Thèse soutenue

Sur quelques équations aux dérivées partielles et leur analyse numérique

FR  |  
EN
Auteur / Autrice : Benoît Merlet
Direction : François Alouges
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance en 2004
Etablissement(s) : Paris 11
Partenaire(s) de recherche : Autre partenaire : Université de Paris-Sud. Faculté des sciences d'Orsay (Essonne)

Résumé

FR  |  
EN

Les travaux présentés dans cette thèse concernent l'étude théorique ou/et numérique de quatre Equation aux Dérivées Partielles de nature différente. Le premier chapitre traite de systèmes hyperboliques non conservatifs en dimension un d'espace. Contrairement au cas conservatif, la théorie des distributions ne donne pas de sens naturel à la notion de choc pour ces systèmes. Nous proposons et étudions ici une définition pour les courbes de chocs associées à de tels systèmes. Cette définition est très simple et implantable dans un solveur de Riemann. Le second chapitre concerne la simulation numérique du flot des applications harmoniques axisymétriques de D^2 à valeur dans S^2. Nous utilisons la notion d'énergie relaxée pour construire des solutions non standard de ce flot qui tiennent compte de l'énergie perdue par concentration. Pour simuler ces solutions, nous utilisons une méthode d'Eléments Finis Mobiles qui permet de capter efficacement les singularités. Au troisième chapitre, nous abordons le problème de Cauchy avec condition initiale et donnée au bord pour l'équation de Kadomtsev-Petviashvili II posée sur une bande. De plus nous traitons le cas du demi-plan et nous montrons un résultat de convergence. Le dernier chapitre concerne la vérification numérique d'une conjecture de Guy David liée à la fonctionnelle de Mumford-Shah. Nous ramenons l'étude à un problème spectral pour l'opérateur Laplacien avec conditions de Neumann sur un sous-domaine de S^2 possédant des angles rentrants. Nous utilisons la méthode du complément singulier pour calculer des approximations précises des coefficients singuliers du premier vecteur propre de l'opérateur.