Un cadre quantitatif pour la ludique

par François Maurel

Thèse de doctorat en Informatique

Sous la direction de Pierre-Louis Curien.

Soutenue en 2004

à Paris 7 .

  • Titre traduit

    ˜A œquantitive framework for Ludics


  • Pas de résumé disponible.


  • Résumé

    La ludique, introduite par Jean-Yves Girard, est un modèle de Sa logique linéaire sans exponentielles. En vue de la modélisation des exponentielles, cette thèse propose deux extensions successives de la ludique. La première extension étend la ludique en un modèle probabiliste original conservant la plupart des théorèmes du modèle initial. La seconde extension reprend ce modèle probabiliste et utilise des pointeurs, introduits dans les jeux de Hyland et Ong, ce qui permet de considérer les répétitions et donc de modéliser les exponentielles. Un résultat de complétude est montré pour la ludique probabiliste vis-a'-vis de la ludique et de la logique MALL2. La ludique exponentielle proposée vérifie les théorèmes principaux de la ludique : les théorèmes analytiques. En particulier, ce modèle montre une interprétation de la logique linéaire avec des répétitions gardant une topologie séparée. De plus, les coefficients introduits apporte a' la ludique une "plus grande séparation" que dans le modèle d'origine.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (253 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : 50 réf.

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris Diderot - Paris 7. Service commun de la documentation. Bibliothèque Universitaire des Grands Moulins.
  • PEB soumis à condition
  • Cote : TS (2004) 240
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.