2004TOU30063
  • Bibliothèque : Université de Lorraine. Bibliothèque de mathématiques de l'Institut Elie Cartan de Lorraine.
  • PEB soumis à condition
  • Cote : Th LACAUX c
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.