Etudes structurales d'un moteur moléculaire : la myosine

par Pierre-Damien Coureux

Thèse de doctorat en Sciences biologiques. Cristallographie biologique

Sous la direction de Anne Houdusse.

Soutenue en 2004

à Paris 11 .


  • Résumé

    Les moteurs moléculaires sont des protéines capables de produire une force : elles peuvent hydrolyser un nucléotide, l'ATP, et convertir l'énergie chimique libérée en énergie mécanique. Cette caractéristique intéressante est partagée par trois grandes familles de moteurs moléculaires, les myosines, les kinésines et les dynéines. Les myosines, notre famille préférée, interviennent dans une kyrielle de fonctions cellulaires comme la contraction musculaire, l'oui͏̈e, la vue, la pigmentation de la peau, la digestion, le développement cérébral, le trafic intracellulaire, la division cellulaire ou bien la phagocytose. Pour comprendre les bases de leur génération de force, et pour à plus long terme utiliser les moteurs moléculaires comme cible thérapeutique, les myosines de classe II et V ont été étudiées pour leurs caractéristiques particulières. Ces myosines partagent le même mécanisme de production de force, même si elles possèdent des fonctions très différentes dans la cellule. Les résultats cinétiques et structuraux de ces deux classes de myosines ont permis de mieux comprendre le cycle catalytique de la myosine avec son partenaire, l'actine. De nouveaux états conformationnels de myosine V, isolés par cristallographie, ont permis de décrire les éléments structuraux responsables de l'interaction forte de la myosine et de l'actine, ainsi que l'effet du nucléotide sur le complexe actomyosine. Les études menées sur différents mutants de myosine II ont de plus apporté quelques éléments de réponse sur une étape clé de la production de force des myosines ; la libération de l'un des produits d'hydrolyse.


  • Résumé

    Molecular motors are proteins that are able to produce a force : they convert the chemical energy released from ATP hydrolysis into mechanical force. This interesting feature is shared among three molecular motors families : myosins, kinesins and dyneins. Myosins, our favorite family, are involved in a litany of cellular functions as muscular contraction, hearing, vision, skin pigmentation, digestion, brain development, intracellular traffic, cellular division or phagocytosis. To understand the basis of force generation, and one day to use molecular motors as therapeutic targets, class II and V myosins were studied for their interesting features. These myosins share the same production force mechanism, but they have totally different functions in the cell (one forms filaments and contracts muscular fibers whereas the other is a dimer and carries vesicules). Kinetic and structural results on those two myosins classes helped to better understand the catalytic cycle of myosin with its partner, actin. Some new conformational states of myosin V, isolated by crystallography, allowed us to describe the structural elements responsible of the strong interaction between myosin and actin, and the effect of the nucleotide on the actomyosin complex. The studies lead on different myosin II mutants gave some parts of answer on a key step on myosin production force ; one of the hydrolysis products release. These mutants participated to a better understanding of the aim of some residues in the kinetic differences within the myosin superfamily.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 139 f.
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p.123-137

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud (Orsay, Essonne). Service Commun de la Documentation. Section Sciences.
  • Disponible pour le PEB
  • Cote : 0g ORSAY(2004)73
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.