Fonctions tau de l'opérateur de Dirac sur le cylindre

par Oleg Lisovyy

Thèse de doctorat en Mathématiques

Sous la direction de Vladimir Roubtsov.

Soutenue en 2004

à Angers .


  • Résumé

    La thèse est consacrée à l'étude d'un analogue du problème de Riemann-Hilbert et de déformations isomonodromiques pour les solutions de l'équation de Dirac sur le cylindre. L'objectif est de faire un lien entre la théorie de déformation et les fonctions de corrélation dans certains modèles intégrables en théorie quantique des champs dans le volume fini. Dans une première partie, nous étudions des solutions multivaluées de l'équation de Dirac, qui réalisent une représentation unitaire de dimension 1 du groupe fondamental du cylindre avec n points marqués. Nous introduisons et étudions la base canonique des solutions, la fonction de Green et la fonction tau de l'opérateur de Dirac singulier. Dans une seconde partie, nous obtenons, de deux facons différentes, les équations différentielles nonlinéaires satisfaites par les fonctions de corrélation du modéle d'Ising sur le cylindre.


  • Résumé

    The thesis is devoted to the study of an analog of the Riemann-Hilbert problem and monodromy preserving deformations for the solutions of the Dirac equation on the cylinder. The aim is to understand the connection between deformation theory and correlation functions of certain integrable models of quantum field theory in the finite volume. In the first part, we study multivalued solutions of the Dirac equation that realize a unitary one-dimensional representation of the fundamental group of the cylinder with n marked points. We introduce and investigate the canonical basis of solutions, the Green function and the tau function of the singular Dirac operator. In the second part, we derive in two different ways nonlinear differential equations, satisfied by the correlation functions of the Ising model on the cylinder.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (79 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p.79-80

Où se trouve cette thèse ?

  • Bibliothèque : Université d'Angers. Service commun de la documentation. Section Lettres - Sciences.
  • PEB soumis à condition
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.