Surfaces de degré 4 avec un point double non dégénéré dans l'espace projectif réel de dimension 3

par Sebastien Moriceau

Thèse de doctorat en Mathématiques et applications

Sous la direction de Ilia Itenberg.

Soutenue en 2004

à Rennes 1 .


  • Résumé

    Une surface de degré m dans l'espace projectif réel de dimension 3 est un polynôme homogène de degré m en 4 variables à coefficients réels et considéré à multiplication par un réel non nul près. L'ensemble des points réels de la surface est l'ensemble des zéros du polynôme dans l'espace projectif réel. Une classification naturelle des surfaces dans l'espace projectif réel est la classification à isotopie près. Une classification plus fine est celle à isotopie rigide près. Le premier résultat obtenu est une classification à isotopie près des surfaces de degré 4 avec un point double non dégénéré. Le deuxième résultat est une classification à isotopie rigide près des surfaces de degré 4 avec un point double non dégénéré, excepté le cas des surfaces dont l'ensemble des points réels est connexe et non contractile. Enfin, le troisième résultat concerne les groupes de monodromie des surfaces non singulières de degré 4; ces groupes ont tous été calculés.


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 145 p.
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. : 34 réf.

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Rennes 1. Service commun de la documentation. BU Beaulieu.
  • Disponible pour le PEB
  • Cote : TA Rennes 2004/61

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université de Lille. Service commun de la documentation. Bibliothèque universitaire de Sciences Humaines et Sociales.
  • Non disponible pour le PEB
  • Cote : 2004REN10130
  • Bibliothèque : Université Paris-Est Créteil Val de Marne. Service commun de la documentation. Section multidisciplinaire.
  • PEB soumis à condition
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.