Estimation semi-paramétrique de la période de fonctions périodiques inconnues dans divers modèles statistiques : théorie et applications

par Céline Lévy-Leduc

Thèse de doctorat en Mathématiques

Sous la direction de Elisabeth Gassiat.


  • Résumé

    Cette thèse porte sur l'estimation semi-paramétrique de la période de fonctions périodiques inconnues dans divers cadres statistiques ainsi qu'à la mise en place de tests non-paramétriques permettant de détecter la présence de signal périodique dans du bruit. Dans le chapitre 1, nous proposons des estimateurs asymptotiquement optimaux de la période d'une fonction périodique et des périodes de deux fonctions périodiques à partir de leur somme bruitée. Dans le chapitre 2, nous proposons un algorithme pratique d'estimation de période fondée sur les idées du chapitre 1 que nous testons sur des données simulées de vibrométrie laser. Cet algorithme est testé dans le chapitre 3 sur des données réelles musicales. Dans le chapitre 4, nous proposons un estimateur de période lorsque les observations correspondent à une fonction presque périodique particulière bruitée ainsi qu'une mise en oeuvre pratique de la méthode que l'on a testée sur des signaux de vibrométrie laser. Dans le chapitre 5, on propose un test de détection de fonctions périodiques dans du bruit lorsque la période de la fonction et la variance du bruit sont inconnues qui est adaptatif au sens du minimax et on l'a teste sur des données de vibrométrie laser.


  • Résumé

    This thesis is devoted to semiparametric period estimation of unknown periodic functions in various statistical models as well as the construction of nonparametric tests to detect a periodic signal in the midst of noise. In chapter 1, we propose asymptotically optimal estimators of the period of an unknown periodic function and of the periods of two periodic functions from their sum corrupted by Gaussian white noise. In chapter 2, we propose a practical implementation of the period estimation method based on the ideas developed in the first chapter that we test on simulated laser vlbrometry signals. This algorithm is used in chapter 3 on real musical data. In chapter 4, we propose an estimator of the period when the observations are those of a particular almost periodic function corrupted by Gaussian white noise as well as a practical implementation of the method. This algorithm has also been tested on laser vibrometry data. In chapter 5, we propose a test in order to detect periodic functions in the midst of noise when the period of the function and the variance of noise are unknown. It is proved to be adaptive in the minimax sense and has been tested on laser vibrometry data.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 159 p.
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p.157-159

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud (Orsay, Essonne). Service Commun de la Documentation. Section Sciences.
  • Disponible pour le PEB
  • Cote : M/Wg ORSA(2004)146
  • Bibliothèque : Bibliothèque Mathématique Jacques Hadamard (Orsay, Essonne).
  • Disponible sous forme de reproduction pour le PEB
  • Cote : LEVY
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.